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ABSTRACT
Computerized Adaptive Testing (CAT) is a promising testing mode

in personalized online education (e.g., GRE), which aims at measur-

ing student’s proficiency accurately and reducing test length. The

“adaptive” is reflected in its selection algorithm that can retrieve

best-suited questions for student based on his/her estimated pro-

ficiency at each test step. Although there are many sophisticated

selection algorithms for improving CAT’s effectiveness, they are

restricted and perturbed by the accuracy of current proficiency esti-

mate, thus lacking robustness. To this end, we investigate a general

∗
Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00

https://doi.org/10.1145/3477495.3531928

method to enhance the robustness of existing algorithms by lever-

aging student’s “multi-facet” nature during tests. Specifically, we

present a generic optimization criterion Robust Adaptive Testing

(RAT) for proficiency estimation via fusing multiple estimates at

each step, which maintains a multi-facet description of student’s

potential proficiency. We further provide theoretical analyses of

such estimator’s desirable statistical properties: asymptotic unbi-

asedness, efficiency, and consistency. Extensive experiments on

perturbed synthetic data and three real-world datasets show that

selection algorithms in our RAT framework are robust and yield

substantial improvements.
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1 INTRODUCTION
In the era of information explosion, Computerized Adaptive Test-

ing (CAT) is a critical problem in educational resource search and

educational measurement [39]. Being able to adaptively search for

best-suited questions for student, CAT has been an increasingly

popular way to measure student proficiency level in standardized

tests (e.g., GMAT and GRE). Lan et al. [22] has proven that such

adaptive tests need fewer questions than paper-and-pencil tests to

reach the same measurement accuracy. Also, shorter tests reduce

system load and are better for students, who may be frustrated or

bored if they need to give too many answers [10, 41].

In real-life scenarios, CAT consists of two core components that

work alternately until the end of test (see Figure 1): At test step 𝑡 ,

(1) Cognitive Diagnosis Model (CDM), as the user model, first

estimates student’s current proficiency
ˆ𝜃𝑡 using his/her responses

to previous 𝑡 questions. The most famous model is Item Response

Theory (IRT), which defines the probability of the correct response

by aligning and comparing student’s overall ability, 𝜃 ∈ R, with
the question’s difficulty [14]. More generally, 𝜃 is multidimensional

[42, 43] and each dimension represents the proficiency of the corre-

sponding concept (e.g., concept Algebra in Mathematics). (2) Next,
the selection algorithm retrieves questions according to some

next item criteria [3, 9, 27], which select the most informative one,

e.g., whose difficulty is closest to student’s proficiency estimated

by CDM; hence, most algorithms adopt current estimate
ˆ𝜃𝑡 as the

query in selection. More informative and appropriate questions

asked have been proven to reduce test length significantly [41].

While the above paradigm has achieved great success, its draw-

back is also apparent: The selection algorithm is inefficient if the
query (i.e., current estimate ˆ𝜃𝑡 ) is not close to student’s true profi-
ciency 𝜃0 [11]. Unfortunately, such deviation, ∥ ˆ𝜃𝑡 −𝜃0∥, is inevitable
under various perturbations, such as optimization dilemmas (e.g.,

overfitting), limited responses used in estimation at initial steps,

student’s guess and slip factors [26]. To alleviate such poor robust-

ness in CAT, a series of criteria [35, 38, 40] have been proposed to

introduce additional information in selection, whereas they still

center on the current estimate to retrieve and hence bring limited

improvements. Recently, many studies try to change this traditional

paradigm – using reinforcement learning to train data-driven se-

lection algorithms [16, 24, 30, 51]; as a result, these methods need

to be retrained from scratch whenever a new question is added

into action space, which is impractical in real education systems

with enormous new questions uploaded or refreshed daily; they are

also prone to biases in historical data [16]. Hence, a more realistic

solution to enhance CAT’s robustness remains underexplored.

Fortunately, we discover a previously overlooked fact: Student is

“multi-facet” during the test, i.e., his/her previous responses often

correspond to multiple estimates instead of the singleton
ˆ𝜃𝑡 :

• Example 1: During the test, if one student correctly answers
a simpler question (e.g., difficulty = 0.3) but wrong answers

Algebra

Equation

Trigonometric
Function

Statistics

Geometry

(2) Selection
Algorithm

(1) Cognitive 
Diagnosis Model

Proficiency
Estimate !𝜃!

CAT System

𝑞!
𝑞"

𝑞#

𝑞#$!

Figure 1: The workflow of CAT: At step 𝑡 , the selection al-
gorithm adaptively selects next question 𝑞𝑡+1 based on stu-
dent’s current proficiency ˆ𝜃𝑡 estimated by CDM.

a harder one (e.g., difficulty = 0.8), then his/her proficiency

may locate at range [0.3, 0.8] instead of one certain value.

• Example 2: Usually, there are multiple solutions to a ques-

tion (see Figure 2). A correct response to a question about

concept Algebra can be inferred that he/she may indeed have

a higher proficiency on Algebra, or Geometry, or none (i.e.,
guess factor), or both.

The above findings seem to provide a conceptually simple and

intuitive solution towards CAT’s poor robustness: Two heads are
better than one – fusing a group of diverse estimates for question

selection at each step. However, it is not easy to introduce multiple

estimates and ensure their accuracy and diversity: 1) accuracy: to
better represent the above multi-facet nature of student (e.g., Exam-

ple 1 and 2), all generated estimates should be in line with his/her

previous responses; 2) diversity: these estimates should diverse

from each other of course to describe student’s latent proficiency

comprehensively, otherwise there is no need to introduce multiples.

Nevertheless, they are estimated under the same response data,

which might bring these estimates high correlation, even making

them identical.

Based on these considerations, we propose a generic approach

to enhance the robustness within existing CAT methods, which is

called Robust Adaptive Testing framework (RAT). Concretely, we

design a new optimization formulation of proficiency estimation

during CAT procedure based on traditional Maximum Likelihood

Estimation. It generates multiple estimates and maintains their

diversity and accuracy at each step to enable CAT in more robust

settings.More importantly, we uncover the asymptotic unbiasedness,
efficiency, and consistency of the estimator determined by these

multiple estimates and provide theoretical proofs. Such desirable

statistical properties of this new estimator ensure the effectiveness

of using it as the new query for question selection and as student’s

final proficiency estimate. Note that RAT is simple yet more reliable,

which requires no additional constraint on CAT’s paradigm, and

no modification to the existing selection algorithms.

To validate the effectiveness of our proposed RAT framework,

we conduct extensive experiments on both the synthetic dataset

and three real-world datasets from different education systems.

Empirical results show that RAT achieves state-of-the-art perfor-

mance even at high noise rate. The surprise is when compared
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Figure 2: Usually, there are multiple solutions towards a question, and each solution corresponds to a possible proficiency, i.e.,
{ ˆ𝜃𝑡

1
, ˆ𝜃𝑡

2
, ..., ˆ𝜃𝑡𝑚}, instead of singleton ˆ𝜃𝑡 .

with strong deep-learning selection algorithms, traditional uncer-

tainty information-based criteria in RAT framework achieve highly

competitive performances, which require no additional training

overhead towards the selection algorithm.

2 BACKGROUND AND RELATEDWORKS
Computerized Adaptive Testing (CAT) is an iterative and dynamic

process, including a Cognitive Diagnosis Model (CDM) and a se-

lection algorithm. These two components work alternately until

the termination criterion is satisfied and output the student’s esti-

mated proficiency, feeding back to themselves or instructors in a

visual manner for facilitating individualized learning. The objective

of CAT is to accurately estimate the proficiency of an upcoming

student while minimizing the number of questions asked [8]. The

following reviews these two components of CAT separately.

2.1 Cognitive Diagnosis Model
Cognitive Diagnosis means that student’s cognitive state or profi-

ciency is stable in a test thus can be inferred through their interac-

tive behaviors (i.e., historical responses) [15, 25]. Hence, Cognitive

Diagnosis Model (CDM) (or psychometric model) adopts question’s

and student’s features to predict the response (correct or wrong).

The most famous model is Item Response Theory (IRT) [1, 18] with

their simplest form (1PL):

Pr(student answers question 𝑗 correctly) = 𝜎 (𝜃 − 𝑏 𝑗 ), (1)

where𝜎 (·) is the logistic function,𝑏 𝑗 ∈ R represents each question’s
pre-calibrated parameter called difficulty [14], and𝜃 ∈ R is student’s
latent proficiency/ability to be estimated. Other representative ones

include Matrix Factorization (MF) [20, 37], Deterministic Inputs,

Noisy-And gate (DINA) [12, 42], and recently proposed Neural

Cognitive Diagnosis Model (e.g., NCDM [43] and CDGK [45]) that

leverages neural networks to model student-question interactions.

Given the specific CDM and response data, Maximum Likelihood

Estimation (binary cross-entropy loss) is generally used to estimate

𝜃 for subsequent selection.

2.2 Selection Algorithms
Traditional algorithms are based on some uncertainty or informa-

tion metrics, specifically designed for different CDMs. For example,

the most widely used is Fisher Information metric (FSI) [17, 27], de-

signed for IRT, which selects the next question to maximize Fisher

Information calculated at the current estimate; however, it is ineffi-

cient if the current proficiency estimate
ˆ𝜃 is not close to the true

[11] thus affecting the robustness of CAT system. To alleviate this,

a series of methods based on FSI have been proposed, including

Kullback-Leibler Information (KLI) [9, 35], Bayesian criterion [38]

and weight criterion [40] which introduce additional integral, prob-

ability, and weight-assignment respectively. Unfortunately, these

methods still center on the current estimate and ignore the fact

that student’s proficiency corresponding to his/her previous perfor-

mance is not unique naturally. Recently, many researchers resort to

changing CAT’s paradigm and regard it as a reinforcement learn-

ing problem [16, 24, 30] to train selection algorithms directly from

large-scale student response data, such as BOBCAT [16]; although

the use of deep neural networks brings strong performance, they

are computationally infeasible in practical applications and prone

to bias in training data as mentioned in Section 1. In this paper, a

more realistic approach is proposed to enhance the robustness of

existing algorithms (e.g., FSI) without modifying CAT’s paradigm.

3 PRELIMINARIES
The task of Computerized Adaptive Testing (CAT) is to provide a

student with a best-fitting list of questions. An important assump-

tion [8] of CAT is that student’s true proficiency level 𝜃0 ∈ R𝑑 is

constant throughout the test
1
, where 𝑑 refers to the proficiency’s

dimension (e.g., the number of knowledge concepts to be tested).

The ultimate goal of CAT is to (1) select valuable and best-fitting

questions for individual students, reducing test length; (2) utilize

previous responses to estimate student’s proficiency 𝜃 and ensure

it’s close to the true 𝜃0, when the test is over.

3.1 Task Formalization
At test step 𝑡 ∈ [1, 2, ...,𝑇 ] in CAT, student’s current proficiency

estimate
ˆ𝜃𝑡 is estimated using previous 𝑡 responses; then leverage

ˆ𝜃𝑡 to retrieve the next question 𝑞𝑡+1 from question bank Q to ask

student, and receive the response 𝑦𝑡+1. These interactions form

a sequence {(𝑞1, 𝑦1), (𝑞2, 𝑦2), ..., (𝑞𝑇 , 𝑦𝑇 )}, where 𝑦𝑡 = 1 if the re-

sponse to 𝑞𝑡 is correct and 0 otherwise. Specifically, given quesiton

1
This assumption makes CAT fundamentally different from other intelligent education

systems (e.g., Knowledge Tracing [32]).
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bank Q = {𝑞1, 𝑞2, ..., 𝑞 |Q |}, a complete CAT system includes two

components, and they work alternately and repeatedly for 𝑇 steps:

(1) Proficiency Estimation using CDM. A CDM class 𝑓 (e.g.,

IRT, NCDM) predicts the correctness of question responsed by

student with proficiency 𝜃 , denoted as 𝑓 (𝑞, 𝜃 ) = Pr(𝑦 = 1|𝑞, 𝜃 ).
To accurately estimate his/her proficiency at each step, the well-

known Maximum Likelihood Estimation (MLE) is utilized in CAT,

ensuring the estimated
ˆ𝜃 close to the true, i.e., ∥ ˆ𝜃 −𝜃0∥ → 0. At step

𝑡 , given previous responses 𝑅 = {(𝑞1, 𝑦1), (𝑞2, 𝑦2), ..., (𝑞𝑡 , 𝑦𝑡 )}, the
corresponding MLE loss is formulated as follows, thus the estimate

is updated as
ˆ𝜃𝑡 = argmin𝜃 L𝑀𝐿𝐸 (𝜃 ).

L𝑀𝐿𝐸 (𝜃 ) = −
1

𝑡

∑
(𝑞,𝑦) ∈𝑅

𝑦 log 𝑓 (𝑞, 𝜃 ) + (1 − 𝑦) log(1 − 𝑓 (𝑞, 𝜃 )) .

(2)

(2) Question Selection. A question selection algorithm selects

from Q based on student’s current estimate
ˆ𝜃𝑡 . More specifically, it

retrieves the next question 𝑞𝑡+1 as

𝑞𝑡+1 = argmax

𝑞∈Q
I𝑞 ( ˆ𝜃𝑡 ), (3)

where I𝑞 (·) is the informativeness of question 𝑞. After receiving

new response 𝑦𝑡+1, CDM updates and estimates proficiency
ˆ𝜃𝑡+1.

3.2 Analysis of the problem
From the entire process of CAT above, it is not difficult to find that

the proficiency estimate
ˆ𝜃𝑡 , summarizing this student’s previous

performance/responses, is the only basis/input for various question

selection algorithms. As a result, if current estimate
ˆ𝜃𝑡 is not close

to 𝜃0, the selection algorithm is inefficient and thus interferes with

the subsequent process [11]. As we have indicated before, such

deviation is inevitable and exists objectively (e.g., student’s guess

and slip). What we can do is try to shrink it.

Therefore, instead of designing a new selection algorithm, in

this paper, we focus on the query (i.e., proficiency estimate
ˆ𝜃 ). Our

method is conceptually simple: fusing a group of potential estimates

{ ˆ𝜃𝑡
𝑖
}𝑚
𝑖=1

to improve its accuracy and robustness. The main reason

is that: the proficiency inferred from previous responses is not

unique. E.g. in Figure 2 a correct response to the fifth question can

be inferred that he/she may have multiple potential proficiencies

due to multiple solutions towards the question. The semantics of

{ ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑚} is that student’s previous responses correspond to

multiple estimates instead of single one due to uncertainty. This

approach has two advantages:

• A group of estimates is leveraged to describe student’s pro-

ficiency from various perspectives and resist perturbations.

Further integrating them can improve the accuracy of esti-

mation at each step (see next section).

• This approach is generic and based on the objective pat-

tern within student-question, which contains no additional

restrictions and assumptions towards CAT itself.

4 PROPOSED APPROACH
In our Robust Adaptive Testing framework (RAT), as aforemen-

tioned, multiple estimates { ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑚} will be generated at each

step as student’s multi-facet perspective. Keeping the typical CAT

paradigm unchanged and ensuring the versatility of our method,

we leverage their average 𝜃∗ = 1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑡
𝑖
as a new query (replacing

ˆ𝜃𝑡 in Eq.(3)) for question selection:

𝑞𝑡+1 = argmax

𝑞∈Q
I𝑞 (𝜃∗), (4)

where I𝑞 (·) could be any existing information metric of question 𝑞,

e.g., FSI [27] and KLI [9].

4.1 Motivation: Accuracy and Diversity
Similarly, as the guarantee of the selection algorithm’s efficiency,

the error of 𝜃∗ should also be restricted to a minimum at each step,

i.e., ∥𝜃∗ − 𝜃0∥ → 0. Further, we find:

Lemma 1. Assume { ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑚} are𝑚 estimates of the true value
𝜃0. Let 𝜃∗ = 1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑖 . Then its error, ∥𝜃∗−𝜃0∥2, what RAT attempts
to minimize at each step can be decomposed as:

𝜃∗ − 𝜃0

2 = 1

𝑚

𝑚∑
𝑖=1




 ˆ𝜃𝑖 − 𝜃0


2︸               ︷︷               ︸
① Accuracy

− 1

𝑚

𝑚∑
𝑖=1




 ˆ𝜃𝑖 − 𝜃∗


2︸               ︷︷               ︸
② Diversity

. (5)

Proof. Expanding the ② Diversity term:
1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃∗∥2

= 1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃0 + 𝜃0 − 𝜃∗∥2

= 1

𝑚

∑𝑚
𝑖=1

{
∥ ˆ𝜃𝑖 − 𝜃0∥2 + 2( ˆ𝜃𝑖 − 𝜃0)⊤ (𝜃0 − 𝜃∗) + ∥𝜃0 − 𝜃∗∥2

}
= 1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃0∥2 + 2(𝜃0 − 𝜃∗)⊤

1

𝑚

∑𝑚
𝑖=1 ( ˆ𝜃𝑖 − 𝜃0) + ∥𝜃0 − 𝜃∗∥2

= 1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃0∥2 − 2∥𝜃0 − 𝜃∗∥2 + ∥𝜃0 − 𝜃∗∥2

= 1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃0∥2 − ∥𝜃∗ − 𝜃0∥2. This completes the proof. □

At step 𝑡 , the mean error of these estimates
1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃0∥2

qualifies their accuracy. Meanwhile, the difference between each

estimate and their average,
1

𝑚

∑𝑚
𝑖=1 ∥ ˆ𝜃𝑖 − 𝜃∗∥2, is used to measure

their diversity. This decomposition reveals that: (1) The error of
𝜃∗ will never be larger than ① the mean error of { ˆ𝜃𝑖 }𝑚𝑖=1 (upper
bound), because ① and ② are non-negative. (2) Smaller ① (more

accurate) and larger ② (more diverse) will lead to more accurate

𝜃∗. Therefore, Lemma 1 inspires an intuitive way to improve the

proficiency estimator by averaging { ˆ𝜃𝑖 }𝑚𝑖=1 to get 𝜃
∗
, and the key

is to keep their accuracy and diversity. This decomposition can be

regarded as an extension of error-ambiguity decomposition [50].

4.2 New Formulation of Proficiency Estimation
Based on the findings above, we now introduce our new formulation

for estimating the proficiency of students. At step 𝑡 , we adjust

the optimization function of 𝜃𝑖 , 1 ≤ 𝑖 ≤ 𝑚, by adding diversity-

regularization term𝜓 (𝜃𝑖 ) to the commonly used MLE target:

ˆ𝜃𝑡𝑖 = argmin

𝜃𝑖

L𝑀𝐿𝐸 (𝜃𝑖 ) − 𝜆𝜓 (𝜃𝑖 ) for 𝑖 = 1, ...,𝑚. (6)

𝜓 (𝜃𝑖 ) =
1

2



𝜃𝑖 − 𝜃∗𝑖 

2 , 𝜃∗𝑖 =
1

𝑖 − 1

𝑖−1∑
𝑘=1

ˆ𝜃𝑡
𝑘
,

where L𝑀𝐿𝐸 (𝜃𝑖 ) is the MLE loss (Eq.(2)) ensuring the accuracy

of estimation (i.e., ① in Eq.(5)). 𝜆 ≥ 0 is the coefficient weight to

control diversity-regularization term (i.e., ② in Eq.(5)). Since we

can not get the average before all𝑚 estimates are generated when
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Algorithm 1: RAT Flowchart

Input: Q - question bank, 𝑓 - a specific CDM, I - a specific

information metric;

Initialize:
Initialize𝑚 estiamtes { ˆ𝜃0

1
, ˆ𝜃0

2
, ..., ˆ𝜃0𝑚};

The responses data 𝑅 ← ∅;
1 for 𝑡 = 1 to 𝑇 do
2 𝜃∗ ← 1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑡−1
𝑖

;

3 𝑞𝑡 ← argmax𝑞∈Q I𝑞 (𝜃∗) ;
4 𝑅 ← 𝑅 ∪ {(𝑞𝑡 , 𝑦𝑡 )} ; ⊲ Student responses to it

5 Q ← Q − {𝑞𝑡 };
6 for 𝑖 = 1 to𝑚 do ⊲ Generate 𝑚 estimates

7 𝜃∗
𝑖
← 1

𝑖−1
∑𝑖−1
𝑘=1

ˆ𝜃𝑡
𝑘
;

8 ˆ𝜃𝑡
𝑖
← argmin𝜃𝑖

L𝑀𝐿𝐸 (𝜃𝑖 ) − 𝜆
2



𝜃𝑖 − 𝜃∗𝑖 

2
Output: Student final proficiency estimate 𝜃∗ := 1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑇
𝑖

optimizing 𝜃𝑖 , the temporary average of previous 𝑖 −1 estimates, 𝜃∗
𝑖
,

is used as an alternative to 𝜃∗ in Eq.(5). All estiamtes { ˆ𝜃𝑡
1
, ˆ𝜃𝑡

2
, ..., ˆ𝜃𝑡𝑚}

are generated sequentially, balancing their accuracy and diversity.

We now comment on the rationale behind the new formulation:

• Traditional MLE (𝜆 = 0). In this case, such optimization could

be regarded as repeatedly estimating𝑚 times using MLE. That

is, all estimates { ˆ𝜃𝑡
1
, ˆ𝜃𝑡

2
, ..., ˆ𝜃𝑡𝑚} may share a high correlation or

even be mutually identical, i.e., 𝜃∗ = ˆ𝜃𝑡
1
= · · · = ˆ𝜃𝑡𝑚 , thus Eq.(6)

degenerates into traditional MLE.

• Mixed estimation (𝜆 ∈ (0,∞)). As 𝜆 increases, the diversity-

regularization term 𝜆𝜓 (𝜃𝑖 ) has an increasingly more substantial

effect, ensuring that all estimates are diverse, as otherwise the

penalty 𝜆𝜓 (𝜃𝑖 ) would be too small.

• Blind estimation (𝜆 = ∞). Intuitively, this limit case should

force all estimates to be mutually diverse, regardless of accuracy

and fit to the data, which is similar to randomly sampling all

estimates on an infinite range.

The robustly optimized CAT procedure is shown in Algorithm 1,

where we detail the interaction that occurs within each test step. Ob-

viously, (1) RAT is generic and could be directly applied to existing

selection algorithms and CDMs. (2) The average of student’s multi-

facet proficiency estimates (i.e., 𝜃∗) is used as the new query for

question selection (line 3) and student’s final proficiency estimate.

Time Complexity. At each step, the time overhead of CAT falls

in two folds: proficiency estimation (𝑇𝑒 ) and the computation of

each question’s information for selection (𝑇𝑠 ). Obviously, the in-

troduction of𝑚 estimates will incur estimation overhead𝑚 times

the original,𝑚𝑇𝑒 . But compared to the computation of questions’

information, the extra time of estimation using few responses in

mini-batch can be ignored, especially when facing enormous candi-

date questions in real-world applications [39], i.e.,𝑚𝑇𝑒 ≪ 𝑇𝑠 . Also,

empirical results in Section 6.4 suggested that𝑚 = 5 is sufficient for

satisfactory performance. Therefore, the time complexity is accept-

able and this new optimization criterion can be applied in actual

deployments. We leave further explorations and optimizations as

future work.

5 CHARACTERIZATION OF ESTIMATION
The new proficiency estimation method leverages 𝜃∗ as the robust
enhancement estimator for CAT. In this section, we delve into its

characterization and prove its rationality as the query for retrieving

questions and as student’s final proficiency estimate.

5.1 Theoretical Analysis: Unbiasedness,
Efficiency and Consistency

In statistics, estimators are usually adopted because of their statisti-

cal properties, most notably unbiasedness, efficiency, and consistency
[34]. For this, the expression of 𝜃∗ determined by Eq.(6) first needs

to be parsed. We apply Taylor expansion on each dimension of

∇𝜃𝑖 [L𝑀𝐿𝐸 (𝜃𝑖 ) − 𝜆𝜓 (𝜃𝑖 )] := ∇𝜃𝑖L(𝜃𝑖 ) at the point 𝜃0, yielding

∇𝜃𝑖L(𝜃𝑖 ) ≈ ∇𝜃𝑖L𝑀𝐿𝐸 (𝜃0) − 𝜆
(
𝜃0 − 𝜃∗𝑖

)
(7)

+ (𝜃𝑖 − 𝜃0) (𝐻𝐷 (𝜃0) − 𝜆) ,

where 𝐻𝐷 = 𝑑𝑖𝑎𝑔

[
∇2
𝜃𝑖
L𝑀𝐿𝐸

]
is the diagonal of L𝑀𝐿𝐸 ’s Hessian

Matrix.
ˆ𝜃𝑖 is the solution to ∇𝜃𝑖L(𝜃𝑖 ) = 0 as in [13, 34], and we put

this into Eq.(7) to get
ˆ𝜃𝑖 ≈

𝜃0𝐻𝐷 (𝜃0)−𝜆𝜃 ∗𝑖 −∇L𝑀𝐿𝐸 (𝜃0)
𝐻𝐷 (𝜃0)−𝜆 . Thus, we get

the expression of estimator 𝜃∗ we want:

𝜃∗ =
1

𝑚

𝑚∑
𝑖=1

ˆ𝜃𝑖 ≈
𝜃0𝐻𝐷 (𝜃0) − 𝜆

𝑚

∑
𝑖 𝜃
∗
𝑖
− ∇L𝑀𝐿𝐸 (𝜃0)

𝐻𝐷 (𝜃0) − 𝜆
(8)

Based on the above results, each property of estimator 𝜃∗ could be

deduced in detail. To explain more intuitively, we only show the

one-dimension scenario, and the multi-dimension is similar.

Theorem 1 (Asymptotic Unbiasedness and Efficiency). The
CDM’s Fisher information on 𝜃0 is denoted as 𝐼 (𝜃0). When 𝜆 < 𝐼 (𝜃0)
and𝑚 →∞, the estimator 𝜃∗ is asymptotically unbiased, that is,

E
[
𝜃∗

]
= 𝜃0 . (9)

Further, it is asymptotically efficient, with an asymptotic variance:
Var [𝜃∗] = 1

𝑡𝐼 (𝜃0) , which is equal to Cramér–Rao lower bound [6].

Proof. Detailed proof can be found in Appendix A. □

Such statistical property of unbiasedness refers to the expected

value of the sampling distribution of 𝜃∗ is equal to the true profi-
ciency 𝜃0 of student. However, simply knowing that this estimator

is unbiased is not very advantageous if the values of 𝜃∗ vary greatly
from sample to sample and deviate from the true (Figure 3(a)). For-

tunately, the second statement above suggests that the variance,

1

𝑡𝐼 (𝜃0) , decreases to zero as test step 𝑡 grows, and hence the estimate

𝜃∗ are increasingly accuracy as 𝑡 grows (Figure 3(b)).

Theorem 2 (Consistency). Given any arbitrary small positive
quantity 𝜖 , when 𝜆 < 𝐼 (𝜃0) and𝑚 →∞, the estimator𝜃∗ is consistent,
that is,

lim

𝑡→∞
Pr

{��𝜃∗ − 𝜃0�� ≥ 𝜖
}
= 0. (10)

Proof. Combining the conclusions in Theorem 1: E [𝜃∗] = 𝜃0
and Var = 1

𝑡𝐼 (𝜃0) , for all 𝜖 > 0, we have lim

𝑡→∞
Pr {|𝜃∗ − 𝜃0 | ≥ 𝜖} =

lim

𝑡→∞
Pr {|𝜃∗ − E [𝜃∗] | ≥ 𝜖} ≤ lim

𝑡→∞
Var[𝜃 ∗ ]

𝜖2
(Chebyshev’s Inequal-

ity) ≈ lim

𝑡→∞
1

𝑡𝐼 (𝜃0)𝜖2 = 0. This completes the proof. □
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𝜃! 𝜃!
t increases

Possible estimate of 𝜃∗
True value 𝜃!

(a) Unbiasedness (b) Unbiasedness + Efficiency 

Figure 3: (a) The unbiasedness property of the new profi-
ciency estimation method. Unfortunately, the estimate 𝜃∗

may still deviate far from the true. (b) The variance of the
estimator 𝜃∗ keeps shrinking as the test step 𝑡 increases (i.e.,
efficiency), and it surrounds the true (i.e., unbiasedness).

This consistency property intuitively means that the larger the

step 𝑡 , the less is the chance that the difference between 𝜃∗ and 𝜃0
will exceed any fixed value. Therefore, 𝜃∗’s distribution becomes

more and more concentrated around the true proficiency 𝜃0.

5.2 Relations to other methods
We discuss the relations of our proposed RATwith two other related

methods, Ensemble Learning and Monte Carlo Method.

5.2.1 Ensemble Learning. Ensemble learning has long been ac-

knowledged to be more robust and accurate than a single model on

a wide range of tasks [21, 29, 47, 49]. Its classic techniques include

Bagging [5] and Boosting [36]. To get a good ensemble, it is believed

that the base model should be accurate and diverse [50], which is

similar to the idea of our proposed method. The difference is re-

flected in two aspects. (1) Accuracy: ensemble learning focuses on

the accurate prediction (i.e., model’s output). Our method focuses

on the accuracy of parameter estimation instead. (2) Diversity: the
diversity in ensemble learning is maintained in implicit manner

(e.g., instance sampling, instance weighting and different parameter

initialization). Our method adds diversity-regularization term in

the optimization Eq.(6) to explicitly control their diversity.

5.2.2 Monte Carlo Method. Monte Carlo method (or Sampling

method) is a collection of techniques for approximating the so-

lution of problems, which make fundamental use of independent
random sampling [31]. From this perspective, at step 𝑡 , proficiency

estimation in CAT can be viewed as sampling
ˆ𝜃𝑡 in the area deter-

mined by previous 𝑡 responses used in estimation. If we sample

{ ˆ𝜃𝑡
1
, ˆ𝜃𝑡

2
, ..., ˆ𝜃𝑡𝑚} at step 𝑡 instead with𝑚 non-overlapping response

data and 𝑚 → ∞, the true 𝜃0 can be approximated using their

mean
1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑡
𝑖
≈ 𝜃0, by the law of large numbers [28]. However,

limited response data incur high correlation/similarity within these

estimates (not independent sampling), which results in poor approx-

imation. Therefore, with the help of diversity-regularization in RAT,

𝑚 estimates are forced to be mutual diverse, trying to approach

ideal Monte Carlo Method.

Table 1: Statistics of the datasets

Dataset Math Junyi Eedi

#Students 4,211 61,027 263,568

#Questions 472 22,726 27,613

#Response logs 100,833 13,578,787 19,752,063

#Response logs per student 24.0 222.5 74.9

#Response logs per question 213.6 597.5 715.3

6 EXPERIMENTS
In this section, we conduct both quantitative and qualitative exper-

iments on three real-world datasets and perturbed synthetic data

to evaluate the effectiveness of our generic method RAT.

6.1 Experiment Setup
6.1.1 Datasets. We conduct experiments on three educational bench-

mark datasets, namely Junyi, Eedi, and Math. Junyi [33] is from

junyiacademy.org and consists of millions of exercise attempt logs

on its platform over the course of a year (2018-2019). Eedi [46]

refers to the dataset in the NeurIPS 2020 Education Challenge. And it
is collected from two school years (2018-2020) of students’ answers

to questions from Eedi, an educational platform where millions of

students interact daily around the globe. The EXAM dataset was

supplied by iFLYTEK Co., Ltd., which contains mathematical exer-

cises and logs of high school examinations. The complete statistical

information for datasets is depicted in Table 1. The datasets can be

found in https://github.com/bigdata-ustc/EduData.

6.1.2 Evaluation Method. Following the common strategy [16],

we split the student–question interactions in the ratio of 7:2:1 for

training, validation, and testing by student. The students in valida-

tion/testing set won’t appear in training set, meeting the standard

CAT settings. The training set is mainly used for initially learning

some pre-fixed parameters of questions in CDMs (e.g., difficulty),

and some data-driven selection algorithm baselines (e.g., BOBCAT).

In the validation/testing, the responses of each student 𝑖 are

further divided into the candidate (Q𝑖 ) and meta (M𝑖 ) question sets

to simulate CAT process, following [3, 16]. Specifically, (1) different
selection algorithms first select a question from Q𝑖 ; (2) CDM then

updates the proficiency estimate with the corresponding responses;

(3) evaluate this estimate’s accuracy by predicting binary-valued

responses on the held-out meta setM𝑖 . In other words, the better
the selection algorithm, the more likely it is to select a best-suited
question to improve the estimation accuracy. Thus, from this binary

classification perspective, we use Prediction Accuracy (ACC) [15]

and Area Under ROC Curve (AUC) [4] for the evaluation of different

selection algorithms. All the methods are developed and trained on

two 2.20 GHz Intel Xeon E5-2650 v4 CPUs and a TITAN Xp GPU.

6.1.3 Compared Approaches. Since the selection algorithm must

depend on Cognitive Diagnosis Model (CDM) as mentioned above,

we choose two classic CDMs: Item Response Theory (IRT) [14]
and the deep learning-based model (e.g, NCDM [43]). The codes

of different CDM are available at https://github.com/bigdata-ustc/

EduCDM.We use the following state-of-the-art selection algorithms

as baselines:
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Table 2: The performance of different methods on Student Performance Prediction with ACC and AUC metrics. “–” indicates
the information/uncertainty-based selection algorithms (e.g., FSI) cannot be applied to the deep learning CDM (NCDM).

Dataset Junyi Eedi Math

CDM IRT NCDM IRT NCDM IRT NCDM

Metric ACC (%) ACC (%) ACC (%)

Step 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20

Random 70.30 71.73 72.11 70.28 71.96 73.12 62.83 65.88 68.62 62.16 66.30 69.22 72.57 73.88 80.31 72.11 76.12 81.40

FSI 71.25 72.93 74.02 – – – 64.63 67.72 70.54 – – – 74.07 78.63 83.63 – – –

KLI 71.37 72.98 74.92 – – – 64.57 67.14 70.08 – – – 73.42 77.40 83.14 – – –

MAAT 72.31 73.31 75.22 72.44 73.17 75.47 64.86 67.38 71.42 64.22 68.13 71.70 75.84 77.37 82.53 76.36 79.87 82.81

BOBCAT 73.25 73.81 75.89 73.54 74.13 76.32 65.58 68.14 72.20 66.30 69.56 72.31 77.19 79.90 82.66 78.36 81.00 85.04

FSI+RAT 73.46 74.82 76.10 – – – 66.10 70.39 73.17 – – – 77.36 80.75 84.92 – – –

KLI+RAT 73.76 75.88 77.19 – – – 66.01 70.27 73.55 – – – 78.09 81.19 84.57 – – –

MAAT+RAT 73.78 75.35 76.92 73.10 75.30 77.13 66.14 70.42 73.25 67.35 71.65 73.37 77.14 79.71 83.87 78.38 81.14 85.05

Metric AUC (%) AUC (%) AUC (%)

Step 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20

Random 72.83 73.18 75.32 72.55 74.46 76.87 65.48 68.63 72.20 66.00 69.82 72.55 67.82 67.61 76.90 67.98 70.50 76.97

FSI 73.70 74.28 76.16 – – – 67.27 70.72 74.50 – – – 69.56 73.13 78.15 – – –

KLI 73.91 74.41 76.07 – – – 67.10 70.33 73.89 – – – 69.82 73.28 78.28 – – –

MAAT 74.16 75.32 77.35 75.27 75.91 78.32 67.19 70.32 74.74 67.13 71.36 74.73 69.10 73.90 78.89 69.67 75.15 78.90

BOBCAT 75.99 76.25 78.49 75.81 76.33 79.64 68.43 71.03 75.76 69.11 72.01 76.13 70.62 74.32 79.19 71.17 74.54 79.58

FSI+RAT 76.56 76.64 78.86 – – – 68.93 73.12 75.99 – – – 70.89 76.17 79.38 – – –

KLI+RAT 76.33 77.94 79.67 – – – 68.90 72.99 76.03 – – – 71.03 76.01 80.66 – – –

MAAT+RAT 75.67 77.74 79.41 75.33 77.06 79.83 68.93 73.05 76.09 70.39 73.88 76.63 70.44 77.41 79.14 70.44 76.40 80.63

• Random: The random selection strategy is a benchmark to

quantify the improvement of other methods.

• FSI [27]: It selects the question with the maximum Fisher

information, which is one of the most widely used selection

algorithms. This method is specially designed for IRT.

• KLI [9]: It utilizes Kullback-Leibler information to measure

the divergence between two consecutive posteriors of profi-

ciency. It is also specially designed for IRT.

• MAAT [3]: It’s an active learning-based method, which mea-

sures uncertainty towards individual students by calculating

Expected Model Change (EMC) of CDM, caused by each

candidate question. It is agnostic to the underlying CDM.

• BOBCAT [16]: It’s a recently proposed method, which re-

casts CAT as a bilevel optimization problem and optimizes

viameta/reinforcement learning. Thus, it learns a data-driven

selection algorithm directly from large-scale student response

data. Following their settings, we use a fully-connected net-

work (with 2×256 hidden layers, Tanh nonlinearity, and a

softmax output layer) as the question selection algorithm. It

is also agnostic to the underlying CDM.

Note that our generic approach RAT can be applied to all selec-

tion algorithms (indicated by X+RAT) except for BOBCAT, since
BOBCAT changes the original paradigm of CAT. Also, BOBCAT

is the only deep learning-based baseline recently proposed, and

other reinforcement learning methods in related work cannot be

verified on real-world datasets. Meanwhile, to further verify RAT’s

effectiveness, we also compare with powerful and generic ensemble

methods (i.e., Bagging [5] and AdaBoost [7]).

6.1.4 Implementation Details. We implement all the methods with

PyTorch and optimize them with the Adam algorithm [19]. The

batch size is fixed to 128 and the learning rate is fixed to 0.001 in the

whole process. Since 20 is enough for a standard CAT, we set the

maximum test length 𝑇 = 20. The number of estimates𝑚 at each

step is set to 5 and the hyperparameter 𝜆 in estimation formulation

is set to 0.1. More detailed analysis of 𝑚 and 𝜆 can be found in

Section 6.4.

6.2 Comparison with Baselines
We calculate the ACC and AUC scores on three datasets for evalua-

tion and the performances are shown in Table 2. From them, we

have the following key findings.

• Finding 1 – The selection algorithms that applied our proposed
method (X+RAT) outperform almost all baselines on three datasets.
Table 2 shows the comparison results of all methods on these

datasets. X+RAT achieves 1.0∼2.0 ACC/AUC score improvements

compared to the baseline without RAT. E.g. MAAT+RAT achieves

1.61 AUC points (on average) improvement over the baseline

MAAT, which clearly demonstrates the effectiveness and uni-

versality of RAT. Specifically, our MAAT+RAT also surpasses

the strong model BOBCAT in Eedi, which requires additional

training on large-scale student response data.

• Finding 2 - The strength of the deep learning method (BOBCAT)
cannot be underestimated. Either of X+RAT and BOBCAT can

not consistently beat the other; both of them show their dis-

tinct strengths. BOBCAT showed similar performance to the

RAT method in the initial stage of test (i.e., step 5), and even

surpassed all RAT methods on Junyi dataset with NCDM. This

may be because it leverages the neural networks in meta-learning

framework, which is good at alleviating the cold-start problem

[23, 44]. In addition, the lack of response in the initial stage of

test may limit all algorithms including RAT due to greater uncer-

tainty. Although deep learning-based models are not practical for
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Figure 4:MSE curves along the simulatedCATprocess at two
different noise levels: (a) shows the results in Guess: 25% (4-
choice question), Slip: 5%. (b) shows the results in Guess: 50%
(True or False), Slip: 10%.

real CAT scenarios (i.e., enormous questions are uploaded daily),

adapting the proposed RAT to enhance them is a very promising

future work.

• Finding 3 - Traditional methods have similar potential and capacity,
which may be hindered by the traditional estimation method before.
From Table 2, our RAT framework improves the performance on

all types of selection algorithms baselines, e.g., 1.43 points and

1.34 points ACC improvement (step 20, IRT) on Math over the

two baselines KLI and MAAT, respectively. Interestingly, more

improvement can be achieved when the baseline model is not so

strong, e.g., 2.07 ACC gain (on average) above the FSI baseline,

which is very classic and widely used. As a result, the (FSI, KLI,

MAAT)+RAT methods enhance their baselines towards almost

the same level, which is obvious from their competitive perfor-

mances. These findings inspire us: 1) The query generated by

traditional proficiency estimation methods hinders these algo-

rithms, while they essentially have similar capacity and potential.

2)We can utilize RAT to strengthen these less powerful methods,

especially when they have to be deployed in some scenarios with

limited data and time delay.

6.3 Further Study
Following the comparison with baselines, we will further introduce

the simulation experiments of proficiency estimation (quantitative),

visualization of estimates (qualitative), and the comparison with

powerful ensemble methods.

6.3.1 Simulation of Proficiency Estimation under Guess & Slip. Fol-
lowing CAT’s traditional evaluation methods [41], since the ground

truth of student proficiency 𝜃0 is not available, we artificially gener-

ate their 𝜃0 and simulate student-question interaction process using

simple IRT. To further verify the robustness of RAT, we expose this

simulated CAT to various perturbations:

• Guess factors: When faced with a multiple-choice question

with 4 options, even if the student doesn’t master it, there is

a 25% chance of answering it correctly. (The label is changed

from 0 to 1 with 25% probability.)
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Figure 5: Visualization of 50 students’ proficiency estimates
using RAT at step 5, 10, 15, and 20. Different colors represent
different students: opaque colors represent their true profi-
ciency 𝜃0 and the translucent represent𝑚 estimates (𝑚 = 5).

• Slip factors: There may be a small chance (e.g., 5%) to acci-

dentally or carelessly fail an item that students could have

solved. (The label is changed from 1 to 0 with 5% probability.)

We utilize the parameters of questions and students trained

on the real-world datasets Eedi as the ground truth, instead of

generating them. The results at two noise levels are reported in

Figure 4. When step increases, the MSE metric E| | ˆ𝜃 − 𝜃0 | |2 of all
methods decrease steadily, and the RAT achieves a much superior

performance. The performance gap between baseline and RAT also

shows a growing trend. At higher noise level (Figure 4(b)), the

MSE of all methods rise slightly in the first steps, but consistent

improvements are finally obtained. These observations demonstrate

that our RAT can still benefit the selection performance even under

various perturbations. Also, it motivates us to pay more attention

to the complex relationship in students-questions, which may be

the key to boosting CAT’s efficiency. In a word, it clearly shows

RAT provides a robust estimation of student proficiency by fusing

𝑚 estimates at each step.

6.3.2 Estimate Analysis. To make a deep analysis of the student’s

multi-facet proficiency estimation, we visualize all estimates gener-

ated at each step in the simulation process. For intuitively observing

their relevance and the dynamic process in RAT, we utilize the two-

dimensional IRT and randomly choose 50 students to output their

estimates (𝑚 = 5) along such process. As illustrated in Figure 5, we

represent each student in different colors: the opaque represent

their true proficiency 𝜃0 and the translucent represent𝑚 estimates.

For one thing, with the help of diversity-regularization term in

Eq.(6), the multiple estimates at each step are diverse and their

distribution is relatively uniform. For another, in the initial stage,

the range of all possible proficiency is large; as the step increases,
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Table 3: Comparison with ensemble methods on Math
dataset using NCDM at step 20.

Metric ACC IMP(%) AUC IMP(%) MSE IMP(%)

MAAT 82.81 2.70 78.90 2.19 0.47 23.40

MAAT+AdaBoost 82.91 2.58 79.23 1.77 0.42 14.29

MAAT+Bagging 83.32 2.08 79.55 1.36 0.42 14.29

MAAT+RAT 85.05 – 80.63 – 0.36 –

0.001 0.01 0.1 0.5 1 10

0.72

0.74

0.76

0.78

0.80

A
U

C

Junyi
Eedi
Math

(a) Weight of 𝜆.

1 3 5 10 20 500.73

0.75

0.77

0.79

0.81
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U

C

Junyi
Eedi
Math

(b) Number of estimates𝑚.

Figure 6: Parameter Sensitivityw.r.t theweight of 𝜆 andnum-
ber of estimates𝑚.

the scope of them gradually shrinks and approaches the true 𝜃0.

Therefore, these observations further demonstrate the effectiveness

of the new proficiency estimation method in RAT.

6.3.3 RAT vs Ensemble Methods. As mentioned in Section 5.2, our

proposed method and ensemble learning have some similarities

in form. Thus, Table 3 shows the comparisons with two generic

and powerful ensemble methods: Bagging [5] and AdaBoost [7].

The baseline algorithm (MAAT) in RAT consistently surpassed

the other two ensemble methods. The relative improvements to

MAAT+Bagging are 2.08% with respect to ACC while the relative

improvements to MAAT+AdaBoost can be up to 2.58%. The advan-

tages in MSE are even more impressive. MAAT+RAT achieves the

state-of-the-art MSE score and performance improvements are at

least 14.29%. Surprisingly, the ensemble methods that have out-

standing performance in other tasks (e.g., CV [2] and RS [48]) have

little effect on CAT. It may be due to the following two reasons. 1)
Scarce response/training data: The advantage of ensemble learning

is based on a large-scale training samples [50]. When faced with

each student’s responses in the CAT (up to 20), they are prone to

overfitting as a result. 2) Different goals: The goal of traditional
ensemble learning is the accuracy of prediction, while CAT is to

pursue accurate parameter estimation (see Section 5.2 for details);

and this can be clearly verified from the MSE comparisons in Table

3. In short, compared to ensemble methods, RAT is less prone to

overfitting and more suitable for CAT application scenarios.

6.4 Parameter Sensitivity
Here, we explore the sensitivity of two important hyperparameters

in our method: diversity-regularization weight 𝜆 and estimation

size𝑚 at each step.

6.4.1 Effect of Weight 𝜆. Here we vary the 𝜆 in {0.001, 0.01, 0.1,

0.5, 1, 10} and conduct experiments. As shown in Figure 6(a), small

𝜆 (e.g., 0.001) can not perform as good as large 𝜆 (e.g., 0.1), which

means we should pay more attention to the diversity regulariza-

tion during estimation. However, the performance decreases when

𝜆 continuously increases. The reason is that too large diversity-

regularization may introduce more randomness which will reduce

accuracy, verifying the condition about 𝜆 in Theorem 1. The best

balanced choice is 𝜆 = 0.1.

6.4.2 Effect of the Number of Estimates𝑚. Figure 6(b) reports the
effect of the number of estimates. We vary𝑚 in the set {1, 3, 5, 10,

20, 50}. We find that RAT is not sensitive to this hyper-parameter

when𝑚 is greater than 5. This observation ensures that𝑚 does not

need to be large to achieve better performance, although theorems

are based on𝑚 →∞. In addition, this conclusion also reveals RAT

could get a further balance between performance and computation

overhead by utilizing relatively small𝑚.

7 CONCLUSION
This paper focuses on the foundation of personalized online educa-

tion and presents a generic optimization criterion called RAT for

educational measurement. It is a simple yet very effective method,

which alleviates the lack of robustness in CAT by fusing multi-

ple proficiency estimates for individual students. Theoretically, we

show that the new estimator in RAT possesses highly desirable

statistical properties [34]: asymptotic unbiasedness, efficiency, and

consistency. Experimental results demonstrate that RAT maintains

strong performance at reducing test length even under high noise

rates. Furthermore, the thorough comparisons prove that compared

with designing another sophisticated selection algorithm, enhanc-

ing the query in selection can also achieve competitive perfor-

mances. In future work, we will apply our approaches to other

datasets and applications.
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A PROOFS OF THEOREM 1
In this section, we introduce detailed proofs of asymptotic unbiased-

ness and efficiency of the estimator 𝜃∗ in RAT. To be intuitive, these

proofs only consider one-dimensional case (the multi-dimensional

is similar).

A.1 Asymtoptic Unbiasedness
We consider a random variable𝑋 (i.e., student’s response) for which

the pdf or pmf is 𝑓 (𝑋 |𝜃 ) (i.e., the distribution of correctness de-

termined by CDM), where 𝜃 represents the latent proficiency, 𝑡 is

the number of instances (i.e., test rounds). Therefore, the MLE loss
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(binary cross-entropy loss) is

L𝑀𝐿𝐸 (𝜃 ) = −
1

𝑡

𝑡∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃 ) .

When we optimize the 𝑖-th estimate, 𝑖 = 1, 2, ...,𝑚 and𝑚 is the total

number of estimates at each step, our target function Eq.(6) is

L(𝜃𝑖 ) = L𝑀𝐿𝐸 (𝜃𝑖 ) −
𝜆

2

(𝜃𝑖 − 𝜃∗𝑖 )
2,

where 𝜃∗
𝑖
= 1

𝑖−1
∑𝑖−1
𝑘=1

ˆ𝜃𝑘 . We apply Taylor expansion on ∇L(𝜃𝑖 ) at
the point 𝜃0, and ˆ𝜃𝑖 is the solution to ∇L(𝜃𝑖 ) = 0 [13, 34], yielding

0 = ∇L( ˆ𝜃𝑖 ) ≈ ∇L𝑀𝐿𝐸 (𝜃0)−𝜆(𝜃0−𝜃∗𝑖 )+( ˆ𝜃𝑖−𝜃0) (∇
2L𝑀𝐿𝐸 (𝜃0)−𝜆) .

Therefore,

𝜃∗ =
1

𝑚

𝑚∑
𝑖=1

ˆ𝜃𝑖 ≈
𝜃0∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆

𝑚

∑
𝑖 𝜃
∗
𝑖
− ∇L𝑀𝐿𝐸 (𝜃0)

∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆
. (11)

We intend to prove E
[
1

𝑚

∑𝑚
𝑖=1

ˆ𝜃𝑖

]
= 𝜃0. So we focus on the

1

𝑚

∑𝑚
𝑖=1 𝜃

∗
𝑖
in Eq.(11): we have 𝜃∗

1
= 0 and 𝜃∗

𝑘
=

ˆ𝜃1+ ˆ𝜃2+...+ ˆ𝜃𝑘−1
𝑘−1 . There-

fore, we find the following relationship: (𝑘 − 1)𝜃∗
𝑘
= (𝑘 − 2)𝜃∗

𝑘−1 +
ˆ𝜃𝑘−1 = (𝑘 − 2)𝜃∗

𝑘−1 +
𝜃0∇2L𝑀𝐿𝐸 (𝜃0)−𝜆𝜃 ∗𝑘−1−∇L𝑀𝐿𝐸 (𝜃0)

∇2L𝑀𝐿𝐸 (𝜃0)−𝜆 . Further, let

𝑎 = −𝜆
∇2L𝑀𝐿𝐸 (𝜃0)−𝜆 and 𝑏 =

𝜃0∇2L𝑀𝐿𝐸 (𝜃0)−∇L𝑀𝐿𝐸 (𝜃0)
∇2L𝑀𝐿𝐸 (𝜃0)−𝜆 then{

(𝑘 − 1)𝜃∗
𝑘

= (𝑘 − 2)𝜃∗
𝑘−1 + 𝑎𝜃

∗
𝑘−1 + 𝑏

𝜃∗
1

= 0

Solve the recurrence relation above:

𝜃∗
𝑘
=
𝑏Γ (𝑎 + 𝑘 − 1)

Γ (𝑘)

𝑘−1∑
𝑡=1

Γ (𝑘 − 𝑡 )
Γ (𝑎 + 𝑘 − 𝑡 )

=
𝑏Γ (𝑎 + 𝑘 − 1)
(𝑎 − 1)Γ (𝑘)

𝑘−1∑
𝑡=1

Γ (𝑘 − 𝑡 )
Γ (𝑎 + 𝑘 − 𝑡 − 1) −

(𝑘 − 𝑡 )Γ (𝑘 − 𝑡 )
(𝑎 + 𝑘 − 𝑡 − 1)Γ (𝑎 + 𝑘 − 𝑡 − 1)

=
𝑏

𝑎 − 1
Γ (𝑎 + 𝑘 − 1)
Γ (𝑎)Γ (𝑘) −

𝑏

𝑎 − 1

and 𝜃∗
𝑖
has such a relationship: (𝑚 − 1)𝜃∗𝑚 = 𝑎

∑𝑚−1
𝑖=1 𝜃∗

𝑖
+ (𝑚 − 1)𝑏.

Therefore,

1

𝑚

𝑚∑
𝑖=1

𝜃∗𝑖 =
𝑚 − 1 + 𝑎

𝑎𝑚
𝜃∗𝑚 −

𝑚 − 1
𝑎𝑚

𝑏

=

(
𝑏

𝑎(𝑎 − 1) +
𝑏

𝑎𝑚

)
Γ(𝑎 +𝑚 − 1)
Γ(𝑎)Γ(𝑚) +

𝑏

1 − 𝑎 . (12)

Next, we consider ∇2L𝑀𝐿𝐸 (𝜃0) = − 1

𝑡

∑𝑡
𝑖=1 ∇2 log 𝑓 (𝑋𝑖 |𝜃 ). By the

law of large numbers, this expression converges to

E
[
∇2 log 𝑓 (𝑋𝑖 |𝜃 )

]
= −𝐼 (𝜃0),

where 𝐼 (𝜃0) ≥ 0 is the Fisher information, and we have

∇2L𝑀𝐿𝐸 (𝜃0) ≈ 𝐼 (𝜃0).

thus 𝑎 ≈ 𝜆
𝜆−𝐼 (𝜃0) , 𝑏 ≈

𝜃0𝐼 (𝜃0)−∇L𝑀𝐿𝐸 (𝜃0)
𝐼 (𝜃0)−𝜆 .

When 𝑎 − 1 < 0 (i.e., 𝜆 < 𝐼 (𝜃0)) and𝑚 →∞, in Eq.(12), we have

Γ(𝑎 +𝑚 − 1)
Γ(𝑎)Γ(𝑚) ≈ 0.

Hence,

1

𝑚

𝑚∑
𝑖=1

𝜃∗𝑖 ≈
𝑏

1 − 𝑎 = 𝜃0 −
∇L𝑀𝐿𝐸 (𝜃0)
∇2L𝑀𝐿𝐸 (𝜃0)

.

According to [13]

E[∇L𝑀𝐿𝐸 (𝜃0)] = −
1

𝑡

𝑡∑
𝑖=1

E [∇ log 𝑓 (𝑋𝑖 |𝜃0)] = 0.

Therefore,

E
[
𝜃∗

]
≈ E

[
𝜃0∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆

𝑚

∑
𝑖 𝜃
∗
𝑖
− ∇L𝑀𝐿𝐸 (𝜃0)

∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆

]
≈ 1

𝐼 (𝜃0) − 𝜆
E

[
𝜃0∇2L𝑀𝐿𝐸 (𝜃0) − ∇L𝑀𝐿𝐸 (𝜃0) − 𝜆𝜃0 + 𝜆

∇L𝑀𝐿𝐸 (𝜃0)
∇2L𝑀𝐿𝐸 (𝜃0)

]
=

1

𝐼 (𝜃0) − 𝜆
E [𝜃0𝐼 (𝜃0) − 𝜆𝜃0 ] = 𝜃0 .

This completes the proof of unbiasedness.

A.2 Asymptotic Efficiency
Combining the above conclusions and let 𝑌 = 1

𝑚

∑𝑚
𝑖=1 𝜃

∗
𝑖
then

E[𝑌 ] ≈ E
[
𝜃0 −

∇L𝑀𝐿𝐸 (𝜃0)
∇2L𝑀𝐿𝐸 (𝜃0)

]
= 𝜃0 .

Because E
{
[∇L𝑀𝐿𝐸 (𝜃0)]2

}
=

𝐼 (𝜃0)
𝑡 (FIsher Information’s defini-

tion),

E
[
𝑌 2

]
≈ E

[
𝜃0 −

∇L𝑀𝐿𝐸 (𝜃0)
∇2L𝑀𝐿𝐸 (𝜃0)

]
= 𝜃2

0
+ 1

𝑡𝐼 (𝜃0)
,

E[𝑌∇L𝑀𝐿𝐸 (𝜃0)] ≈ E
[
𝜃0∇L𝑀𝐿𝐸 (𝜃0) −

∇L𝑀𝐿𝐸 (𝜃0)2
∇2L𝑀𝐿𝐸 (𝜃0)

]
= −1

𝑡
.

Hence,

E
[
(𝜃∗)2

]
= E

[(
𝜃0∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆𝑌 − ∇L𝑀𝐿𝐸 (𝜃0)

∇2L𝑀𝐿𝐸 (𝜃0) − 𝜆

)
2

]
=

1

(𝐼 (𝜃0) − 𝜆)2
[𝜃 2

0
𝐼 (𝜃0)2 + 𝜆2E

[
𝑌 2

]
+ E

{
[∇L𝑀𝐿𝐸 (𝜃0) ]2

}
− 2𝜆𝜃0𝐼 (𝜃0)E[𝑌 ] + 2𝜆E [𝑌 ∇L𝑀𝐿𝐸 (𝜃0) ] ]

≈
𝜃 2
0
𝐼 (𝜃0)2 + 𝜆2𝜃 2

0
− 2𝜆𝜃 2

0
𝐼 (𝜃0)

(𝐼 (𝜃0) − 𝜆)2
+ 𝜆2 + 𝐼 (𝜃0)2 − 2𝜆𝐼 (𝜃0)
(𝐼 (𝜃0) − 𝜆)2𝑡𝐼 (𝜃0)

= 𝜃 2
0
+ 1

𝑡𝐼 (𝜃0)
.

Therefore the variance of estimator 𝜃∗:

Var
[
𝜃∗

]
= E

[
(𝜃∗)2

]
− E2

[
𝜃∗

]
≈ 𝜃2

0
+ 1

𝑡𝐼 (𝜃0)
− 𝜃2

0
=

1

𝑡𝐼 (𝜃0)
.

The asymptotic variance
1

𝑡𝐼 (𝜃0) equal to the Cramér–Rao lower

bound, which proves our method is asymptotically efficient.
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