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Abstract. During last decade, tremendous efforts have been devoted to
the research of time series classification. Indeed, many previous works
suggested that the simple nearest-neighbor classification is effective and
difficult to beat. However, we usually need to determine the distance
metric (e.g., Euclidean distance and Dynamic Time Warping) for differ-
ent domains, and current evidence shows that there is no distance metric
that is best for all time series data. Thus, the choice of distance met-
ric has to be done empirically, which is time expensive and not always
effective. To automatically determine the distance metric, in this paper,
we investigate the distance metric learning and propose a novel Convo-
lutional Nonlinear Neighbourhood Components Analysis model for time
series classification. Specifically, our model performs supervised learning
to project original time series into a transformed space. When classifying,
nearest neighbor classifier is then performed in this transformed space.
Finally, comprehensive experimental results demonstrate that our model
can improve the classification accuracy to some extent, which indicates
that it can learn a good distance metric.

1 Introduction

Among time series data mining tasks, the classification has attracted amount of
interest during last decade. Actually, many studies on time series classification
methods have been proposed and it is suggested that Nearest Neighbor classi-
fier (especially, 1-NN) is difficult to beat [1,3]. Since the performance of 1-NN
algorithm depends critically on the distance metric given for specific tasks, the
subsequent question then becomes how to determine the distance metric for so
many applications.

A number of different distance metrics have been proposed. Among them,
two of the most widely used are Euclidean distance and Dynamic Time Warping
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(DTW) [1,3,22]. Euclidean distance is simple and efficient, and it could achieve
a good performance for certain applications. In contrast, DTW introduces the
alignment of two sequences and allows the points of different time stamps to
match, which leads to even better performance than Euclidean distance for some
scenarios. However, one of the deficiencies of DTW is that it needs more time cost
when calculating the distance. Also, even though 1-NN with DTW can achieve
best performance in many domains, for some other applications, it performs no
better than other distance metrics. In summary, current evidence shows that
there is no distance metric that is best for all time series data [3]. Typically,
the choice of distance metric has to be determined empirically, which is time
expensive and not always effective. Hence, we believe that it’s a challenge to
choose a suitable distance metric for the specific data set automatically.

Inspired by the learning perspective, we investigate to use distance metric
learning to obtain better distance metric and further to improve the classifica-
tion performance for time series data. Indeed, many distance metric learning
methods have been proposed. For instance, [4] provided a linear transformation
model named Neighbourhood Components Analysis (NCA) to optimize the per-
formance of kNN in the learnt low-dimensional space. As [19] noted, the linear
transformation has a limitation that “it cannot model higher-order correlations
between the original data dimensions”. Hence, [19] proposed a nonlinear dis-
tance metric learning model named Nonlinear NCA (NNCA). The discovered
low-dimensional representations could work better than previous linear NCA.
Unfortunately, both Linear NCA (LNCA) and NNCA models cannot capture
the intrinsic property of the time series data, i.e., time shift.

To capture the time shift property, in this paper, we consider the merit of
Convolutional Neural Network (CNN), e.g., invariance of spatial-temporal, and
propose a novel distance metric learning method for time series. Specifically, we
follow NNCA model [19] and propose a novel Convolutional Nonlinear Neigh-
bourhood Components Analysis (CNNCA) model, which could not only learn
a nonlinear transformation from the data but also naturally capture the time
shift of sequences. Based on the learnt distance metric, 1-NN classifier would be
used to perform the classification. Moreover, we conduct comprehensive exper-
iments on the data sets from UCR Time Series repository [7]. By comparing
to conventional Fuclidean distance, DTW and window constraint DTW, the
experimental results reveal the classification performance is improved for many
data sets, especially for the data sets that have sufficient training samples for
each class. On the other hand, we also evaluate the efficiency of each method.
It reveals that CNNCA is more efficient for larger data set and long time series.
We summarize the contributions of this paper in these parts:

— Though there are several studies that have explored the distance metric
learning for time series data [12,15], to the best of our knowledge, we are
the first to consider the time shift property when learning distance metric
for the time series classification task.

— Along this line, we propose a novel distance metric learning method CNNCA
for time series data, which can obtain combined feature representation by
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concatenating CNN and Multiple Perceptron (MLP), and then learn a dis-
tance metric based on the scheme of stochastic neighbour assignments.

— We conduct comprehensive experiments on amount of public data sets, then
compare the performance of CNNCA with other distance metrics, including
not only three conventional distance metrics, but also two learnt by LNCA
and NNCA. The results prove that CNNCA can improve classification accu-
racy to some extent, especially for the relatively large scale data sets.

The rest of this paper is organized as follows. Section 2 shows the related
studies. Definitions of time series and relevant distance metric learning methods
are given in section 3. In section 4, the CNNCA is introduced and comprehensive
experiments are presented in section 5. Finally, we conclude the paper and give
the future work in section 6.

2 Related Work

We group the related studies into two categories. In the first category, researchers
focus on improving the performance of time series classification by choosing dis-
tance metrics combined with 1-NN classifier. As [1,16,22] claimed, the Nearest
Neighbour (NN) classification algorithm (especially 1-NN) has been empirically
proven as the current state-of-the-art [1,16,22]. Then the challenge of 1-NN is
how to determine the distance metric for specific data sets. Extensive experi-
ments have been conducted by [3] on amount of time series data sets and many
distance metrics have been evaluated, i.e., Manhattan distance, Euclidean dis-
tance, Loo-norm, DISSIM, DTW, LCSS, EDR, Swale, ERP, TQuEST, SpADe [3].
According to the experimental results, they concluded that there is no clear evi-
dence that there exists one similarity measure that is superior to others for most
of data sets. Hence, for specific data set, it is challenging to determine a suitable
distance metric for better performance.

In the second category, researchers concentrate on the distance metric learn-
ing (or manifold learning). Essentially, the aim of distance metric learning is to
learn either a linear or nonlinear transformation based on the original data for
further tasks (e.g., classification, clustering or visualization) [4,12,15,19]. For
instance, [4] proposed a method by optimizing the expected leave-one-out error
of a stochastic nearest neighbor classifier in the projection space, which can
learn a linear distance metric to be used for data visualization and fast classifi-
cation. [19] said that the linear transformation cannot capture the higher-order
correlations between original data dimensions and proposed a nonlinear NCA
model, which stacks multiple neural networks to learn the nonlinear transforma-
tion for handwritten digit recognition task. To the best of our knowledge, there
are only several existing studies using distance metric learning on time series
classification. For instance, [15] considered to learn a variation of Mahalanobis
distance and performed the time series classification with 1-NN algorithm. They
concluded that such a kind of distance is inferior to DTW in accuracy but it is
more efficient. Recently, [12] proposed two novel models to learn a task-specific
similarity measure for time series data, however, the transformation is still linear.
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In general, existing distance metric learning methods either linear or nonlin-
ear cannot capture the time shift property well, thus the performance of time
series classification are suffered. Motivated from the nonlinear distance metric
learning and utilizing the merit of CNN, we will propose a convolutional non-
linear NCA model to learn a better distance metric for time series, and further
improve the performance of classification.

3 Preliminaries

In this section, we provide preliminaries for our work. Specifically, we first give
the definitions of time series and subsequence. Then, two related distance metric
learning models are explained.

3.1 Definitions of Time Series and Subsequence

Definition 1 A time series (denoted as T') is a sequence of data points, mea-
sured typically at successive points in time spaced at uniform time intervals. A
time series can be denoted as T = tq,ta,...,t,, and n is the length of T'.

Following the previous works [5], we first extract some subsequences from
the long time series instead of classifying time series with the whole sequence.
Then, we proceed the classification with these subsequences, since the pattern
or shape in the subsequences of time series could be a key feature to distinguish
different classes of time series. The subsequence is defined as follows.

Definition 2 Subsequence is a series of consecutive points which are extracted
from a long time series T and could be denoted as s = t;,t;11,...,titk—1, where k
1s the length of subsequence, and we have 1 <i<n,1 <k<nandi+k—1<n.

Three conventional distance metrics are most widely used: Euclidean dis-
tance, DTW and window constraint DTW. Due to space limitations, we skip
the details of these distance metrics (which could be found in [3,22]).

3.2 Distance Metric Learning

Many distance metric learning methods have been proposed during last decade
[4,19]. In this paper, we concentrate on two preliminary methods on Neighbor-
hood Components Analysis (NCA), i.e., linear and nonlinear NCAs.

Linear Neighbourhood Components Analysis (LNCA). Based on stoch-
astic neighbour assignments in the transformed space, [4] introduced a differen-
tiable cost function for learning neighbour components analysis. Specifically, for
each point z;, it selects another point x; as its neighbour with the probability
pij, and furthermore, x; would be classified as the label of point x; with the
same probability. In the softmax scheme, the definition of p;; with Euclidean
distance is shown in Equation 1.
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where A is the matrix that needs to be learnt for transforming the input data lin-
early. Based on such a stochastic neighbour assignments scheme, the probability
that point x; would be classified correctly is computed as follows.

Pi = Z Pij> (2)

Jj€C;

where C; represents the set of points that have same class label as point z;, and ¢;
denotes the class label of point z; then we define this set as C; = {j|c¢; = ¢;}. The
objective function of LNCA is shown in Equation 3, which is also the expected
number of points that is correctly classified.

ﬁZZZPijZZpi~ (3)

i jeC;

To maximize the objective function, the common method is to use a gradient
based optimizer according to the derivative of £. When we denote that x;; =
x; — x4, then the derivative of £ with respect to A is derived in Equation 4.

gé - _QAZ Pi Zp“@mikm; - Z pijxijx;rj . (4)
i k
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Nonlinear Neighborhood Components Analysis (NNCA). The limita-
tion of linear transformation is that it cannot capture the higher-order correla-
tions between original data dimensions [19]. Based on LNCA and by introducing
a multilayer neural network, [19] proposed a Nonlinear Neighborhood Compo-
nents Analysis (NNCA) model.

In contrast to Equation 1, for NNCA model, the probability that point z;
selects one of its neighbours z; and inherits the class label of x; is defined in
Equation 5.

o= eap( ) — f)])
T T con(— @) — S P

where f(+) is the nonlinear transformation learnt by a multilayer neural network,
which is different from the linear transformation of LNCA in Equation 1 (i.e.,
Az;). Besides that, the subsequent process of NNCA model is similar to LCNA as
shown in Equation 2 and 3, which includes the probability that point x; belongs
to a certain class z and the objective function. The optimization of the objective
function is performed with gradient ascent method. Denote z;; = z; — x;, the
derivative of £ with respect to f(x;) is derived as:

i =0, (5)
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Through computing gradient and iterating to update the parameters, then we
could obtain the nonlinear transformation when the model convergent.

Even though NNCA can learn a nonlinear transformation of the input space,
it does not consider the time shift and still cannot capture the intrinsic property
of time series. Therefore, for time series classification, both of LNCA and NNCA
cannot achieve good performance. We will verify this in the experiments.

4 Convolutional Nonlinear NCA (CNNCA)

In this section, we show the novel distance metric learning model CNNCA,
including the architecture and the learning procedure. Meanwhile, we explain
how to perform classification with CNNCA at the end of this section.

4.1 Architecture

We follow the scheme of NCA model and extend the nonlinear NCA model for
subsequent classification. Specifically, we propose a novel Convolutional Nonlin-
ear Neighborhood Components Analysis (CNNCA) model to learn a better dis-
tance metric for time series. By consideration of time shift property of time series,
the motivation of introducing CNN into distance metric learning is that convolu-
tional and pooling operations can preserve the spatial and temporal locality, i.e.,

f(Y)

Fig. 1. Architecture of Convolutional Nonlinear Neighborhood Components Analysis.
X and Y represent two time series that have identical class label. f(X) and f(Y)
denote the nonlinear transformation.
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CNN has the advantage of time shift invariance to some extent [9], which may
improve the performance of subsequent classification. Furthermore, MLP can
combine the feature representations learnt by CNN and perform nonlinear trans-
formation for better classification. Hence, CNNCA extends LNCA by combining
CNN and MLP, in other words, the distance d;; between two projected points
with respect to x; and x;, is calculated in this form: d;; = || f(z;)— f(z;)||?, where
f(-) defines a nonlinear transformation through convolutional neural networks
and multilayer perceptron. We illustrate the architecture of CNNCA model in
Fig. 1. The probability that point ¢ belongs to class z depends on the relative
proximity for all other points that belongs to class z, which is the same as NNCA
that was shown in Equation 2. Moreover, similarly, the distribution of distance
p;j is formalized and was shown in Equation 5. The objective function of CNNCA
is identical to that of linear and nonlinear NCA in Equation 3. Our aim is to
maximize this function, from another perspective, £ is the expected number of
correctly classified points for the training data.

4.2 Optimization

Based on conventional backpropagation algorithm, to update the parameters
iteratively, feedforward computation and backpropagation need to be performed
alternatively until the model converges.

Feedforward Pass. The feedforward pass aims to perform the nonlinear trans-
formation from the input time series to the final low-dimensional space. Con-
cretely, we use CNN to learn the features and then feed the output feature maps
into a MLP, the purpose of which is to combine of the learnt features and obtain
a good distance metric at the final layer. For the traditional CNN, it could consist
of multiple stages and each stage contains three cascaded layers [8,9,11,21,24].
We briefly recall the process of these three layers, i.e., filter (convolutional),
activation and pooling layers.

= Yk = alh), K = poolid)
%

where * denotes the convolutional operation, pool(-) represents the function used
in pooling layer, and ¢(-) represents the activation function. Besides, xfl and zé
denote the input and output of filter layer and the superscript [ represents which

layer they involve. zé- and xé- denote the input and output of activation layer, xé-

and X;H denote the input and output of pooling layer. For pooling layer, average

and max pooling strategies are most widely used [13,20]. While the activation
function could be considered as sigmoid(-), tanh(-) and ReLU [14,23]. We adopt
max pooling and ReLLU function in this paper due to their good generality and
fast convergence [13,14,20,23].

After CNN, we also use a 2-layers fully-connected MLP to combine the learnt
features, since the feedforward pass of MLP is standard and the space consump-
tion is limited. More details of MLP can be referred to [10].
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Backpropagation Pass. In this paper, we utilize the backpropagation algo-
rithm to train the CNNCA model. Specifically, once the loss function L is
acquired, then based on the chain-rule of derivatives, the error can be prop-
agated back from layer to layer reversely. Here, the derivative of £ with respect
to f(z;) is the same as that of NNCA model, which is already shown in Equa-
tion 6. Then the error could be propagated back to the conventional MLP based
on % layer-wise. After that, the backpropagation of conventional CNN is

performed layer by layer reversely [2,24].

4.3 Classification with Distance Metric Learning

We adopt an objective and widely used evaluation method in this work [6], which
uses 1-NN classifier on labeled training data to evaluate the classification accu-
racy of the distance metric used. Each time series has been labeled with correct
class in both of training and test sets. 1-NN classifier tries to find the nearest
neighbour of input and predict its class label as that of nearest neighbour. For
distance metric learning framework, once we have learnt the transformations,
according to specific models (LNCA, NNCA, CNNCA), we first transform the
test data and training data. Then, 1-NN classifier would be applied on the trans-
formed training and test data for further classification. In this way, the better
the distance metric the lower the classification error should be observed.

5 Experiments

In this section, we conduct experiments on a bunch of public time series data
sets, and we demonstrate: 1) the classification accuracies/errors with respect to
different distance metrics i.e., CNNCA and other existing distance metrics; 2)
the comparison of classification performance on the largest 9 data sets with more
training samples; 3) the efficiency analysis and discussion.

5.1 Experimental Setup

We conduct comprehensive experiments on 39 diverse time series data sets, pro-
vided by UCR Time Series repository [7], which is shown in the first column of
Table 1. As claimed by [3], these 39 diverse data sets could make up approx-
imately more than 90% of all publicly available, labeled time series data sets.
Besides, the preprocessing was also applied, e.g., standard normalization was
formed for each data set and the maximum scale of each time series is 1.0.
Previous studies observed that Euclidean distance (ED), Dynamic Time
Warping (DTW) and window constraint DT'W (denoted as DTW(r), r represents
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the percentage of time series length) are competitive distance metrics for time
series classification [3,17,18,22]. Following them, we consider five distance met-
rics as baseline methods of our CNNCA, and they include ED, DTW, DTW(r),
and two of the related distance metric learning models LNCA and NNCA. All
the six distance metrics combine 1-NN to perform classification.

5.2 Experimental Results

Overall effectiveness. The experimental results are shown in Table 1. Six
rightmost columns of this table exhibit the classification error with respect to
these different distance metrics. Bold number accompanied with star symbol
of each row indicates the best result for the corresponding data set. For all 39
data sets, our CNNCA model achieves the best results on 13 out of them, which
is more than that of ED (3), DTW (9), LNCA (2), NNCA (6) and equals to
that of DTW(r). It reveals that our CNNCA model is competitive not only to
conventional ED, DTW and DTW(r) but also to LNCA and NNCA models.
Especially, it is superior to ED, LNCA and NNCA for most of the data sets.
To illustrate the performance of these different distance metrics more intu-
itively compared to Table 1, we also provide some scatter plots in Fig. 2 to depict
the pair-wise comparisons between CNNCA and the baseline distance metrics.
For each of the scatter plots, the vertical (y) and horizontal () axes represent
CNNCA and the compared distance metrics, which are denoted as “C” and “O”

Table 1. Classification Error of Different Distance Metrics on 1-NN Classifier

classes Size Ratio] DTW DTW(r) _ ED LNCA NNCA CNNCA
wafer 2 1,000 500 | 0.020 0.005 0.005 0.007 0.005 0.004(*)
StarLight 3 1,000 333.3| 0.093 0.095 0.151 0.155 0.091 0.090(*)
Two-Patterns 4 1,000 250 | O(x) 0.002 0.090 0.359 0.085 0.048
Chlorine 3 467 155.6| 0.352 0.350 0.350 0.471 0.436  0.250(x)
yoga 2 300 150 | 0.164 0.155 0.170 0.227 0.232  0.151(%)
ECG200 2 100 50 0.230 0.120 0.120 0.130 0.100  0.070(*)
synthetic-control 6 300 50 0.007 0.017 0.120 0.033 0.047 0.003(*)
Thorax1 42 1,800 42.8| 0.171 0.185 0.209 0.297 0.295 0.131(*)
Thorax2 42 1,800 42.8| 0.120 0.129 0.135 0.166 0.264  0.101(*)
FaceAll 14 560 40 |0.192(%) 0.192(%) 0.286 0.410 0.301 0.231
Medicallmages 10 381 38.1| 0.263 0.253(x) 0.316 0.379 0.317 0.321
TtalyPowerDemand 2 67 33.5| 0.050 0.045 0.045 0.038 0.031(%) 0.044
OSULeaf 6 200 33.3| 0.409 0.384(x) 0.483 0.579 0.533 0.463
SwedishLeaf 15 500 33.3| 0.210 0.157(%) 0.213 0.320 0.166 0.168
Haptics 5 155 31 0.623 0.588 0.630 0.653 0.558(x) 0.617
Lighting2 2 60 30 [0.181(x) 0.131(x) 0.246 0.197 0.279 0.213
FISH 7 175 25 0.167 0.160(*) 0.217 0.520 0.229 0.166
Gun-Point 2 50 25 0.093 0.087 0.087 0.047 0.100  0.033(x)
Trace 4 100 25 0(x) 0.010 0.240 0.350 0.280 0.130
FacesUCR 14 200 14.2| 0.095 0.088(x) 0.231 0.363 0.241 0.191
InlineSkate 7 100 14.2| 0.616 0.613(x) 0.658 0.769 0.707 0.660
Coffee 2 28 14 0.179 0.179 0.250 0(x) 0(*) 0.036
SonyAIBORobotSurfacell| 2 27 13.5| 0.169 0.141(x) 0.141(x) 0.163 0.172 0.142
ECGFiveDays 2 23 11.5| 0.232 0.203 0.203 0.273 0.046(*) 0.056
TwoLeadECG 2 23  11.5| 0.096 0.132 0.253 0.368 0.068(x) 0.223
WordsSynonyms 25 267 10.6| 0.351 0.252(x) 0.382 0.633 0.541 0.401
Adiac 37 390 10.5| 0.396 0.391 0.389 0.575 0.783  0.340(*)
CBF 3 30 10 [0.003(x) 0.004 0.148 0.141 0.050 0.141
CinC-ECG-torso 4 40 10 0.349 0.070(x) 0.103 0.469 0.251 0.164
Lighting7 7 70 10 |0.274(x) 0.288 0.425 0.521 0.425 0.301
MoteStrain 2 20 10 0.165 0.134 0.121(x) 0.141 0.137 0.160
Sony AIBORobotSurface 2 20 10 0.275 0.305 0.305 0.186(x) 0.236 0.195
50words 50 450 9 0.310 0.242(%) 0.369 0.629 0.409 0.338
OliveOil 4 30 7.5 |0.1838(%) 0.167 0.133(x) 0.300 0.167 0.133(*)
MALLAT 8 55 6.8 | 0.066 0.086 0.086 0.107 0.061(%) 0.157
Beef 5 30 6 0.500 0.467 0.467 0.333 0.367  0.267(*)
FaceFour 4 24 6 0.170 0.114(x) 0.216 0.261 0.227 0.114(*)
Symbols 6 25 4.1 |0.050(%) 0.062 0.100 0.228 0.139 0.122
DiatomSizeReduction 4 16 4 |0.083(x) 0.065 0.065 0.176 0.046 0.082
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(e.g., ED), respectively. The classification error ratio of two distance metrics
under comparison for certain data set is a point that locates at certain coor-
dinates (z,y). Considering that we use classification error but not accuracy to
compare the performance, if the classification error ratio (i.e., the point (z,y))
locates above the diagonal line (red line in 2), then it indicates that “O” is more
accurate than “C”, i.e., z < y. Moreover, the further point (z,y) is away from the
diagonal line, the greater the margin of classification accuracy being improved.
Otherwise, when “C” is more accurate than “O”, and point (z,y) would locate
below the diagonal line, i.e., z > y. All the points that locate at diagonal line
indicate that they achieve identical classification error on these data sets, i.e.,
x = y. Besides, more points on one side of the diagonal line indicates that one
distance metric is more superior to the other.

Through comparing the classification accuracy between CNNCA and conven-
tional ED, DTW, DTW(r), the results in Fig. 2 reveal that CNNCA is superior
to ED on most of the data sets, which demonstrates that such a learnt distance
metric can improve the classification accuracy to some extent. However, on total
39 data sets, there is no evidence that either DTW (or DTW(r)) is better or
worse than CNNCA, even though window constraints DTW is a little better than
DTW. Moreover, by comparing the classification accuracy between CNNCA and
LNCA, NNCA, the results show that CNNCA outperforms both of LNCA and
NNCA on most of the data sets, which provides the evidence that CNNCA is
more effective than previous NCAs just as our expectation.

Effectiveness on Large Data Sets. We provide both the number of classes
and the size of training set in Table 1 (in the second and the third columns)
and furthermore the average number of training samples per class is calculated
as shown in the forth column. As is well known, if the training samples of each
class are too few then neural networks cannot capture the features well and may
obtain a poor performance. Motivated by this, we filter out the data sets that
has few training samples per class, i.e., eliminating the ratio that is no larger
than 40 as shown in Table 1. Finally, we obtain 9 data sets (the top 9 rows of
Table 1). Likewise, we provide Fig. 3 to depict the comparisons between CNNCA
and the baseline distance metrics on these 9 data sets. From both the top rows
of Table 1 and the results in Fig. 3, we could observe that our CNNCA model is
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Fig. 2. Comparison of classification accuracy between CNNCA and other baselines
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Fig. 3. Comparison of classification accuracy between CNNCA and other baselines.
The average number of training samples per class is more than 40.

superior to all other methods on 8 out of these 9 data sets, which demonstrates
that if the training samples are sufficient then our CNNCA model could achieve
good performance and outperform the baseline methods.

Efficiency Analysis. Supposed that the size of training set is /', and given two
time series of length D, then the time complexity of ED, DTW and DTW(r) are
O(ND), O(N'D?) and O(N'D?r), respectively, when we apply dynamic program-
ming to compute DTW. Usually, 7 is no larger than 10% for most applications.
Before analyzing the time complexity for LNCA, NNCA and CNNCA, we should
note that we only focus on analyzing the online classification of them and skip
the offline training process due to the limited space, and it is necessary to define
some notations. One hidden layer NNCA is considered for convenience and the
number of its hidden neurons sets to 7nj,. For CNNCA, the number of kernels in
filer layer and hidden neurons in MLP are denoted as ny and ny, respectively.
Moreover, the size of kernel and the pooling factor are usually set to 5 and 2.
We use d to represent the dimensions of transformed space. To classify each
test case, the time complexity of LNCA, NNCA and CNNCA are O(Dd + Nd),
O(Divy, + pd+ Nd) and O(5n; D+ 3(D — 5+ 1)nyny +npd+Nd), respectively,
where O(Nd) is the time cost of 1-NN on the transformed data and the remain-
der is the transformational cost. After reduction, the time cost of CNNCA is
O(niD + Dngny, + npd + Nd). When d < D and N is large enough, it is effi-
cient for LNCA, NNCA and CNNCA compared to conventional ED, DTW and
DTW(r) if we fix fp,, np, ni to constants. We also provide the real time cost of
classification on the top 9 data sets in Fig. 4, the data sets in which are ordered
by the product of D and N increasingly. It reveals that CNNCA is more efficient
for larger data set and long time series, i.e., either A/ or D becomes large enough.

Discussion. In summary, the overall experimental results demonstrate that
CNNCA is competitive to not only conventional ED, DTW and DTW(r) but
also LNCA and NNCA. Especially, after filtering out the relatively small data
sets, our CNNCA is superior to all the other distance metrics, which verifies
the motivation that CNNCA can capture the intrinsic features and improve the
classification performance if the training samples per class are sufficient. By
comparison with both of LNCA and NNCA, we also demonstrate that CNNCA
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is more effective than them to some extent, which is benefited from the capability
of capturing time shift property. On the other hand, CNNCA is more efficient
than DTW and DTW(r) when the data set grows large enough and time series
is long, e.g., for three large data sets, Thorax1, Thorax2 and StarLight in Fig. 4.

6 Conclusions and Future Work

In this paper, we proposed a novel CNNCA model for time series classification.
Specifically, we extended the NCA model with CNN and MLP to learn distance
metric and then combined 1-NN to classify time series. The benefit of introducing
CNN into NCA is to get good feature representations for further classification,
and MLP is used to combine these learnt features and obtain nonlinear trans-
formation for better distance metric. For evaluation, we conducted experiments
on a bunch of public time series data sets, and observed encouraging results.
In particular, CNNCA is superior to current state-of-the-art methods when the
training samples are sufficient. We hope this work could lead to many future
studies. Actually, we plan to investigate better methods based on CNNCA and
further improve the performance (e.g., efficiency) of time series classification.
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