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ABSTRACT 
In online games, predicting massive battle outcomes is a fundamen-
tal task of many applications, such as team optimization and tactical 
formulation. Existing works do not pay adequate attention to the 
massive battle. They either seek to evaluate individuals in isolation 
or mine simple pair-wise interactions between individuals, neither 
of which efectively captures the intricate interactions between 
massive units (e.g., individuals). Furthermore, as the team size in-
creases, the phenomenon of diminishing marginal utility of units 
emerges. Such a diminishing pattern is rarely noticed in previous 
work, and how to capture it from data remains a challenge. To this 
end, we propose a novel Massive battle outcome predictor with 
margiNal Efect modules, namely MassNE, which comprehensively 
incorporates individual efects, cooperation efects (i.e., intra-team 
interactions) and suppression efects (i.e., inter-team interactions) 
for predicting battle outcomes. Specifcally, we design marginal ef-
fect modules to learn how units’ marginal utility changing respect 
to their number, where the monotonicity assumption is applied to 
ensure rationality. In addition, we evaluate the current classical 
models and provide mathematical proofs that MassNE is able to 
generalize several earlier works in massive settings. Massive battle 
datasets generated by StarCraft II APIs are adopted to evaluate 
the performances of MassNE. Extensive experiments empirically 
demonstrate the efectiveness of MassNE , and MassNE can reveal 
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reasonable cooperation efects, suppression efects, and marginal 
utilities of combat units from the data. 
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1 INTRODUCTION 
A battle, usually involving two teams fghting against each other, 
is common in sports (e.g., football) and online games such as multi-
player online battle arena (MOBA) games. In this paper, we focus 
on massive battles, where exist diferent units of large quantity 
(e.g., Figure 1). As a complex form of battle, massive battles are 
ubiquitous in online strategy games, such as Warcraft III, Starcraft 
II, and EVE online. Predicting the outcome of massive battle is a 
fundamental and challenging task, which can provide a valuable 
reference for optimizing team confguration [5, 29, 46] before battle 
or tactical decision-making [7, 39] (e.g., attack or retreat) in battle. 

In the literature, many eforts have been made to address the bat-
tle outcome prediction problem. Early studies [19, 21] aim to learn 
individual abilities (i.e., skill rating) from battle records. Despite 
being widely used, they omit interplays between individuals within 
a team. In their assumption, team members are independent of each 
other, and a team’s ability is the sum of the team members’ scores. 
To model interplays between individuals, neural network-based en-
coders are adopted to obtain team representations [8, 13, 29] for the 
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Figure 1: A massive battle from an online game, where the 
blue team and green team fght each other. Each team con-
tains several unit types (e.g., tank, fghter, battle robot, and 
landmine) with varying numbers. As we keep adding units 
before the battle begins, their marginal utilities vary. Note 
that, in this paper, word individual denotes a combat unit in 
a team, regardless of its type. We use squad to refer to units 
of the same type in a team. For instance, a tank squad of the 
blue team represents all the tank units in the blue team. 

outcome prediction. However, such work is not interpretable and it 
is hard to evaluate the contribution of each individual. Other works 
[15, 31] model pairwise interactions between individuals (e.g., intra-
team cooperation efect or inter-team suppression efect). Although 
such works retain interpretability while considering interactions, 
they still have several downsides that hinder them from massive 
battle settings. 1) The number of interactions is the square of the 
number of individuals, when the team size becomes large, the ef-
fciency cannot guarantee. 2) Interactions may not exist between 
all pairs of individuals, since the infuence of each individual is not 
infnite, one does not interact with all others simultaneously. 

The increase in team size complicates the combat scenario and 
presents unique challenges. As shown in Figure 1, two teams fght 
each other on the battlefeld, where diferent unit types of varying 
numbers are involved. Units of the same team will cooperate, and 
units of diferent teams will confront each other (i.e., suppress or 
compete). Diferent unit types usually have distinct attack traits 
and defense traits. For example, tanks can cover ground units from 
enemy fre, but a few tanks can’t cover hundreds of units at the 
same time. One landmine can incapacitate a tank (e.g., destroy 
the track and make the tank immovable), but one landmine cannot 
incapacitate an entire tank squad. The quantity of each squad makes 
the problem more tricky. How to consider the diverse higher-order 
interactions and the varying number of squads is an open problem. 

The marginal efect is another important phenomenon that has 
been largely omitted by prior research but deserves more attention. 
As the number of a squad increases, the utility of this squad is 
usually not proportional to the number (i.e., the law of diminishing 
marginal utility [36]). Such a pattern is acknowledged as a marginal 
efect (i.e., the more unit, the smaller the beneft gains from the 
current increase). In our task, the term marginal refers to a small 
increase in the squad’s quantity. Suppose there are two cases on the 
battlefeld, in the frst case, a team has no fghters, then 1 fghter is 
added; in the second case, a team has 100 fghters, then we add 1 
fghter to it. The utility of the added fghter is diferent in the two 
cases, where the utility in the frst case is huge (qualitative change), 
and the utility in the second case is small (quantitative change). 

Hence marginal efects exist in massive battles, and learning such 
efects is nontrivial for accurate predictions. 

To overcome those unique challenges coupled with massive bat-
tles, we propose a Massive battle outcome predictor with margiNal 
Efect modules (MassNE). We tackle the large-scale battle issue 
by treating the units of the same type (i.e., squad) as a whole. In 
particular, we considered the cooperation efect between allies and 
the suppression efect between enemies. We map each squad to 
multiple latent vectors and utilize DNNs as the interaction function 
to calculate the cooperation ability and suppression ability. Then, 
we develop marginal efect modules to capture the pattern of unit 
utility changing with the number. These modules are implemented 
by look-up tables, which can output the utility based on a given 
quantity. The marginal efect modules are learned in a data-driven 
manner, and they should adhere to the monotonicity assumption: a 
squad’s utility should never decrease had one unit added. The main 
contributions of this work can be summarized as follows: 

• We formalize the massive battle outcome prediction task 
and propose a new model MassNE, which efciently learns 
cooperation and suppression efects between massive units. 

• We notice the diminishing marginal utility of units in mas-
sive battles, and devise marginal efect modules to capture 
this pattern, which reveals each squad’s marginal utility 
changing as a function of its quantity. 

• Extensive experiments on three massive battle datasets ver-
ifed the efectiveness and interpretability of MassNE. The 
datasets and codes1 are public for future research. 

2 RELATED WORK 

2.1 Battle Outcome Prediction 
Early studies considered one versus one (1V1) battles, famous al-
gorithms such as Bradley-Terry [3], ELO [10] and Glicko [12] are 
widely deployed in chess and online games. Due to the emergence 
of team-based games, subsequent algorithms have been proposed 
for group battles. The classic work[19, 21] focuses on learning indi-
vidual abilities (i.e., skill rating) from battle records, assuming that 
individual abilities are independent of each other. However, the 
interaction between individuals will afect the battle outcome, thus 
it should not be ignored (e.g., if two individuals cooperate well, they 
will have a higher chance to win). To model interactions between 
individuals, neural network-based methods [8, 13, 29] are utilized. 
They typically use a neural network to obtain team representations 
and then concatenate the representations of the two teams for the 
prediction. However, such work is not interpretable, making it hard 
to evaluate each individual’s contribution to the battlefeld. Other 
works [6, 15, 31, 40] model pairwise interactions between individu-
als (e.g., intra-team cooperation efect and inter-team suppression 
efect). For example, HOI [31] models the pairwise cooperation 
efect between teammates, and NeuralAC [15] uses neural net-
works to learn the cooperation efect and pairwise suppression (i.e., 
competition) efect between opponents. Although such models are 
interpretable, they have shortcomings that make them unsuitable 
for massive settings. They assume that each individual interacts, 
which is not true when the battlefeld is large, since the infuence 
of each individual is not infnite. Besides, as the team size increases, 
modeling the interaction between all individuals is less efcient. 

1https://github.com/frepd/MassNE 
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Some researchers have manually designed combat models [7, 24, 
41, 45, 46] for predicting combat winner, which requires additional 
unit information (e.g., attack damage and health point). Their main 
idea is, a unit with higher health points and attack damage is con-
sidered stronger. In contrast to those models, our model learns from 
the battle outcome and does not require additional information. 

Another line of the work utilizes machine learning technology 
to incorporate rich in-game features for improving prediction accu-
racy [8, 13, 30, 32], or focuses on real-time battle winner prediction 
[49, 51]. In addition, Elo-MMR [9] estimate individual skill in a 
“free for all” setting of massive player contests. These works are 
orthogonal to ours. 

2.2 Marginal Efect 
As a common phenomenon, the marginal efect has been exten-
sively studied in many other felds [14, 16, 27, 37, 43, 44], such as 
psychology and sociology. In particular, [14] analyzes the impact 
of the increase of high-status members on group efectiveness in 
business activities. [43] and [16] study how the addition of talented 
players changes the team performance in football or basketball. 
These works often rely on some predefned functions (e.g., qua-
dratic function or log function) to ft data points, while our method 
learns from data and does not require predefned functions. 

3 THE PROPOSED MODEL 
In this section, we frst formally defne the massive battle out-
come prediction task. Then, we give an overview of MassNE. After 
that, we detail the basic version of MassNE and its marginal ef-
fect modules. Finally, we demonstrate the generality of MassNE by 
comparing it with the existing models. 

3.1 Problem Defnition 
Suppose there are � types of combat unit {1, 2, ..., � } in total, the 
unit type combinations of a team is a subset of {1, 2, ..., � }. Let 
�� (�� ≥ 1) denotes the quantity of unit type � in a given team. 
Meanwhile, there are � observable battles, each battle involves two 
teams �� and �� , and the outcomes of these � battles are denoted 
as {�1, �2, ..., �� }. In this paper, we focus on the binary outcome 
prediction task, we assume that there is no draw. If �� beat �� in a 
battle ℎ ∈ [1, � ], then �ℎ = 1, otherwise �ℎ = 0. Given an unseen 
battle between �� and �� , our goal is to predict the result �̂ ∈ [0, 1]. 

3.2 Model Overview 
When two teams are at battle, the one with the higher combat 
ability has a higher chance to win. Following previous work [4, 21], 
we assume each team has an underlying score indicating the team’s 
capability, and we formulate the probability of team �� defeating 
team �� as: 

exp(��)
� (� defeats �) = ,

exp(��) + exp(�� ) (1) 
= � (�� − �� ), 

where �� and �� are scores of �� and �� , representing the com-
prehensive ability of the two teams in a battle. � is the sigmoid 
function. When two teams’ scores are close, both teams have equal 
odds to win. When �� ≫ �� , � (� defeats �) → 1, �� will beat �� 
with a high probability, and vice versa. 

As mentioned above, there are multiple interactions among mas-
sive units [20]. Generally, if units’ sole combat ability is strong 
or if several units cooperate well, the ability of the team can be 
improved. Besides, if units in �� have more edges when against 
enemy units, then the winning probability of �� can be increased. 
Therefore, in MassNE, the overall ability of the team consists of 
three parts: individual efects, cooperation efects, and suppression 
efects. Take �� versus �� as an example, we formulate �� ’s score 
as: 

�� = �indi (��) + �coop (��) + �supp (��,�� ), (2) 
where the frst term of �� models individual efects. The second 
term �coop (��) models intra-team cooperation efects, and the third 
term �supp (��,�� ) captures inter-team suppression efects. Figure 
2 shows the framework and main components of MassNE. 

3.3 Basic MassNE 
In this subsection, we illustrate the basic version of MassNE without 
marginal efect modules. Since the massive battle will generate 
massive interactions, we treat the units of the same type (i.e., squad) 
as a whole, which preserves the characteristic of each unit while 
reducing complexity. 

3.3.1 Individual Efects. In our model, individual efects mean the 
ability of a squad that is independent of the other squad. To utilize 
the quantity information �� , a straightforward idea is that the utility 
of a squad � is proportional to its number �� . Hence we formulate 
the individual efect as: ∑ 

�indi (��) = �� · �� , (3) 
� ∈�� 

where �� ≥ 0 is an individual ability, which is a trainable parameter. 
�� is simply regarded as squad �’s utility. 

3.3.2 Cooperation Efects. If two squads perform well when they 
team up together, the cooperation ability between them should be 
high. Following [15, 31], we represent a unit type �’s cooperation 
characteristics with a cooperation vector v� ∈ R� , because every 
unit type has distinct cooperation properties. The cooperation score 
between the two squads depends on their respective cooperation 
vectors and quantity: ∑ ∑ 

�coop (��) = �� · � � · �1 (v� ⊙ v� ), (4) 
� ∈�� � ∈��,�≠� 

where ⊙ denotes element-wise product, v is learnable parameter, 
�1 indicates a MLP with non-linear activation function, which are 
capable of learning higher-order interactions [48] between team-
mates. The output of �1 (v� ⊙ v� ) is a scalar value, indicating the 
cooperation ability between � and � . The utilities of the two cooper-
ative squads are �� and � � , which are their respective numbers. An 
increase in the number of either squad will increase the cooperation 
score between them. For clarity, �coop (��) is a overall cooperation 
score of �� , and �� · � � · �1 (v� ⊙ v� ) represents cooperation score 
between � and � in �� . 

3.3.3 Suppression Efects. If squad � can suppress squad � (e.g., 
landmines counter tanks), the corresponding suppression ability 
from � to � should be high. Inspired by previous work [4, 15], we 
assume that every unit type has its strengths and weaknesses. We 
represent these two parts with two vectors, namely strength vector 

∈ R� ∈ R� and weakness vector c� . � is the embedding size. p� 
Further, a suppression ability depends on an attacker’s strengths 
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Figure 2: (a) MassNE framework. (b) The calculation of ��. 

and a defender’s weaknesses. And the suppression score is related 
to the suppression ability and number of two teams: ∑ ∑ 

�supp (��,�� ) = �� · � � · �2 (p� ⊙ c� ), (5) 
� ∈�� � ∈�� 

where p and c are learnable parameters, and �2 is a MLP with non-
linear activation function, which can model interactions between 
enemies. The output of �2 (p� ⊙ c� ) is a scalar value, indicating a 
suppression ability when � compete against � . If squad � has more 
advantage over squad � , then the corresponding �2 (p� ⊙ c� ) would 
be high and �2 (p� ⊙ c� ) would be low. We assume that the defender 
will not fght back when obtaining a suppression ability. For ex-
ample, we do not consider the counterattack of the squads in �� 
when calculating ����� (��,�� ), the attack of the squads in �� will 
be modeled in ����� (��,��). It is intuitive that an increase in the 
number of attackers � increases the suppression score. The increase 
in the number of defenders will also increase the suppression score, 
because the defender � will not counterattack, increasing the de-
fender will make the attacker play a greater role. Therefore, the 
utilities of the attacker � and the defender � are set to �� and � � . 

In our implementation, �1 and �2 share the same network archi-
tecture, which is a two-layer neural network with ReLU activation 
functions. To guarantee the interpretability of MassNE (e.g., it does 
not make sense when cooperation and suppression scores are neg-
ative), the outputs of �1 and �2 are added with a ReLU function (i.e., 
�1 (·) ≥ 0 and �2 (·) ≥ 0). 

3.4 MassNE with Marginal Efect Modules 
This subsection shows how to enhance the basic MassNE with 
marginal efect modules. In the basic version, we simply set the 
squad’s utility equal to �� . However, the marginal efect should not 
be ignored in teamwork, especially when the team size is large. 
For example, when teammates cooperate, if two tanks can cover 
a teammate, then a third tank will not contribute much. When 
attacking the enemy, if ten cannonballs can destroy a tank, then 
an 11-th cannonball is possibly wasted. If one missile can destroy 
one battle robot, we only have fve missiles while the enemy has 
ten battle robots, then the increase of enemy robots (i.e., defender) 
will not give us more advantage. In summary, a squad’s utility does 
not increase linearly with the quantity. These patterns are hard to 

capture with hand-designed functions. Instead, we create learnable 
marginal efect modules that learn these efects from data. 

Specifcally, we use � to denote a marginal efect module, whose 
input is the number of a squad and outputs the squad’s utility. 
Besides, individual efects, cooperation efects, and suppression 
efects do not share their marginal efect module. To summarize, 
we give the complete formulation of ��: ∑ 

��� �� = (�� )�� � 
� ∈��∑ ∑ 

+ ��� (�� ) · ��� (� � ) · �1 (v� ⊙ v� )� � (6)
� ∈�� � ∈��,�≠� ∑ ∑ 

��� � � + (�� ) · � (� � ) · �2 (p� ⊙ c� ).� � 
� ∈�� � ∈�� 

where ��� and ��� are marginal efect modules of individual efect 
and cooperation efect, respectively. ��� and �� � are marginal efect 
modules of suppression efect, which can output the utilities of the 
attacker and the defender respectively. Due to units of diferent 
types having distinct characteristics (e.g., attack damage, armor), 
each unit type does not share its own � modules. Therefore, for 
given � unit types, MassNE has 4� independent � modules in total. 

Now, we formally introduce our monotonicity assumption that 
marginal efect modules should adhere to: If one unit is added to a 
team, the overall ability of the team should not decrease. We assume 
each member in the team has the same goals (i.e., to win). 

Specifcally, in a massive battle, the utility of a squad should be 
monotonically increasing with respect to its quantity, and remain-
ing non-negative. This assumption can be formulated as: 

�� (�� + 1) ≥ �� (�� ), 
�� (�� ) ≥ 0. 

(7) 

We adopted a simple and feasible method to implement the � 
function, which is a look-up table (i.e., embedding layer) followed 
by a ReLU activation function. We add the ReLU function to ensure 
the output value (i.e., utility) is non-negative. Before training, each 
element in the look-up table is initialized to a positive value to 
prevent dead neurons caused by the ReLU. 

Because constrained optimization in neural networks is tricky 
[1], we take a compromise approach to ensure monotonicity. To 
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guarantee it (i.e., Equation (7)), we add a monotonicity constraint 
to the look-up table: 

� �� (� )−1∑ ∑ 
L� = [�� (�) − �� (� + 1)] · � [�� (�) > �� (� + 1)] , (8) 

�=0 �=0 

where � is the indicator function, �� (�) denotes the max quantity 
of � in the dataset. In Equation (8), If �� (�) is greater than �� (� + 1), 
then �� (�) − �� (� + 1) will be considered in the loss, otherwise 
�� (�) − �� (� + 1) will be ignored. 
��� , ��� , ��� and �� � have their corresponding monotonicity 

, L�� losses, i.e., L�� , L�� , and L� � , respectively. The overall mono-
tonicity loss can be expressed as: 

= L�� + L�� + L�� + L� � L���� . (9) 

It’s worth noting that we do not impose additional constraints 
to ensure diminishing marginal utility. In experiments, we found 
that marginal efect modules can learn the diminishing pattern. 

3.5 Training Strategy 
Given � observed battles, let �� denote the �-th battle outcome, 
�̂� denote corresponding prediction , i.e., � (� defeats �). The loss 
function is cross entropy between model output �̂ and true label �: 

�∑ 
L�� = − (�� log �̂� + (1 − �� ) log(1 − �̂� )). (10) 

�=1 

The fnal loss is cross entropy loss plus monotonicity loss: 

L = L�� + �L���� , (11) 

where � is loss weight. In this way, we can learn MassNE by mini-
mizing the loss function L. 

3.6 Generality of MassNE 
In this subsection, we will review previous models, and demonstrate 
that previous work can be seen as special cases of MassNE. We frst 
simplify the massive battle settings by reducing the number of each 
squad to 1. Since the quantity of each squad is 1, we can omit the 
marginal efect (i.e., � modules) of each squad, and the score of �� 
is formulated as: ∑ ∑ ∑ 

�� = �� + �1 (v� ⊙ v� )
� ∈�� � ∈�� � ∈��,�≠� ∑ ∑ (12) 

+ �2 (p� ⊙ c� )
� ∈�� � ∈�� 

Generalized Bradly-Terry. Generalized BT [21] assumes that 
individuals’ abilities are independent of others, omitting interac-
tions between individuals. By fxing �1 and �2’s weights and bias to 
constant zero, we can get the generalized BT model, where the �� 
is defned as: ∑ 

�� = �� . (13) 
� ∈�� 

Higher Order Interactions. HOI [31] models pairwise coopera-
tion efect by the inner product of two latent vectors v, a team’s 
score is defned as: ∑ ∑ ∑ 

� �� = �� + v� v� . (14) 
� ∈�� � ∈�� � ∈��,�≠� 

MLP can be seen as a generalization of the inner product operation 
[18], then if we let �2 (·) = 0 (i.e., ignore the suppression efect), 
MassNE can recover HOI. Blade-Chest-Inner. Blade-Chest [4] 

is designed for 1v1 battle, which assumes that each player has an 
absolute ability �� (i.e., individual efect), strength vector p� , and 
weakness vector c� . Blade-Chest considers the interaction between 
an opponent through the inner product of p� and c� . In Blade-Chest-
Inner model, take player � versus player � as an example, �’s score 
is formalized as: 

�� = �� + p�� c� . (15) 

By limiting the team size of both sides to 1 (i.e., the cooperation ef-
fect disappears), our model can be reduced to the following formula, 
which can recover Blade-Chest model: ∑ ∑ ∑ 

�� = �� + f2 (��� c� ) . (16) 
� ∈{�} � ∈{�} � ∈{� } 

Basic NeuralAC. NeuralAC [15] learns the pairwise cooperative 
efects and pairwise suppression efects. When simplifying the 
quantity of each squad to 1, the ��’s score in NeuralAC is the 
same as in Equation (12). Therefore, MassNE can be regarded as an 
extended version of NeuralAC in massive battle settings. 

4 EXPERIMENTS 

4.1 Dataset Generation 
Online games are an ideal testbed for simulating massive battles, 
which can provide unlimited battle data. StarCraft II is a famous on-
line Real-Time Strategy (RTS) game that has attracted the attention 
of a large amount of AI communities in recent years [34, 39, 47]. 
In StarCraft II, Players need to collect resources, build buildings, 
and produce combat units to destroy enemies. The game contains 
three species for players to control: Terran, Protoss, and Zerg, and 
each of them have unique ground forces and air forces. We utilize 
sc2combatsim, an open-source StarCraft simulator [29] to simulate 
massive battles, which can generate two armies of specifed quan-
tity on the battlefeld. A built-in AI will control two teams to attack, 
with a fxed combat policy. A battle ends when one team’s army is 
eliminated, and the other team is considered to win. 

We let the three species fght against each other, and we integrate 
most of the combat units of each species, including air forces. Note 
that some melee ground units (e.g., Zealot) and some air units (e.g., 
Viking Fighter) cannot attack each other. If this case happens at the 
end of the battle, we will flter this battle data. 

For each battle, we randomly specify the maximum resource 
consumption of both sides. The amount of resources consumed by 
each squad in a team is determined by a Dirichlet distribution. 

We generate three datasets on three diferent maps (i.e., terrains), 
namely Plain, Corridor and Bush. The basic statistics of all the 
datasets are summarized in Table 1. Plain terrain is relatively fat 
with no obstacles. Corridor terrain, in contrast, has a narrow cor-
ridor connecting two lands, which may blocks the movement of 
ground units. The Bush map has bushes on both sides that block 
the view of ground troops, but air forces are not afected by the 
bushes. The air forces would have a greater advantage on Corridor 
and Bush map than Plain. 

4.2 Baseline Methods 
• Life Time Damage 2 (LTD2) [24]: LTD2 is a hand-craft 
model that assumes an individual’s ability is determined by 
its attack damage, attack frequency, and hit point (i.e., health 
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Table 1: Statistics of the datasets. 

Dataset Plain Corridor Bush 

Samples 34,540 33,104 34,494 
#Unit types 39 39 39 

Avg. team size 64.6 42.7 49.0 
Max team size 797 479 461 

point). In LTD2 , a team’s ability is defned as: ∑ √ 
�� = �(�) · �� (�) · ��� (�), 

� ∈�� 

where �(�) is number of � , �� (�) denotes �’s hit point and 
��� (�) denotes �’s damage per frame (i.e., attack damage × 
attack frequency). 

• TS_Lanchester2 [46]: Another hand-craft model designed 
by experts, based on Lanchester’s Square Law [26]. 
TS_Lanchester2 takes into account the attack power and HP 
of the air forces and ground forces respectively. Therefore it 
considers the battle scenario at a fne-grain level. 

• Logistic Regression (LR) [33]: A linear classifer with L2 
regularization. 

• Generalized Bradly-Terry (BT) [21]: Another linear model 
considers only individual efects. 

• TrueSkill [19]: An algorithm based on probability graph, 
which is widely used in online team-based games for skill 
rating. It also only considers individual efects. 

• HOI [31]: A factorization machines (FM) [38] based model 
that takes pairwise interactions of teammates into account. 

• NeuralAC [15]: A neural network-based model that ex-
plicitly learns pairwise weighted-cooperation efects and 
weighted-suppression efects for battle prediction. 

• BattleNet [28, 29]: A neural network-based model that uses 
multi-layer perceptrons to obtain representations of teams 
for fnal predictions. 

4.3 Experimental Setup 
For MassNE model, the dimension of embedding size (i.e., K) and 
the dimension of hidden layers are set to 20 and 64 [50], respectively. 
We initialize the parameter with Kaiming initialization [17]. Besides, 
Dropout [42] technique is also applied with the drop probability 
set to 0.2. The weight of monotonicity loss (i.e., �) is set to 1. 

For every dataset, we randomly divided samples into 80% for 
training, 10% for validating, and 10% for testing. Area Under ROC 
(AUC) [2] and Accuracy (Acc) are adopted the evaluation metrics. 
We choose Adam [23] as the optimizer, with 0.001 of learning rate 
and 0.0001 of weight decay coefcient [25]. Besides, the batch size is 
set to 64 for HOI, NeuralAC, BattleNet, and MassNE on all datasets. 

LR and TrueSkill are implemented by open source python pack-
ages sklearn, trueskill2, respectively. HOI, NeuralAC, BattleNet and 
our model are implemented by PyTorch package [35]. All experi-
ments are conducted on a Linux server with an AMD Ryzen CPU 
and an RTX 3060 GPU. 

2https://trueskill.org/ 

4.4 Experimental Results 
Table 2 shows the experimental results of all methods on the mas-
sive battle outcome prediction task. We have the following ob-
servations. 1) Hand-craft models (i.e., LTD2 and TS_Lanchester2) 
perform poorly on this task. The main reason is that these models 
may oversimplify the battle process. They don’t take into account 
the attack range of units or battlefeld terrains, therefore don’t per-
form well. 2) Trueskill, BT, and LR which consider only individual 
efects outperform rule-based methods because they are learning-
based algorithms. 3) Although HOI and NeuralAC consider pairwise 
interactions between individuals, their performance is close to BT 
and Trueskill. It is may due to the assumptions made in their paper 
do not hold in the massive settings (in their experiments, the team 
size is usually fve). When teams are large, not all individuals in-
teract with each other. 4) BattleNet uses neural networks to obtain 
team representations for prediction, which fail to take into account 
the diminishing marginal utility of squads, resulting in suboptimal 
performance. Finally, MassNE outperforms all the other baselines 
on all datasets, indicating the efectiveness of our model. 

4.5 Ablation Study 
We further designed some model variants to verify the efectiveness 
and necessity of each design in MassNE. For fair comparisons, other 
settings remain unchanged. 

• basic: Basic version of MassNE, the squad utility is not a 
learnable parameter, but the number itself, i.e., �� (�� ) = �� . 

• exist: The number unity is 1 if a squad exists, and 0 otherwise, 
i.e., �� (�� ) = 1 if �� >= 1. 

• no-mono: A variant of MassNE that ignores the monotonic-
ity assumption, where the monotonicity loss is removed. 

• no-coop: A variant that does not model the cooperation 
efect, i.e., assuming �1 (·) = 0. 

• no-supp: A variant that does not model the suppression 
efect, i.e., assuming �2 (·) = 0. 

• no-indiv: A variant that does not consider the individual 
efect, i.e., assuming �� = 0. 

The ablation results are shown at the bottom of Table 2. We 
have several crucial conclusions. First, neither basic nor existing 
perform well. It proves that learning units’ utility from the data (i.e., 
marginal efect modules) is better than manually specifying the 
utility. Second, the monotonicity loss is the key. We found when 
the monotonicity loss is removed, MassNE is prone to overftting 
on the training set, which confrms the necessity of monotonicity 
loss. Third, all three efects (i.e., individual efect, cooperation efect, 
and suppression efect) do play a role, but the suppression efect is 
more important in Starcraft II. 

4.6 Model Interpretability 
To evaluate the interpretability of MassNE, i.e., whether the learned 
individual scores, cooperation scores, and suppression scores are 
reasonable, we display individual scores of each squad in Figure 3, 
cooperation scores between each squad in Figure 4 and suppression 
scores in Figure 5. These scores are obtained through MassNE 
trained on Corridor dataset. Please note that these scores depend 
not only on the type of units, but also on the number of squads. For 
example, the suppression score when � against � is calculated as 
��� � � (�� ) · � (� � ) · �2 (p� ⊙ c� ).� � 
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Table 2: Experimental results on massive battle outcome prediction task. The second-best methods are denoted with *. Those 
results are averaged over fve independent runs, and standard deviations are shown in parentheses. 

Plain Corridor Bush
Model 

AUC Acc AUC Acc AUC Acc 

LTD2 

TS_Lanchester2 

BT 

LR 

TrueSkill 
HOI 

NeuralAC 

BattleNet 

0.6868 (0.0055) 
0.7551 (0.0074) 
0.8931 (0.0036) 
0.8999 (0.0028) 
0.8954 (0.0028) 
0.8943 (0.0053) 
0.8976 (0.0037) 
0.9234 (0.0027) 

0.6792 (0.0063) 
0.7276 (0.0061) 
0.8159 (0.0014) 
0.8207 (0.0043) 
0.8113 (0.0034) 
0.8129 (0.0063) 
0.8194 (0.0074) 
0.8245 (0.0039) 

0.6567 (0.0061) 
0.6683 (0.0042) 
0.8646 (0.0055) 
0.8653 (0.0072) 
0.8276 (0.0129) 
0.8616 (0.0051) 
0.8632 (0.0049) 
0.9133 (0.0021) 

0.6476 (0.0046) 
0.6567 (0.0052) 
0.7843 (0.0062) 
0.7881 (0.0069) 
0.7458 (0.0089) 
0.7818 (0.0071) 
0.7852 (0.0052) 
0.8137 (0.0049) 

0.6687 (0.0047) 0.6589 (0.0044) 
0.7436 (0.0072) 0.7159 (0.0066) 
0.8887 (0.0061) 0.8033 (0.0073) 
0.8891 (0.0071) 0.8021 (0.0034) 
0.8699 (0.0073) 0.7869 (0.0049) 
0.8894 (0.0072) 0.8044 (0.0075) 
0.8905 (0.006) 0.8085 (0.0065) 
0.9074 (0.0046) 0.8117 (0.0074) 

MassNE 0.9489 (0.0024) 0.8802 (0.0038) 0.9460 (0.0035) 0.8758 (0.0043) 0.9412 (0.0021) 0.8662 (0.0046) 

basic 
exist 

no-mono 

no-coop 

no-supp 

no-indiv 

0.8968 (0.0025) 
0.8703 (0.0037) 
0.8737 (0.0055) 
0.9439 (0.0033) 
0.9030 (0.0056) 
0.9463∗ (0.0017) 

0.8145 (0.0054) 
0.7949 (0.0045) 
0.7947 (0.0043) 
0.8714 (0.0023) 
0.8213 (0.0064) 
0.8759∗ (0.0055) 

0.8633 (0.006) 
0.8907 (0.0073) 
0.8882 (0.0065) 
0.9438∗ (0.0018) 
0.8835 (0.0087) 
0.9427 (0.0038) 

0.7817 (0.0054) 
0.8196 (0.0086) 
0.8140 (0.0092) 
0.8721∗ (0.0033) 
0.8023 (0.0068) 
0.8688 (0.0043) 

0.8857 (0.0035) 
0.8592 (0.0049) 
0.8916 (0.0043) 
0.9356 (0.0034) 
0.8976 (0.0067) 
0.9376∗ (0.0038) 

0.8017 (0.0043) 
0.7819 (0.005) 
0.8068 (0.0034) 
0.8604 (0.0045) 
0.8131 (0.0087) 
0.8612∗ (0.0053) 

(a) Individual scores of Terran squads. (b) Individual scores of Zerg squads.

Figure 3: Individual scores. To get those scores, we assume 
that the number of each squad is one. Among the listed units, 
Thor is Terran’s ultimate ground unit, and Battlecruiser is 
Terran’s ultimate air unit. Ultralisk is Zerg’s ultimate ground 
unit. Ultimate units mean that they are the strongest unit in 
combat, but also cost many resources to train. 

Individual Score. As shown in Figure 3, those ultimate units 
(e.g., Thor, Battlecruiser, and Ultralisk) get high scores, while the 
scores of junior units (e.g., Marine, Reaper, and Zergling) are quite 
low. This is consistent with the game scene. 

Cooperation Score. As shown in Figure 4, We found that co-
operation scores between ground units are low (i.e., Zealot and 
Immortal), while cooperation scores between ground units and air 
forces were high (i.e., Zealot and Voidray). One likely explanation 
may be that the ground units have a certain collision volume, which 
blocks the units behind them on the narrow corridor, making them 
hard to cooperate. The air unit is not hindered by the terrain, and 
hence air forces cooperate well with the ground forces. 

Suppression Score. In the Corridor terrain, we noticed that the 
Siegetank counters the Zerg ground units (i.e., Roach and Ravager) 
because when the tank is Sieged, it has the longest attack range 
and high damage. However, tanks cannot attack air units, so tanks 
get a low score against the enemy air force (e.g., Corruptor and 

0.8

0.6

0.4

0.2

0.0

Figure 4: The cooperation scores of Protoss squads, i.e., 
��� (�� ) · ��� (�� ) · �1 (v� ⊙ v� ). We set the number of two squads 
� � 

to 10 to calculate these scores. The diagonal is left blank 
since one squad will not interact with itself. Among them, 
Zealot, Stalker, Sentry, Adept, and Archon are ground units, 
and Phoenix, Voidray, Tempest, and Carrier are air units. 

Broodlord). In addition, as the ultimate air unit, the Battlecruiser 
can attack both air and ground units, so the suppression score of 
the Battlecruiser is generally high. 

Through the above analysis, we can infer that MassNE indeed 
learned meaningful relationships between each squad. It is worth 
pointing out that our model is capable to discover such complex 
relationships merely based on battle outcomes, without consuming 
any prior knowledge (e.g., attack range and HP) 3. 

3For more details on StarCraft II units, interested readers can refer to the following website: 
https://liquipedia.net/starcraft2/Units_(Legacy_of_the_Void) 
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Figure 5: The suppression scores of Terran squads fght 
against Zerg squads. We set the number of two squads to 
10 to obtain these scores. In particular, Siegetanks are ground 
units and cannot attack air units (e.g., Mutalisk, Corruptor, 
and Broodlord). 

(1) Battlecruiser s coop. utility (2) Battlecruiser s attack utility (3) Battlecruiser s def. utility

(4) Thor s coop. utility (5) Thor s attack utility (6) Thor s def. utility

Figure 6: Curve of squad utility as a function of quantity. The 
vertical axis represents the quantity of each squad. 

4.7 Diminishing Marginal Utility 
To observe the learned utility change pattern, we obtained the 
learned parameters of marginal efect modules in Corridor and plot 
the curve of utility as a function of the squad number. We choose 

, ��� Thor and Battlecruiser and draw their utility curves (i.e., ��� 

and �� � ), the results are displayed in Figure 6. 
We can observe that in general, the marginal utility will continue 

to decrease as the number increases (marginal utility is � (� + 1) − 
� (�)). We speculate that there are several reasons for this phenom-
enon: when attacking, too many combat units will lead to wasted 
frepower; when cooperating, too many ground units will block 
each other, reducing the ofensive efciency. Therefore, utility is 
not proportional to quantity. In addition, diferent squads have dif-
ferent curve shapes, and it is hard to describe such patterns with 
manually designed functions. 

4.8 Impact of Marginal Efects 
To further explore the impact of the marginal efect on the win-
ning probability, we plotted the probability of the two teams as a 
function of team size, and the results are shown in Figure 7. For 
demonstration, let’s assume that �� has only Ultralisk and �� has 
only Thor. Ultralisks and Thors are the ultimate units of Zerg and 

Protoss respectively. Ultralisks are melee units, while Thors are 
ranged units. From Figure 7, we observe that the win rate increases 
as the number of units increases (keeping the opponent team the 
same). This is reasonable, since increasing the number will increase 
utility. In addition, when the team size is small (e.g., 1V1 or 3V3), 
the winning odds of the two teams are close; but as the team size 
increases (e.g., 6V6 or 8V8), Thor’s winning odds are higher. A 
plausible explanation is that the marginal utility of Ultralisks de-
cays faster than Thor on the corridor. Because only three Ultralisks 
can attack Thor simultaneously, and almost all Thors can attack 
Ultralisks at the same time, due to their long attack range. 

Based on this table, we can make a pre-battle plan. For example, 
if we want to beat 6 Ultralisks, we need to deploy 5 Thors, and if 
we want to defeat 8 Ultralisks, we need to deploy 6 Thors. 
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Figure 7: Winning probability. The vertical axis represents 
the number of Ultralisks, and the horizontal axis represents 
the number of Thors. 

5 CONCLUSION AND FUTURE WORK 
In this paper, we proposed a novel model named MassNE for mas-
sive battle outcome prediction, which considers higher-order in-
teractions between each squad. The marginal efect modules of 
MassNE model the marginal utility of each squad. Experiments 
on three StarCraft II datasets demonstrated that MassNE outper-
forms state-of-the-art methods and confrmed the correctness of 
the monotonicity hypothesis. In addition, MassNE exhibits good 
interpretability and can reveal cooperation relationships and sup-
pression relationships between each squad. The marginal efect 
modules can discover diminishing marginal utility patterns through 
end-to-end learning. Finally, we have demonstrated that MassNE 
could be seen as the generalization of several previous models. 

We currently adopt StarCraft-II as the emulator, which is a rela-
tively complex game. It has a variety of units (each unit has diferent 
attack damage, attack range, armor, and skills) and diverse terrain. 
Therefore, StarCraft covers a considerable number of online games 
owing to its complexity. Nevertheless, we acknowledge that other 
domains are more challenging to model, mainly due to many uncer-
tainties or unobservable information. We think extending MassNE 
to other domains is a potential future direction, which can draw on 
the theory of swarm intelligence [22] or group dynamics [11]. 
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