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Advances in tourism economics have enabled us to collect massive amounts of travel tour data. If properly
analyzed, this data could be a source of rich intelligence for providing real-time decision making and for
the provision of travel tour recommendations. However, tour recommendation is quite different from tradi-
tional recommendations, because the tourist’s choice is affected directly by the travel costs, which includes
both financial and time costs. To that end, in this article, we provide a focused study of cost-aware tour
recommendation. Along this line, we first propose two ways to represent user cost preference. One way is
to represent user cost preference by a two-dimensional vector. Another way is to consider the uncertainty
about the cost that a user can afford and introduce a Gaussian prior to model user cost preference. With
these two ways of representing user cost preference, we develop different cost-aware latent factor models
by incorporating the cost information into the probabilistic matrix factorization (PMF) model, the logistic
probabilistic matrix factorization (LPMF) model, and the maximum margin matrix factorization (MMMF)
model, respectively. When applied to real-world travel tour data, all the cost-aware recommendation models
consistently outperform existing latent factor models with a significant margin.
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1. INTRODUCTION

Recent years have witnessed an increased interest in data-driven travel marketing. As
a result, massive amounts of travel data have been accumulated, thus providing un-
paralleled opportunities for people to understand user behaviors and generate useful
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4:2 Y. Ge et al.

Fig. 1. The cost distribution.

knowledge, which in turn deliver intelligence for real-time decision making in various
fields, including travel tour recommendation.

Recommender systems address the information-overload problem by identifying
user interests and providing personalized suggestions. In general, there are three ways
to develop recommender systems [Adomavicius and Tuzhilin 2005]. The first is content
based: it suggests the items which are similar to those a given user has liked in the
past. The second is based on collaborative filtering [Ge et al. 2011b; Liu et al. 2010a,
2010c]. In other words, recommendations are made according to the tastes of other
users that are similar to the target user. Finally, a third way is to combine these two
preceding approaches and lead to a hybrid solution [Burke 2007]. However, the devel-
opment of recommender systems for travel tour recommendation is significantly differ-
ent from developing recommender systems in traditional domains, since the tourist’s
choice is directly affected by the travel cost which includes the financial cost as well as
various other types of costs, such as time and opportunity costs.

In addition, there are some unique characteristics of travel tour data which dis-
tinguish the travel tour recommendation from traditional recommendations, such as
movie recommendations. First, the prices of travel packages can vary a lot. For exam-
ple, by examining the real-world travel tour logs collected by a travel company, we find
that the prices of packages can range from $20 to $10,000. Second, the time cost of
packages also varies. For instance, while some travel packages take less than three
days, other packages may take more than ten days. In traditional recommender sys-
tems, the cost of consuming a recommended item, such as a movie or music, is usually
not a concern for customers. However, the tourists usually have financial and time con-
straints for selecting a travel package. In fact, Figure 1 shows the cost distributions of
some tourists. In the figure, each point corresponds to one user. As can be seen, both
the financial and time costs vary a lot among different tourists. Therefore, for the tra-
ditional recommendation models which do not consider the cost of travel packages, it
is difficult to provide the right travel tour recommendation for the right tourists. For
example, traditional recommender systems might recommend a travel package to a
tourist who cannot afford it because of the price or time commitment.

To address this challenge, in this article, we study how to incorporate the cost in-
formation into traditional latent factor models for travel tour recommendation. The
extended latent factor models aim to learn user cost preferences and user interests
simultaneously from the large scale of travel tour logs. Specifically, we introduce two
types of cost information into the traditional latent factor models. The first type of
cost information refers to the observable costs of a travel package, which include both
financial cost and time cost of the travel package. For example, if a person goes on a
trip to Cambodia for seven days and pays $2,000 for the travel package j, then the
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Cost-Aware Collaborative Filtering for Travel Tour Recommendations 4:3

observed costs of this travel package are denoted as a vector CVj = (2000, 7). The
second type of cost information refers to the unobserved financial and time cost prefer-
ences of a user. We propose two different ways to represent the unobserved user’s cost
preference. First, we represent the cost preference of user i with a two-dimensional
cost vector CUi which denotes both financial and time costs. Second, since there is still
some uncertainty about the financial and time costs that a user can afford, we further
introduce a Gaussian priori G(CUi), instead of the cost vector CUi , on the cost prefer-
ence of user i to express the uncertainty.

Given this item cost information and two ways of representing user cost prefer-
ence, we have introduced two cost-aware probabilistic matrix factorization (PMF)
[Salakhutdinov and Mnih 2008] models [Ge et al. 2011a]. These two cost-aware prob-
abilistic matrix factorization models are based on the Gaussian noise assumption over
observed implicit ratings. However, in this article, we further argue that it may be
better to assume noise term as binomial, because over 60% of implicit ratings of travel
packages are 1. Therefore, we further investigate two more latent factor models, that
is, logistic probabilistic matrix factorization (LPMF) [Yang et al. 2011] and maximum
margin matrix factorization (MMMF) [Srebro et al. 2005] models, and propose new
cost-aware models based on them in this article. Compared with the probabilistic ma-
trix factorization model studied in Ge et al. [2011a], these two latent factor models
are based on different assumptions and have different mathematical formulations. We
have to develop different techniques to incorporate the cost information into these two
models in this article. Furthermore, for both logistic probabilistic matrix factoriza-
tion and maximum margin matrix factorization models, we need to sample negative
ratings, which were not considered in Ge et al. [2011a], to learn the latent features.
In sum, we develop cost-aware extended models by using two ways of representing
user cost preference for PMF, LPMF, and MMMF models. In addition to the unknown
latent features, such as the user’s latent features, the unobserved user’s cost informa-
tion (e.g., CU or G(CU)) is also learned by training these extended cost-aware latent
factor models. Particularly, by investigating and extending the preceding three latent
factor models, we expect to gain more understanding about which model works the
best for travel tour recommendations in practice and how much improvement we may
achieve by incorporating the cost information into the different models. Finally, we
provide efficient algorithms to solve the different objective functions in these extended
models.

Finally, with real-world travel data, we provide very extensive experimentation in
this article, which is much more than that in Ge et al. [2011a]. Specifically, we first
show that the performances of PMF, LPMF, and MMMF models for tour recommenda-
tion can be improved by taking the cost information into consideration, especially when
active users have very few observed ratings. The statistical significance test shows that
the improvement of cost-aware models is significant. Second, the extended MMMF and
LPMF models lead to a better improvement of performance than the extended PMF
models in terms of Precision@K and MAP for travel tour recommendations. Third, we
demonstrate that the sampled negative ratings have interesting influence on the per-
formance of extended LPMF and MMMF models for travel package recommendations.
Finally, we demonstrate that the latent user cost information learned by extended
models can help travel companies with customer segmentation.

The remainder of this article is organized as follows. Section 2 briefly describes the
related work. In Section 3, we show two ways of representing user cost preference
and propose both vPMF and gPMF models with the incorporated cost information.
Section 4 shows the extended models of the LPMF model. In Section 5, we provide the
extended models of the MMMF model. Section 6 presents the experimental results on
the real-world travel tour data. Finally, in Section 7, we draw conclusions.
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4:4 Y. Ge et al.

2. RELATED WORK

Related work can be grouped into three categories. The first includes the work on col-
laborative filtering models. In the second, we introduce the related work about travel
recommendation. Finally, the third category includes the work on cost/profit-based
recommendation.

2.1. Collaborative Filtering

Two types of collaborative filtering models have been intensively studied recently:
memory-based and model-based approaches. Memory-based algorithms [Bell and
Koren 2007; Deshpande and Karypis 2004; Koren 2008] essentially make rating pre-
dictions by using some other neighboring ratings. In the model-based approaches,
training data are used to train a predefined model. Different approaches [Ge et al.
2011a; Hofmann 2004; Liu et al. 2010d; Marlin 2003; Xue et al. 2005] vary due to differ-
ent statistical models assumed for the data. In particular, various matrix factorization
[Agarwal and Chen 2009; Salakhutdinov and Mnih 2008; Srebro et al. 2005] methods
have been proposed for collaborative filtering. Most MF approaches focus on fitting
the user-item rating matrix using low rank approximation and use the learned latent
user/item features to predict the unknown ratings. The PMF model [Salakhutdinov
and Mnih 2008] was proposed by assuming Gaussian noise to observed ratings and
applying Gaussian prior to latent features. Via introducing logistic function to the loss
function, PMF was also extended to address binary ratings [Yang et al. 2011]. Re-
cently, instead of constraining the dimensionality of latent factors, Srebro et al. [2005]
proposed the MMMF model via constraining the norms of user and item feature matri-
ces. Finally, more sophisticated methods are also available to consider user/item side
information [Adams et al. 2010; Gu et al. 2010], social influence [Ma et al. 2009], and
context information [Adomavicius et al. 2005] (e.g., temporal information [Xiong et al.
2010] and spatiotemporal context [Lu et al. 2009]). However, most of these methods
were developed for recommending traditional items, such as movie, music, articles,
and webpages. In these recommendation tasks, financial and time costs are usually
not essential to the recommendation results and are not considered in the models.

2.2. Travel Recommendation

Travel-related recommendations have been studied before. For instance, in Hao et al.
[2010], one probabilistic topic model was proposed to mine two types of topics, that is,
local topics (e.g., lava, coastline) and global topics (e.g., hotel, airport), from travelogue
on the website. Travel recommendation was performed by recommending a destina-
tion, which is similar to a given location or relevant to a given travel intention, to
a user. Cena et al. [2006] presented UbiquiTO tourist guide for intelligent content
adaptation. UbiquiTO used a rule-based approach to adapt the content of the provided
recommendation. A content adaptation approach [Yu et al. 2006] was developed for
presenting tourist-related information. Both content and presentation recommenda-
tions were tailored to particular mobile devices and network capabilities. They used
content-based, rule-based, and Bayesian classification methods to provide tourism-
related mobile recommendations. Baltrunas et al. [2011a] presented a method to rec-
ommend various places of interest for tourists by using physical, social, and modal
types of contextual information. The recommendation algorithm was based on the fac-
tor model that is extended to model the impact of the selected contextual conditions on
the predicted rating. A tourist guide system COMPASS [Setten et al. 2004] was pre-
sented to support many standard tourism-related functions. Finally, other examples of
travel recommendations proposed in the literature are also available [Ardissono et al.
2002; Baltrunas et al. 2011b; Carolis et al. 2009; Cheverst et al. 2000; Jannach and
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Cost-Aware Collaborative Filtering for Travel Tour Recommendations 4:5

Hegelich 2009; Park et al. 2007; Woerndl et al. 2011], and Kenteris et al. [2011] pro-
vided an extensive categorization of mobile guides according to connectivity to Inter-
net, being indoor versus outdoor, etc. In this article, we focus on developing cost-aware
latent factor models for travel package recommendation, which is different from the
preceding travel recommendation tasks.

2.3. Cost/Profit-Based Recommendation

Also, there are some prior works [Chen et al. 2008; Das et al. 2010; Ge et al. 2010;
Hosanagar et al. 2008] related to profit/cost-based recommender systems. For instance,
Hosanagar et al. [2008] studied the impact of a firm’s profit incentives on the design
of recommender systems. In particular, this research identified the conditions under
which a profit-maximizing recommender recommends the item with the highest mar-
gins and those under which it recommends the most relevant item. It also explored
the mismatch between consumers and firm incentives and determined the social costs
associated with this mismatch. Das et al. [2010] studied the question of how a vendor
can directly incorporate profitability of items into the recommendation process so as
to maximize the expected profit while still providing accurate recommendations. The
proposed approach takes the output of a traditional recommender system and adjusts
it according to item profitability. However, most of these prior travel-related and cost-
based recommendation studies did not explicitly consider the expense and time cost for
travel recommendation. Also, in this article, we focus on travel tour recommendation.

Finally, in our preliminary work on travel tour recommendation [Ge et al. 2011a],
we developed two simple cost-aware PMF models for travel tour recommendation. In
this article, we provide a comprehensive study of cost-aware collaborative filtering for
travel tour recommendation. Particularly, we investigate how to incorporate the cost
information into different latent factor models and evaluate the design decisions re-
lated to model choice and development.

3. COST-AWARE PMF MODELS

In this section, we propose two ways to represent user cost preferences and intro-
duce how to incorporate the cost information into the PMF [Salakhutdinov and Mnih
2008] model by designing two cost-aware PMF models: the vPMF model and the gPMF
model.

3.1. The vPMF Model

vPMF is a cost-aware probabilistic matrix factorization model which represents
user/item costs with two-dimensional vectors, as shown in Figure 2(b). Suppose we
have N users and M packages. Let Rij be the rating of user i for package j, and Ui
and Vj represent D-dimensional user-specific and package-specific latent feature vec-
tors, respectively, (both Ui and Vj are column vectors in this article). Also, let CUi
and CVj represent two-dimensional cost vectors for user i and package j, respectively.
In addition, CU and CV simply denote the sets of cost vectors for all the users and
all the packages, respectively. The conditional distribution over the observed ratings
R ∈ RN×M is

p(R|U, V, CU , CV , σ 2) =
N∏

i=1

M∏
j=1

[N (Rij|f (Ui, Vj, CUi , CVj), σ
2)]Iij , (1)

where N (x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2, and Iij is the indicator variable that is equal to 1 if user i
rates item j and is equal to 0 otherwise. Also, U is a D × N matrix and V is a D × M
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4:6 Y. Ge et al.

matrix. The function f (x) is to approximate the rating for item j by user i. We define
f (x) as

f (Ui, Vj, CUi , CVj) = S(CUi , CVj) · UT
i Vj , (2)

where S(CUi , CVj) is a similarity function for measuring the similarity between user
cost vector CUi and item cost vector CVj . Several existing similarity/distance functions
can be used here to perform this calculation, such as Pearson coefficient, the cosine
similarity, or Euclidean distance. CV can be considered known in this article, because
we can directly obtain the cost information for tour packages from the tour logs. CU
is the set of user cost vectors which is going to be estimated. Moreover, we also apply
zero-mean spherical Gaussian prior [Salakhutdinov and Mnih 2008] on user and item
latent feature vectors.

p(U|σ 2
U) =

N∏
i=1

N (Ui|0, σ 2
UI),

p(V|σ 2
V) =

M∏
j=1

N (Vj|0, σ 2
VI).

As shown in Figure 2, in addition to user and item latent feature vectors, we also
need to learn user cost vectors simultaneously. By a Bayesian inference, we have

p(U,V, CU |R, CV , σ 2, σ 2
U , σ 2

V)

∝ p(R|U, V, CU , CV , σ 2)p(U|σ 2
U)p(V|σ 2

V)

=
N∏

i=1

M∏
j=1

[N (Rij|f (Ui, Vj, CUi , CVj), σ
2)]Iij

×
M∏

i=1

N (Ui|0, σ 2
UI) ×

N∏
j=1

N (Vj|0, σ 2
VI). (3)

U, V, and CU can be learned by maximizing this posterior distribution or the log of
the posterior distribution over user cost vectors and user and item latent feature vec-
tors with fixed hyperparameters, that is, the observation noise variance and prior
variances. By Equation (3) or Figure 2, we can find that vPMF is actually an en-
hanced general model of PMF by taking the cost information into consideration. In
other words, if we limit S(CUi , CVj) to 1 for all pairs of user and item, vPMF will be a
PMF model.

The log of the posterior distribution in Equation (3) is

ln p(U, V, CU |R, CV , σ 2, σ 2
U , σ 2

V) =

− 1
2σ 2

N∑
i=1

M∑
j=1

Iij(Rij − f (Ui, Vj, CUi , CVj))
2

− 1
2

{(
N∑

i=1

M∑
j=1

Iij) ln σ 2 + ND ln σ 2
U + MD ln σ 2

V}

− 1
2σ 2

U

N∑
i=1

UT
i Ui − 1

2σ 2
V

M∑
j=1

VT
j Vj + C, (4)
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Fig. 2. Graphical models.

where C is a constant that does not depend on the parameters. Maximizing the log
of the posterior distribution over user cost vectors and user and item latent feature
vectors is equivalent to minimizing the sum-of-squared-errors objective function with
quadratic regularization terms:

E = 1
2

N∑
i=1

M∑
j=1

Iij(Rij − S(CUi , CVj) · UT
i Vj)

2

+ λU

2

N∑
i=1

||Ui||2F + λV

2

M∑
j=1

||Vj||2F, (5)

where λU = σ 2/σ 2
U , λV = σ 2/σ 2

V , and || · ||2F denotes the Frobenius norm. From
the objective function, that is, Equation (5), we can also see that the vPMF
model will be reduced to the PMF model if S(CUi , CVj) = 1 for all pairs of user
and item.

Since the dimension of cost vectors is small, we use the Euclidean distance for the
similarity function as S(CUi , CVj) = (2−||CUi −CVj ||2)/2. Note that with this similarity
function, we assume that a user’s cost preference is around a center. A user tends to
not choose travel packages which are either too expensive or too cheap for him/her.
For instance, if a user always consumes travel packages which cost around $1,000,
travel packages which cost either too much (e.g., $5,000) or too less (e.g., $100) will
be equally unattractive to this user. Actually, from the real-world data, we do observe
that this assumption generally holds. Specifically speaking, we show the financial cost
of travel packages which are consumed by ten different users in our training data in
Figure 3. As can be seen, a user tends to consume travel packages with financial cost
surrounding a center. Therefore, we use such a symmetric similarity function in this
article. Furthermore, since two attributes of the cost vector have significantly different
levels of scale, we utilize the min-max normalization technique to preprocess all cost
vectors of items. Then the value of attribute of the cost vectors is scaled to fit in the
specific range [0, 1]. Subsequently, the value of the preceding similarity function also
locates in the range [0, 1]. Then, a local minimum of the objective function given by
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Fig. 3. An illustration of financial cost.

Equation (5) can be obtained by performing gradient descent in Ui, Vj, and CUi as

∂E
∂Ui

=
M∑

j=1

Iij
(
S

(
CUi , CVj

) · UT
i Vj − Rij

) · S
(
CUi , CVj

)
Vj + λUUi,

∂E
∂Vj

=
N∑

i=1

Iij
(
S

(
CUi , CVj

) · UT
i Vj − Rij

) · S
(
CUi , CVj

)
UT

i + λVVj,

∂E
∂CUi

=
M∑

j=1

Iij
(
S

(
CUi , CVj

)
UT

i Vj − Rij
) · UT

i VjS ′(CUi , CVj

)
, (6)

where S ′(CUi , CVj

)
is the derivative with respect to CUi .

3.2. The gPMF Model

In the real world, the user’s expectation on the financial and time cost of travel pack-
ages may vary within a certain range. Also, as shown in Equation (5), overfitting can
happen when we perform the optimization with respect to CUi (i = 1 · · · N). These two
observations suggest that it might be better if we could use a distribution to model the
user cost preference instead of representing it as a two-dimension vector. Therefore, we
propose using a two-dimensional Gaussian distribution to model user cost preference
in the gPMF model as

p(CUi |μCUi
, σ 2

CU
) = N (CUi |μCUi

, σ 2
CU

I). (7)

In Equation (7), μCUi
is the mean of the two-dimensional Gaussian distribution for

user Ui. σ 2
CU

is assumed to be the same for all the users for simplicity.
In the gPMF model, since we use a two-dimensional Gaussian distribution to rep-

resent user cost preference, we need to change the function for measuring the simi-
larity/match between user cost preference and package cost information. Considering
that each package cost is represented by a constant vector and that user cost prefer-
ence is characterized via a distribution, we measure the similarity between user cost
preference and package cost as

SG(CVj ,G(CUi)) = N (CVj |μCUi
, σ 2

CU
I), (8)

where we simply use G(CUi) to represent the two-dimensional Gaussian distribution
of user Ui. Note that CUi in Equations (8) and (7) represents the variable of the user
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cost distribution G(CUi), instead of a user cost vector. Also note that, similar to the
similarity function in vPMF model, we adopt the symmetric Equation (8) based on the
same assumption and observation (as shown in Figure 3). In other words, we equally
penalize both higher cost and lower cost than user cost preference. Along this line, the
function for approximating the rating for item j by user i is defined as

fG(Ui, Vj,G(CUi), CVj) = SG(CVj ,G(CUi)) · UT
i Vj

= N (CVj |μCUi
, σ 2

CU
I) · UT

i Vj . (9)

With this representation of user cost preference and the similarity function, a similar
Bayesian inference as Equation (3) can be obtained:

p(U, V, μCU |R, CV , σ 2, σ 2
U , σ 2

V , σ 2
CU

)

∝ p(R|U, V, μCU , CV , σ 2, σ 2
CU

)p(CV |μCU , σ 2
CU

)p(U|σ 2
U)p(V|σ 2

V)

=
N∏

i=1

M∏
j=1

(
N

(
Rij|fG

(
Ui, Vj,G(CUi), CVj

)
, σ 2

))Iij

×
N∏

i=1

M∏
j=1

N (CVj |μCUi
, σ 2

CU
I)Iij

×
N∏

i=1

N (Ui|0, σ 2
UI) ×

M∏
j=1

N (Vj|0, σ 2
VI), (10)

where μCU = (μCU1
, μCU2

, · · · , μCUN
), which denotes the set of means of all user cost

distributions. p(CV |μCU , σ 2
CU

) is the likelihood given the parameters of all user cost
distributions. Given the known ratings of a user, the cost of packages rated by this
user can be treated as observations of this user’s cost distribution. This is why we
represent the likelihood over CV , that is, the set of package cost. Then we are able to

derive the likelihood as
N∏

i=1

M∏
j=1

N (CVj |μCUi
, σ 2

CU
I)Iij in Equation (10).

Maximizing the log of the posterior over the means of all user cost distributions
and user and item latent features is equivalent to minimizing the sum-of-squared-
errors objective function with quadratic regularization terms with respect to U, V,
and μCU = (μCU1

, μCU2
, · · · , μCUN

):

E = 1
2

N∑
i=1

M∑
j=1

Iij

(
Rij − N (CVj |μCUi

, σ 2
CU

I) · UT
i Vj

)2

+ λU

2

N∑
i=1

||Ui||2F + λV

2

M∑
j=1

||Vj||2F

+ λCU

2

N∑
i=1

M∑
j=1

Iij||CVj − μCUi
||2, (11)
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where λCU = σ 2/σ 2
CU

, λU = σ 2/σ 2
U , and λV = σ 2/σ 2

V . As we can see from Equation (11),
the two-dimensional Gaussian distribution for modeling user cost preference leads to
one more regularization term to the objective function, thus easing overfitting. The
gPMF model is also an enhanced general model of PMF, because the objective function,
that is, Equation (11), is reduced to that of PMF if σ 2

CU
is limited to be infinite. A

local minimum of the objective function given by Equation (11) can be identified by
performing gradient descent in Ui, Vj, and μCUi

. For the same reason, we also utilize
the min-max normalization to preprocess all cost vectors of items before training the
model.

In this article, instead of using Equation (2) and Equation (9), which may have pre-
dictions out of the valid rating range, we further apply the logistic function g(x) =
1/(1 + exp(−x)) to the results of Equation (2) and Equation (9). The applied logistic
function bounds the range of predictions as [0, 1]. Also, we map the observed ratings
from the original range [1, K] (K is the maximum rating value) to the interval [0, 1]
using the function t(x) = (x−1)/(K −1), thus the valid rating range matches the range
of predictions by our models. Eventually, to get the final prediction for an unknown
rating, we restore the scale of predictions from [0, 1] to [1,K] by using the inverse
transformation of function t(x) = (x − 1)/(K − 1).

3.3. The Computational Complexity

The main computation of gradient methods is to evaluate the object function and its
gradients against variables. Because of the sparseness of matrices R, the computa-
tional complexity of evaluating the object function of Eq. (5) is O(ηf ), where η is
the number of nonzero entries in R and f is the number of latent factors. The com-
putational complexity for gradients ∂E

∂U , ∂E
∂V , and ∂E

∂CU
in Equation (6) is also O(ηf ).

Thus, for each iteration, the total computational complexity is O(ηf ). Thus, the com-
putational cost of vPMF model is linear with respect to the number of observed rat-
ings in the sparse matrix R. Similarly, the overall computational complexity of gPMF
model is also O(ηf ), because the only difference between gPMF and vPMF is that
we need to compute the cost similarity with the two-dimensional Gaussian distribu-
tion, instead of the Euclidean distance involved in vPMF. This complexity analysis
shows that the proposed cost-aware models are efficient and can scale to very large
data. In addition, instead of performing batch learning, we divide the training set
into subbatches and update all latent features after subbatching in order to speed up
training.

4. COST-AWARE LPMF MODELS

In this section, we first briefly introduce the LPMF model and then propose the cost-
aware LPMF models to incorporate the cost information. Note that in this Section and
in Section 5, all notations, such as CUi and μCUi

, have the same meaning as in Section 3
unless specified otherwise.

4.1. The LPMF Model

LPMF [Yang et al. 2011] generalizes the PMF model via applying the logistic func-
tion as the loss function. Given binary ratings, Rij follows a Bernoulli distribution
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Cost-Aware Collaborative Filtering for Travel Tour Recommendations 4:11

instead of a normal distribution. Then, the logistic function is used to model the
rating as

P(Rij = 1|Ui, Vj) = σ(UT
i Vj) = 1

1 + e−UT
i Vj

,

P(Rij = 0|Ui, Vj) = 1 − P(Rij = 1|Ui, Vj) = 1

1 + eUT
i Vj

= σ(−UT
i Vj) ,

where Rij = 1 means Rij is a positive rating and Rij = 0 indicates Rij is a negative
rating. Given the training set, that is, all observed binary ratings, the conditional like-
lihood over all available ratings can be calculated as

p(R|U, V) =
N∏

i=1

M∏
j=1

(
(P(Rij = 1))Rij(1 − P(Rij = 1))1−Rij

)Iij
, (12)

where (P(Rij = 1))Rij(1 − P(Rij = 1))1−Rij is actually the Bernoulli probability mass
function. Also, Iij is the indicator variable that is equal to 1 if user i rates item j as
either positive or negative and is equal to 0 otherwise.

To avoid overfitting via the maximum likelihood estimation (MLE), we also introduce
Gaussian priors onto U and V and find a maximum a posteriori (MAP) estimation for
U and V. The log of the posterior distribution over U and V is given by

ln p(U, V|R, σ 2
U , σ 2

V)

=
N∑

i=1

M∑
j=1

Iij

(
Rij ln σ(UT

i Vj) + (1 − Rij) ln σ(−UT
i Vj)

)

− 1
2σ 2

U

N∑
i=1

UT
i Ui − 1

2σ 2
V

M∑
j=1

UT
j Vj

− 1
2

(ND ln σ 2
U + MD ln σ 2

V) + C, (13)

where C is a constant that does not depend on the parameters. By maximizing the
objective function, that is, Equation (13), U and V can be estimated.

However, in our travel tour dataset, the original ratings are not binary but ordinal.
Thus, we need to binarize the original ordinal ratings before training the LPMF model.
In fact, some research [Pan et al. 2008; Yang et al. 2011] has shown that the binariza-
tion can yield better recommendation performances in terms of relevance and accu-
racy [Herlocker et al. 2004]. We are interested in investigating this potential for our
travel recommendations. Specifically, a rating Rij is considered as positive if it is equal
to or greater than 1. However, in our travel tour dataset, there are no negative ratings
available. Actually, in many recommendation applications, such as YouTube.com and
Epinions.com, negative ratings may be extremely few or completely missed because
users are much less inclined to give negative ratings for items they dislike than pos-
itive ratings for items they like, as illustrated by Marlin and Zemel [2007, 2009]. To
this end, we adopt the User-Oriented Sampling approach in Pan et al. [2008; Pan and
Scholz 2009] to get the negative ratings. Basically, if a user has rated more items (i.e.,
travel packages) with positive ratings, those items that she/he has not rated positively
could be rated as negative with higher probability. Overall, we control the number of
sampled negative ratings by setting the ratio of the number of negative ratings to the
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4:12 Y. Ge et al.

number of positive ratings, that is, α. For example, α = 0.1 means that the number of
negative ratings we sample is 10% of the number of positive ratings.

4.2. The vLPMF Model

Similar to the vPMF model, we first represent user cost preference with a two-
dimensional vector. Then we incorporate the cost information into the LPMF model as

P(Rij = 1|Ui, Vj) = S(CUi , CVj) · σ(UT
i Vj) = S(CUi , CVj)

1 + e−UT
i Vj

, (14)

P(Rij = 0|Ui, Vj) = 1 − P(Rij = 1|Ui, Vj) = 1 + eUT
i Vj − S(CUi , CVj)

1 + eUT
i Vj

. (15)

Here, the similarity S(CUi , CVj) needs to be set within the range [0, 1] in order to main-
tain that the conditional probability is within the range [0, 1]. Thus, the similarity
function defined in Section 3.1, that is, S(CUi , CVj) = (2 − ||CUi − CVj ||2)/2, is also
applicable here.

Given the preceding formulation, we can get the log of posterior distribution over U,
V, and CU as

ln p(U, V|R, σ 2
U , σ 2

V , CV , σ 2)

=
N∑

i=1

M∑
j=1

Iij{Rij ln(S(CUi , CVj)σ (UT
i Vj))

+ (1 − Rij) ln(1 − S(CUi , CVj)σ (UT
i Vj))}

− 1
2σ 2

U

N∑
i=1

UT
i Ui − 1

2σ 2
V

M∑
j=1

VT
j Vj

− 1
2

(ND ln σ 2
U + MD ln σ 2

V) + C. (16)

We search the local maximum of the objective function, that is, Equation (16), by per-
forming gradient ascent in Ui (1 ≤ i ≤ N), Vj (1 ≤ j ≤ M) and CUi (1 ≤ i ≤ N). To save
space, we omit the details of partial derivatives.

4.3. The gLPMF Model

With the two-dimensional Gaussian distribution for modeling user cost preference,
that is, Equation (8), we update Equations (14) and (15) as

P(Rij = 1|Ui, Vj) = SG(CVj ,G(CUi)) · σ(UT
i Vj) = SG(CVj ,G(CUi))

1 + e−UT
i Vj

,

P(Rij = 0|Ui, Vj) = 1 − P(Rij = 1|Ui, Vj) = 1 + eUT
i Vj − SG(CVj ,G(CUi))

1 + eUT
i Vj

,

where SG(CVj ,G(CUi)) is defined in Equation (8). Here we also constrain the similar-
ity SG(CVj ,G(CUi)) to be within the range [0, 1]. To apply such a constraint, we limit
the common variance, that is, σ 2

CU
in Equation (8), to a specific range, which will be

discussed in Section 6.
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Then the log of the posterior distribution over U, V, and μCU can be updated as

lnp(U, V, μCU |R, σ 2
U , σ 2

V , σ 2
CU

, σ 2, CV)

=
N∑

i=1

M∑
j=1

Iij[ Rij ln SG(CVj ,G(CUi))σ (UT
i Vj)

+ (1 − Rij) ln(1 − SG(CVj ,G(CUi))σ (UT
i Vj))]

− 1
2σ 2

CU

N∑
i=1

M∑
j=1

Iij(CVj − μCUi
)T(CVj − μCUi

)

− 1
2σ 2

U

N∑
i=1

UT
i Ui − 1

2σ 2
V

M∑
j=1

VT
j Vj − 1

2
[ (

N∑
i=1

M∑
j=1

Iij) ln σ 2

+ (

N∑
i=1

M∑
j=1

Iij) ln σ 2
CU

+ ND ln σ 2
U + MD ln σ 2

V ] + C . (17)

Finally we search the local maximum of the objective function, that is, Equation (17),
by performing gradient ascent in Ui (1 ≤ i ≤ N), Vj (1 ≤ j ≤ M), and μCUi

(1 ≤ i ≤ N).
To predict an unknown rating, for example, Rij, as positive or negative with an

LPMF, vLPMF, or gLPMF model, we compute the conditional probability P(Rij = 1)
with the learned Ui, Vj, CUi , or μCUi

. If P(Rij = 1) is greater than 0.5, we predict Rij as
positive; otherwise, we predict Rij as negative. In practice, we can also rank all items
based on the probability of being positive for a user and recommend the top items to
the user.

The computational complexity of LPMF, vPMF, or gPMF is also linear with the num-
ber of available ratings for training. We also divide the training set into subbatches and
update all latent features subbatch by subbatch.

5. COST-AWARE MMMF MODELS

In this section, we propose the cost-aware MMMF models after briefly introducing the
classic MMMF model. For the MMMF model and its cost-aware extensions, we also
take binary ratings as input.

5.1. The MMMF Model

MMMF [Rennie and Srebro 2005; Srebro et al. 2005] allows an unbounded dimension-
ality for the latent feature space via limiting the trace norm of X = UTV. Specifically,
given a matrix R with binary ratings, we minimize the trace norm1 matrix X and the
hinge loss as

||X||∑ + C
∑

ij

Iijh(XijRij), (18)

1Also known as the nuclear norm and the Ky-Fan n-norm.
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4:14 Y. Ge et al.

where C is a trade-off parameter and h(·) is the smooth hinge loss function [Rennie
and Srebro 2005] as

h(z) =
⎧⎨
⎩

1
2 − z, if x ≤ 0,

1
2 (1 − z)2, if 0 < x < 1,

0, if x ≥ 1 .

Note that for the MMMF model, we denote the positive rating as 1, and the negative
rating as −1, instead of 0. By minimizing the objective function, that is, Equation (18),
we can estimate U and V. In addition, we adopt the same methods as described in
Section 4.1 to binarize the original ordinal ratings and obtain negative ratings.

5.2. The vMMMF Model

To incorporate both user and item cost information into MMMF model, we extend the
smooth hinge loss function with the two-dimensional user cost vector as

h(Xij, CUi , CVj , Rij) = h
(
S(CUi , CVj)XijRij

)
. (19)

Then we can update the objective function, that is, Equation (18), as

||X||∑ + C
∑

ij

Iijh
(
S(CUi , CVj)XijRij

)
. (20)

Here we can have different similarity measurements for S(CUi , CVj), but we need to
constrain the similarity S(CUi , CVj) to be nonnegative; otherwise, the symbol of XijRij
may be changed by S(CUi , CVj). To this end, we still use the similarity function defined
in Section 3.1 to compute the similarity.

To solve the minimization problem in Equation (20), we adopt the local search
heuristic as suggested in Rennie and Srebro [2005], where it was shown that the min-
imization problem in Equation (20) is equivalent to

G = 1
2

(||U||2F + ||V||2F) +
C

∑
ij

Iijh
(
S(CUi , CVj)(U

T
i Vj)Rij

)
. (21)

In other words, instead of searching over X, we search over pairs of matrices (U, V),
as well as the set of user cost vectors CU = {CU1 , · · · , CUN } to minimize the objective
function, that is, Equation (21). Finally, we turn to the gradient descent algorithm to
solve the optimization problem in Equation (21), as used in Rennie and Srebro [2005].

5.3. The gMMMF Model

Moreover, we extend the smooth hinge loss function with the two-dimensional Gaus-
sian distribution, that is, Equation (8), as

h(Xij,G(CUi), CVj , Rij) = h
(
N (CVj |μCUi

, σ 2
CU

I)XijRij

)
. (22)
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Here, N (CVj |μCUi
, σ 2

CU
I) is positive naturally because it is a probability density func-

tion. Then, similar to Equation (21), we can derive a new objective function:

G = 1
2

(||U||2F + ||V||2F) +
C

∑
ij

Iijh
(
N (CVj |μCUi

, σ 2
CU

I)(UT
i Vj)Rij

)
. (23)

To solve this problem, we also adopt the gradient descent algorithm as used for the
vMMMF model.

To predict an unknown rating, such as Rij, with MMMF, we compute UT
i Vj. If UT

i Vj
is greater than a threshold, Rij is predicted as positive; otherwise, Rij is predicted as
negative. With vMMMF and gMMMF, we predict an unknown rating as positive or
negative by thresholding S(CUi , CVj)U

T
i Vj or N (CVj |μCUi

, σ 2
CU

I)UT
i Vj in the same way.

Of course, there are other methods [Rennie and Srebro 2005; Srebro et al. 2005] for
deciding the final predictions, but we adopt the preceding simple way, because this is
not the focus of this article.

The computational complexity of MMMF, vMMMF, or gMMMF is also linear with the
number of available ratings for training. Here, we adopt the same strategy to speed up
the training processing.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the cost-aware collaborative filtering
methods on real-world travel data for travel tour recommendation.

6.1. The Experimental Setup

Experimental Data. The travel tour dataset used in this article is provided by a
travel company. In the dataset, there are more than 200,000 expense records start-
ing from the beginning of 2000 to October 2010. In addition to the Customer ID and
Travel Package ID, there are many other attributes for each record, such as the cost
of the package, the travel days, the package name and some short descriptions of the
package, and the start date. Also, the dataset includes some information about the
customers, such as age and gender. From these records, we are able to obtain the in-
formation about users (tourists), items (packages), and user ratings. Moreover, we are
able to know the financial and time cost for each package from these tour logs. Instead
of using explicit ratings (e.g., scores from 1 to 5), which is actually not available in our
travel tour data, we use the purchasing frequency as the implicit rating. Actually, the
purchasing frequency has been widely used for measuring the utility of an item for
a user [Panniello et al. 2009] in the transaction-based recommender systems [Huang
et al. 2004, 2005; Pan et al. 2008; Panniello et al. 2009]. Since a user may purchase
the same package multiple times for her/his family members and many local travel
packages are even consumed multiple times by the same user, there are still a lot of
implicit ratings larger than 1, while over 60% of implicit ratings are 1.

Tourism data is naturally much sparser than movie data. For instance, a user may
watch more than 50 movies each year, while there are not many people who will travel
more than 50 times every year. In fact, many tourists only have three or five travel
records in the dataset. To reduce the challenge of sparseness, we simply ignore users
who have traveled less than four times as well as packages which have been purchased
less than four times. After this data preprocessing, we have 34,007 pairs of ratings with
1,384 packages and 5,724 users. Thus, the sparseness of this data is still higher than
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4:16 Y. Ge et al.

Table I. Some Characteristics of Travel Data

Statistics User Package
Min Number of Rating 4 4
Max Number of Rating 62 1,976

Average Number of Rating 5.94 24.57

Table II. The Notations of 9 Collaborative Filtering Methods

PMF Probabilistic Matrix Factorization
vPMF PMF + Vector-based Cost Representation
gPMF PMF + Gaussian-based Cost Representation
RLFM Regression-based Latent Factor Model for Gaussian response
LPMF Logistic Probabilistic Matrix Factorization
vLPMF LPMF + Vector-based Cost Representation
gLPMF LPMF + Gaussian-based Cost Representation
LRLFM Regression-based Latent Factor Model for Binary response
MMMF Maximum Margin Matrix Factorization
vMMMF MMMF + Vector-based Cost Representation
gMMMF MMMF + Gaussian-based Cost Representation

the famous Movielens dataset2 and Eachmovie3 datasets. Finally, some statistics of
the item-user rating matrix of our travel tour data are summarized in Table I.

Experimental Platform. All the algorithms were implemented in MatLab2008a. All
the experiments were conducted on a Windows 7 with Intel Core2 Quad Q8300 and
6.00GB RAM.

6.2. Collaborative Filtering Methods

We have extended three different collaborative filtering models with two ways of repre-
senting user cost preference. Thus, we have in total nine collaborative filtering models
in this experiment. Also, we compare our extended cost-aware models with regression-
based latent factor models (RLFM) [Agarwal and Chen 2009], which take the cost
information of packages as item features and incorporate such features into the ma-
trix factorization framework. In Agarwal and Chen [2009], two versions of RLFM were
proposed for both Gaussian and binary response. In the experiment of this article,
both of them are used as additional baseline methods. To present the experimental
comparisons easily, we denote these methods with acronyms in Table II.

6.3. The Details of Training

First, we train the PMF model and its extensions with the original ordinal ratings.
For the PMF model, we empirically specify the parameters λU = 0.05 and λV = 0.005.
For the vPMF and gPMF models, we use the same values for λU and λV , together with
λCU = 0.2 for the gPMF model. We specify σ 2

CU
= 0.09 for the gPMF model in the

following. Also, we remove the global effect [Liu et al. 2010b] by subtracting the aver-
age rating of the training set from each rating before performing PMF-based models.
Moreover, we initialize the cost vector (e.g., CUi ) or the mean of the two-dimensional
Gaussian distribution (e.g., μCUi

) for a user, with the average cost of all items rated by
this user, while user/item latent feature vectors are initialized randomly.

2http://www.cs.umn.edu/Research/GroupLens
3HP retired the EachMovie dataset.
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Second, we train LPMF, MMMF, and their extensions with the binarized ratings.
We set different values for ratio α in order to empirically examine how the ratio affects
the performances of LPMF, MMMF, and their extensions. For the LPMF-based models,
the parameters are empirically specified as σ 2

U = 0.85 and σ 2
V = 0.85. In addition, σ 2

CU
is set as 0.3 for the gLPMF model in order to constrain SG(CVj ,G(CUi)) to be within
the range [0,1], as mentioned in Section 4.3. For the MMMF-based approaches, the
parameters are empirically specified as C = 1.8, and σ 2

CU
= 0.09 for gMMMF. The

cost vectors or the means of the two-dimensional Gaussian distribution of users and
the user/item latent feature vectors are initialized in the same way as the PMF-based
approaches.

Finally, we use cross-validation to evaluate the performance of different methods.
We split all original ratings or positive ratings into two parts with a split ratio of
90/10. 90% of original or positive ratings are used for training, and 10% of them are
used for testing. For each user-item pair in the testing set, the item is considered
relevant to the user in this experiment. After getting the 90% of positive ratings, we
sample the negative ratings with the set ratio α. We conduct the splitting five times
independently and show the average results on five testing sets for all comparisons.
In addition, we stop the iteration of each approach by limiting the same maximum
number of iterations, which is set as 60 in this experiment.

6.4. Validation Metrics

We adopt Precision@K and mean average precision (MAP) [Herlocker et al. 2004] to
evaluate the performances of all competing methods listed in Section 6.2. Moreover,
we use root mean square error (RMSE) and cumulative distribution (CD) [Koren 2008]
to examine performance of the PMF-based methods from different perspectives, while
both RMSE and CD are less suitable for evaluating LPMF-based and MMMF-based
models with the input of binary ratings.

Precision@K is calculated as

Precision@K =
∑

Ui∈U |TK(Ui)|∑
Ui∈U |RK(Ui)| , (24)

where RK(Ui) are the top-K items recommended to user i, TK(Ui) denotes all truly
relevant items among RK(Ui), and U represents the set of all users in a test set. MAP
is the mean of average precision (AP) over all users in the test set. AP is calculated as

APu =
∑N

i=1 p(i) × rel(i)
number of relevant items

, (25)

where i is the position in the rank list, N is the number of returned items in the list,
p(i) is the precision of a cut-off rank list from 1 to i, and rel(i) is an indicator func-
tion equaling 1 if the item at position i is a relevant item; 0 otherwise. The RMSE is
defined as

RMSE =
√∑

ij
(
rij − r̂ij

)2

N
, (26)

where rij denotes the rating of item j by user i, r̂ij denotes the corresponding rating
predicted by the model, and N denotes the number of tested ratings.

CD [Koren 2008] is designed to measure the qualify of top-K recommendations. CD
measurement could explicitly guide people to specify K in order to contain the most
interesting items in the suggested top-K set with certain probability. In the following,
we briefly introduce how to compute CD with the testing set (more details about this
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Table III. A Performance Comparison (10D Latent
Features & α = 0.1)

Precision@5 Precision@10 MAP
PMF 0.0265 0.0154 0.0689

RLFM 0.0271 0.0167 0.0695
vPMF 0.0285 0.0181 0.0718
gPMF 0.0301 0.0193 0.0811
LPMF 0.0482 0.0339 0.1385

LRLFM 0.0486 0.0338 0.1394
vLPMF 0.0497 0.0342 0.1420
gLPMF 0.0501 0.0351 0.1460
MMMF 0.0545 0.0408 0.1571
vMMMF 0.0552 0.0411 0.1606
gMMMF 0.0558 0.0413 0.1629

validation method can be found in Koren [2008]). First, all the highest ratings in the
testing set are selected. Assume that we have M ratings with the highest rating. For
each item i with the highest rating by user u, we randomly select C additional items
and predict the ratings by u for i and other C items. Then, we order these C + 1 items
based on their predicted ratings in decreasing order. There are C + 1 different possible
ranks for item i, ranging from the best case where none (0%) of the random C items
appear before item i, to the worst case where all (100%) of the random C items appear
before item i. For each of those M ratings, we independently draw the C additional
items, predict the associated ratings, and derive a relative ranking (RR) between 0%
and 100%. Finally, we analyze the distribution of overall M RR observations and es-
timate the cumulative distribution (CD). In our experiments, we specify C = 200 and
obtain 761 RR observations in total.

6.5. The Performance Comparisons

In this section, we present comprehensive experimental comparisons of all the meth-
ods with four validation measurements.

First, we examine how the incorporated cost information boosts different models in
terms of different validation measurements. Table III shows the comparisons of all
methods in terms of Precision@K and MAP. In Table III, the dimension of latent fac-
tors (e.g., Ui, Vj) is specified as 10 and ratio α is set as 0.1 for the sampling of negative
ratings. Performances in terms of Precision@K are evaluated with different K values,
that is, K = 5 and K = 10. For example, Precision@5 of vPMF and gPMF is increased
by 7.54% and 13.58%, respectively. MAP of vPMF and gPMF is increased by 4.21%
and 17.71%, respectively. Similarly, vLPMF (gLPMF) and vMMMF (gMMMF) outper-
form the LPMF, and MMMF models in terms of Precision@K and MAP. Also, vPMF
(gPMF) and vLPMF (gLPMF) result in better performances than RLFM and LRLFM.
In addition, we observe that MMMF, LPMF, and their extensions produce much bet-
ter results than PMF and its extensions in terms of Precision@K and MAP. There are
two main reasons why LPMF-based methods and MMMF-based methods perform bet-
ter than PMF-based methods. First, the lost functions of LPMF and MMMF are more
suitable for travel package data, because over 60% of known ratings are 1. Second,
sampled negative ratings are helpful because the unknown ratings are actually not
missed at random. For example, if one user has not consumed one package so far, this
probably tells us that this user does not like this package. The sampled negative rat-
ings somehow leverage this information and contribute to the better performance of
LPMF-based and MMMF-based methods.
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Table IV. A Performance Comparison (30D Latent
Features & α = 0.1)

Precision@5 Precision@10 MAP
PMF 0.0271 0.0167 0.0704

RLFM 0.0280 0.0175 0.0714
vPMF 0.0291 0.0184 0.0752
gPMF 0.0309 0.0194 0.0813
LPMF 0.0485 0.034 0.1355

LRLFM 0.0489 0.0341 0.1397
vLPMF 0.0498 0.0343 0.1423
gLPMF 0.0503 0.0354 0.1468
MMMF 0.0618 0.0472 0.1723
vMMMF 0.0629 0.0480 0.1737
gMMMF 0.0638 0.0487 0.1750

Table V. A Performance Comparison in Terms of
RMSE

PMF RLFM vPMF gPMF
10D Latent Features

RMSE 0.4981 0.4963 0.4951 0.4932
30D Latent Features

RMSE 0.4960 0.4928 0.4933 0.4913

Fig. 4. A performance comparison in terms of CD (10D latent features).

Then we make the parallel comparisons in Table IV, where the dimension of latent
factors is specified as 30 and α = 0.1. By comparing Table IV with Table III, we find
that increasing the dimension of latent factors could generally boost the performance
of all nine methods. Furthermore, in both Table IV and Table III, the two-dimensional
Gaussian distribution for modeling user cost preference leads to better results than
the cost vector. All these results show that it is helpful to consider the cost informa-
tion for travel recommendations and the way of representing user cost preference may
influence the performance of cost-aware models.

For PMF-based methods, we also adopt RMSE and CD to evaluate their perfor-
mances because they produce numerical predictions for unknown ratings. A perfor-
mance comparison of PMF, vPMF, and gPMF with 10-dimensional and 30-dimensional
latent features is shown in Table V. Also, we compare the performances of PMF-based
models using the CD metric introduced in Section 6.4. Figure 4 shows the cumulative
distribution of the computed percentile ranks for the three models over all 761 RR
observations. Note that we use 10-dimensional latent features in Figure 4. As can be
seen, both vPMF and gPMF models outperform the competing model, that is, PMF
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Fig. 5. A local performance comparison in terms of CD (10D latent features).

Fig. 6. A performance comparison in terms of CD (30D latent features).

Fig. 7. A local performance comparison in terms of CD (30D latent features).

model. For example, considering point 0.1 on the x-axis, the CD value for gPMF at this
point suggests that if we recommend the top-20 ones from randomly-selected 201 pack-
ages, approximately at least one package matches user interest and cost expectation
with a probability of 53%. Since people are usually more interested in the top-5 or even
top-3 packages, out of 201 packages, we zoom in on the head of the x-axis, which repre-
sents the top-K recommendations in a more detailed way. As shown in Figure 5, a more
clear difference can be observed. For example, the gPMF model has a probability of 0.5
to suggest a highest-rated package before the other 198 packages. In other words, if we
use gPMF to recommend the top-2 packages out of 201 packages, we can match user
needs with a probability of 0.5. This outperforms PMF by over 60%. Also, vPMF leads
to better performance than PMF. In addition, we show more comparisons in Figures 6
and 7 with 30-dimensional latent features, where a similar trend can be observed.
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Table VI. A Performance Comparison (10D Latent
Features & α = 0.3)

Precision@5 Precision@10 MAP
LPMF-based Methods

LPMF 0.0466 0.0329 0.1325
vLPMF 0.0472 0.033 0.1336
gLPMF 0.0475 0.034 0.1339

MMMF-based Methods
MMMF 0.053 0.0369 0.1507
vMMMF 0.0537 0.0369 0.1525
gMMMF 0.0541 0.0372 0.1534

Table VII. A Performance Comparison (30D Latent
Features & α = 0.3)

Precision@5 Precision@10 MAP
LPMF-based Methods

LPMF 0.0496 0.0340 0.1418
vLPMF 0.0497 0.0341 0.1422
gLPMF 0.0502 0.0355 0.1430

MMMF-based Methods
MMMF 0.0557 0.0376 0.1555
vMMMF 0.0563 0.0378 0.1585
gMMMF 0.0565 0.0379 0.1588

Furthermore, we conduct a statistical significance test to show whether the per-
formance improvement of cost-aware latent factor models is statistically significant.
We do the statistical significance test based on the results in Tables III, IV, VI,
and VII. Specifically, we first get the difference between the performance measurement
of one cost-aware model (e.g., vPMF or gPMF) and the performance measurement of
the corresponding original model (i.e., PMF, LPMF, or MMMF). For example, from
Table III, we get the difference between Precision@5 of vPMF and Precision@5 of PMF,
which is 0.0285 − 0.0265 = 0.002, and the different between Precision@5 of gPMF
and Precision@5 of PMF, which is 0.0301 − 0.0265 = 0.0036. Along this line, from
Table III, we get 18 samples of difference between the performance measurements of
cost-aware models and those of original models (i.e., PMF, LPMF, and MMMF). And
from Tables III, IV, VI, and VII, we get a total of 60 samples of difference between the
performance measurements of cost-aware models and those of original models. While
half of these samples are for cost-aware models with vector-based cost representation,
half of them are for cost-aware models with Gaussian-based cost representation. The
statistical significance test is conducted for each half of these 60 samples separately
in order to examine the different statistical significance of improvement by different
cost representations in cost-aware latent factor models. More specifically, the null hy-
pothesis of each test is that there is no significant difference between the mean of the
samples of difference and zero. For the 30 samples of difference for vector-based cost
representation, the sample mean is around 0.0015; the sample standard deviation is
around 0.0016. Then, we can derive that the one-tailed p-value is less than 0.0001.
Thus, we can conclude that we should reject the null hypothesis, and the mean of the
samples of difference is significantly larger than zero at the significance level of 0.01.
For the another half of the 60 samples for Gaussian-based cost representation, we gain
the same conclusion.

In addition, we further conduct a similar statistical significance test by using the rel-
ative difference between performance measurements of cost-aware models and those
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Fig. 8. Performances with different α (10D latent features).

of original models. For example, from Table III, we get the relative difference be-
tween Precision@5 of vPMF and Precision@5 of PMF as (0.0285 − 0.0265)/0.0265 =
0.07547. After obtaining all 60 samples of such relative difference, we conduct a similar
statistical test on each half of these samples. The null hypothesis of each test is that
there is no significant difference between the mean of samples of relative difference
and μ0. μ0 is the assumed population mean of relative difference of performance mea-
surements. For the vector-based cost representation, the conclusion is that the mean
of relative difference is significantly larger than 0.018 at the significance level of 0.05.
For the Gaussian-based cost representation, the conclusion is that the mean of relative
difference is significantly larger than 0.037 at the significance level of 0.05.

6.6. The Performances with Different Values of α and D
As we mentioned in Section 6.3, ratio α may influence the results of LPMF- and
MMMF-based methods. To examine this point, we set the ratio α as α = 0.3 and
produce another set of results by LPMF- and MMMF-based methods, as shown in Ta-
ble VI, where the dimension of latent factors is set as 10. By comparing with Table III,
we can observe that increasing α from 0.1 to 0.3 actually causes the performances
of LPMF- and MMMF-based methods to generally decrease. A similar trend can be
observed in Table VII, where the dimension of latent factors is 30. This is probably
caused by the increased negative ratings by sampling being noisy or not accurate.
Though more accurate training ratings should generally yield better results, more
noisy or inaccurate negative ratings may lead to biased parameter estimations and
worse predictions. On the contrary, fewer but accurate sampled negative ratings may
result in better performance. To further examine this point, we show the performance
of MMMF-based models with a series of α values in Figure 8, where the dimension
of latent factors is also 10. As can be seen in Figure 8, the performances in terms of
Precision@5 and MAP first increase and then decrease as ratio α is increased from 0
to 1.

By comparing Table III and Table IV, we can observe that increasing the dimen-
sion of latent factors tends to lead to better performance. To further investigate this
observation, in Figure 9, we show the Precision@10 of latent factor models versus the
dimension of latent features. As can be seen, Precision@K of all methods gradually
increases when the dimension of latent features becomes larger.

6.7. The Performances on Different Users

For most collaborative filtering models, the prediction performance for users with dif-
ferent numbers of observed ratings usually varies a lot. Particularly, performances on
users with very few ratings may be quite bad for traditional collaborative filtering
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Fig. 9. Performances with different D (α = 0.1).

Table VIII. Performances on Different Users (10D Latent Features &
α = 0.1)

Groups “1–5” “6–10” “11–20” “21–30” “>30”
PMF

Precision@5 0.0211 0.0295 0.0482 0.072
MAP 0.0586 0.0784 0.0902 0.0958 0.0054

vPMF
Precision@5 0.0223 0.0306 0.0498 0.096

MAP 0.0573 0.0865 0.0959 0.1228 0.005
gPMF

Precision@5 0.0259 0.0308 0.053 0.096
MAP 0.0752 0.086 0.0937 0.1154 0.0045

LPMF
Precision@5 0.036 0.0488 0.0738 0.1419 0.0857

MAP 0.1109 0.1466 0.1836 0.2118 0.1722
vLPMF

Precision@5 0.0386 0.0496 0.0744 0.1419 0.0857
MAP 0.1186 0.1471 0.1863 0.2120 0.2613

gLPMF
Precision@5 0.0391 0.0500 0.0748 0.1426

MAP 0.1191 0.1479 0.1869 0.2128 0.2621
MMMF

Precision@5 0.0483 0.0521 0.0719 0.0786 0.0889
MAP 0.143 0.1626 0.1766 0.1436 0.1266

vMMMF
Precision@5 0.0499 0.0525 0.0694 0.0857 0.1111

MAP 0.1487 0.1631 0.1775 0.1751 0.2276
gMMMF

Precision@5 0.0502 0.0527 0.0695 0.0860 0.1117
MAP 0.1488 0.1636 0.1782 0.1754 0.2279

models. However, the user and item cost information play as an effective constraint for
tuning prediction via the similarity weight. Thus, our extended models with cost infor-
mation are expected to perform better on users with fewer ratings than the traditional
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Fig. 10. The performances on different users (10D latent features).

Table IX. Performances with Tail Users/Packages (30D
Latent Features & α = 0.1)

Precision@5 Precision@10 MAP
PMF 0.0253 0.0148 0.0644
vPMF 0.0254 0.0157 0.0658
gPMF 0.0265 0.0164 0.0663
LPMF 0.043 0.0305 0.1286
vLPMF 0.0441 0.0324 0.1292
gLPMF 0.0462 0.0339 0.1315
MMMF 0.0553 0.0416 0.1651
vMMMF 0.0561 0.0431 0.1668
gMMMF 0.0578 0.0454 0.1683

models. In order to examine this potential, we first group all users based on the number
of observed ratings in the training set and then compare the performances of different
methods over different user groups. Specifically, users are grouped into five classes: 1–
5, 6–10, 11–20, 21–30, and > 30. For example, the 1–5 group denotes that the number
of observed ratings per user in the training set is between 1 and 5.

Table VIII shows the performance of different methods in terms of Precision@K and
MAP. In Table VIII, the dimension of latent factors is 10, and ratio α is 0.1. As can be
seen in Table VIII, our extended models with the incorporated cost consistently outper-
form traditional methods. For example, for the 1–5 group, MAP of gPMF, gLPMF, and
gMMMF is increased by 13.26% on average. In addition, the comparisons of RMSE
among PMF-based methods are shown in Figure 10, where the dimension of latent
factors is also 10 and the RMSE is the value of final iteration for each method.

Performance with Tail Packages and Users. In Table IX, we demonstrate the per-
formance of different methods with all tail users and packages. Tail users are those
who have consumed less than four different travel packages. Tail packages are those
which have been purchased by less than four different users. These tail users or pack-
ages usually contribute a lot to the high sparseness of recommendation data [Park and
Tuzhilin 2008], and eventually cause the average performance of collaborative filter-
ing methods to decrease [Park and Tuzhilin 2008]. As shown in Table IX, Precision@K
or MAP are generally lower than those in Table IV. While the long tail is a general and
important topic in the recommender systems field, it is not the focus of this article.

6.8. The Learned User Cost Information

By training cost-aware latent factor models, we can not only produce better recom-
mendation result, as shown in Sections 6.7 and 6.5, but also learn latent user cost
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Fig. 11. Financial cost observations and learned cost features of 40 users.

information. In the following, we illustrate user cost information learned by our mod-
els and demonstrate how learned user cost information helps with travel package
recommendation and customer clustering or segmentation.

Since we normalize the package cost vectors into [0, 1] before feeding into our mod-
els, the learned user cost features (CU and μCU ) via our models have a similar scale
as normalized package cost vectors. To visualize the learned CU , we first restored the
scale of user cost features (CU and μCU ) by using the inverse transformation of Min-
Max normalization. Figure 11 shows the financial cost feature of CU by the vPMF
model for randomly-selected 40 users, where each user corresponds to a column of
vertically-distributed points. For example, for the rightmost vertical points, the star
represents the learned user financial cost feature, and the dots represent the financial
cost of packages, which are rated by this specific user in the training set. As we can
see, the learned user financial cost feature is relatively representative. However, there
is still obvious variance among the cost features of packages by some users. That is
why we apply the Gaussian distribution to model user cost preference. In Figure 12,
we visualize the learned μCU by gPMF for randomly-selected 12 users. For each sub-
figure of Figure 12, we directly plot the learned two-dimensional μCUi

(without inverse
transformation) for individual users and all normalized two-dimensional cost vectors
of packages, which are rated by the user in the training set. Again, μCUi

is represented
as the star and the dots represent the package cost vector.

The learned user cost information, together with the latent features of user and
packages, can help recommend packages, which are more similar to user cost pref-
erence, and can match user general interest at the same time. To demonstrate this
point, we randomly selected ten users (denoted as u1, · · · , u10) from the test set. For
each user, we recommend the top-5 travel packages (denoted as 1st package, 2nd pack-
age, 3rd package, 4th package, and 5th package) based on the predicted ratings with
two methods (i.e., LPMF and vLPMF). For each user ui and package p recommended to
this user by individual method, we compute the similarity (i.e., specifically, cosine sim-
ilarity) between the cost of this package p and the learned cost information of this user,
and the similarity (i.e., specifically, cosine similarity) between the latent feature of this
user and the latent feature of this package. The learned cost information of a user here
is the two-dimensional user cost vector learned via the vLPMF model, and the latent
feature of a user or a package is the D-dimensional vector learned by LPMF or vLPMF.
Since we have ten users, for a single method (LPMF or vLPMF), we can get ten groups
of these two types of similarity for all 1st packages recommended to different users.
Note that the 1st package may be different for different users and different meth-
ods. For the 2nd, 3rd, 4th, or 5th packages, we similarly can get ten groups of these
two types of similarity. Then, for the individual method, we average the two types of
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Fig. 12. Cost observations and learned Gaussian parameters of 12 users.

Table X. Comparisons of Similarity of Cost and Latent Features

1st Pkg 2nd Pkg 3rd Pkg 4th Pkg 5th Pkg
LPMF&Ave. Simi. of Cost 0.421 0.398 0.407 0.376 0.299
vLPMF&Ave. Simi. of Cost 0.734 0.745 0.691 0.693 0.625

LPMF&Ave. Simi. of Latent Feature 0.876 0.813 0.799 0.787 0.776
vLPMF&Ave. Simi. of Latent Feature 0.869 0.802 0.784 0.773 0.765

similarity over all 1st packages recommended to different users. For the 2nd, 3rd, 4th,
and 5th packages, we get a similar average similarity of two types. Finally, we show the
results in Table X, where 1st Pkg means the first package. As can be see, the average
similarity of cost of vLPMF is generally larger than that of LPMF. For example, for the
1st package, the average similarity of cost for vLPMF is 0.734, which is much larger
than the corresponding one of LPMF, which is 0.421. For the average similarity of the
latent feature, vLPMF is quite similar as LPMF for packages ranked at different posi-
tions. To be more specific, we show the information of the 1st packages recommended to
three users in Table XI, where we also show the information of partial travel packages
consumed by these three users in the historical data. For instance, for user1, most
of her/his consumed travel packages in the past are priced between $20 and $100,
and the duration is between 1 and 2 days. Both 1st packages recommended by LPMF
andvLPMF should be very interesting to user1, because she/he showed her/his interest
in theme parks. However, the price and duration of the 1st package recommended via
LPMF model is $1,070 and 5 days, which are probably beyond user1’s financial and
time affordability. On the contrary, the price and duration of the 1st package recom-
mended via vLPMF clearly fall into the ranges identified from her/his travel history
(i.e., [20, 100] for price and [1Day, 2Days] for duration). Thus, there should be a better
chance that user1 will consume the 1st package recommended via vLPMF rather than
that via LPMF. For other users in Table XI, we can observe similar comparisons.
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Table XI. Recommended Packages and Consumed Packages of Three Users

User1 User2 User3
1st Pkg Disney Park: Leizhou Island: Japan Gourmet
(LPMF) ($1070,5 days) ($200, 2 days) Trip: ($1900, 5 days)
1st Pkg Xinhui Water: Fiji Island: Yunan Village Gourmet
(vLPMF) Park: ($50, 1 day) ($1500, 5 days) Trip: ($500, 2 days)
Consumed Changlong Water Hainai Island: Macau Gourmet
Pkgs Park: ($40,1 day) ($800, 4 days) Trip: ($200, 2 days)

Pearl Land: Bali Island: Taibei Gourmet
($80,2 day) ($1699, 6 days) Trip: ($458, 3 days)
Amusement Land: Hawaii Beach: Fuzhou Gourmet
($99,2 day) ($1999, 7 days) Trip: ($349, 2 days)
Orient Culture Maldives Island: Guangzhou Gourmet
Park: ($80,2 day) ($2000, 7 days) Trip:($399, 2 days)
Shunde Eco Rizhao: HongKong Gourmet
Park: ($20,1 day) ($700, 4 days) Trip: ($416, 2 days)

Table XII. Comparison of Variance

Results on Clu
C1 C2 C3 C4 C5 Average

Financial Variance 0.00091 0.00102 0.00079 0.00086 0.00114 0.000944
Time Variance 0.0292 0.0012 0.0321 0.0093 0.0125 0.0169

Results on Clu+
C1 C2 C3 C4 C5 Average

Financial Variance 0.00073 0.00105 0.00047 0.00090 0.00035 0.00070
Time Variance 0.0193 0.0009 0.0214 0.0098 0.0133 0.0129

The learned user latent features, for example Ui, with PMF, LPMF, or MMMF mod-
els, can be used to group users or customers. We argue that the learned user cost
information, in addition to user latent features, can improve customer clustering or
segmentation. In order to show this effect, we first cluster users with latent features
learned by PMF by representing each user with her/his latent feature vector. We use
a K-means algorithm to perform clustering and denote the clustering result as Clu.
Then, with the same clustering method, we cluster users with both user latent features
and user cost information, that is, CU or μCU , learned by vPMF and gPMF. Now each
user is represented by a vector containing her/his latent features and cost vector CUi or
μCUi

. We denote this clustering result as Clu+. However, there is no available bench-
mark to evaluate these two clustering results with traditional external clustering
validation measurements [Wu et al. 2009]. To this end, we leverage the explicit cost
information of items to make comparisons between these two clustering results. Specif-
ically, for each user within a cluster, we can get the average financial/time cost of all
travel packages, which are consumed by this user. After obtaining the average finan-
cial/time cost of each user of one cluster, we can get the variances of such average
financial/time costs of all users for this cluster. Table XII shows the comparisons of
these two clustering results in terms of such variance. Here, the number of clusters is
specified as 5 for the K-means algorithm, and C1 indicates cluster 1. Also in Table XII,
Clu+ is obtained by using μCU learned by gPMF in addition to user latent features. As
can be seen from Table XII, the average variance over five clusters of Clu+ is much less
than that of Clu. From this perspective, we can see that learned user cost information
improves results of customer clustering or segmentation.
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Table XIII. Comparison of Model Efficiency (10D Latent
Features)

PMF vPMF gPMF
Training Time (Sec) 3.411 4.894 10.878

LPMF vLPMF gLPMF
Training Time (Sec) 63.452 81.411 201.329

MMMF vMMMF gMMMF
Training Time (Sec) 82.306 98.187 187.250

Fig. 13. An illustration of the convergence of RMSEs (10D latent features).

6.9. An Efficiency Analysis

As stated in Section 3.3, the computational complexity of the proposed approaches is
linear with respect to the number of ratings. This indicates that the extended models
are theoretically scalable for very large data. Here, we would like to show the effi-
ciency of all the methods in this experiment. Table XIII shows the training time of all
nine models. Here, we used the 10-dimensional latent features. Since there is some
additional cost for computing similarity functions and updating cost vectors or param-
eters of Gaussian distribution for the six cost-aware models, more time is required
for these six models, for example, vMMMF and gMMMF. In addition, the Gaussian
distribution causes more time than the two-dimensional vector, because there is one
more regularization item caused by the Gaussian prior in the objective functions. But,
the computing time of cost-aware models is still linearly increasing as the number of
observed ratings increases, as discussed in Section 3.3. In addition, we show the con-
vergence of RMSEs on the test set for PMF-based methods in Figure 13. As can be
seen, vPMF and gPMF can quickly converge to relatively low RMSEs after the first 25
rounds of iterations.

To further speed up the computation of cost-aware models for big datasets, we may
leverage MapReduce to distribute the computing onto clusters. By using MapReduce
clusters, we can partition the data and arrange the computation to maximize data
locality and parallelism. For instance, as shown in Liu et al. [2010a], using MapReduce
can make the matrix factorization scalable to million-by-million matrices with billions
of nonzero values. Due to the focus of this article, we will not discuss this in detail.

7. CONCLUSION AND DISCUSSION

In this article, we studied the problem of travel tour recommendation by analyzing a
large amount of travel logs collected from a travel agent company. One unique charac-
teristic of tour recommendation is that there are different financial and time costs
associated with each travel package. Different tourists usually have different af-
fordability for these two aspects of cost. Thus, we explicitly incorporated observable
and unobservable cost factors into the recommendation models. Specifically, we first
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proposed two ways to model user cost preference. With these two ways of representing
user cost preference, we incorporated the cost information into three classic latent fac-
tor models for collaborative filtering, including the probabilistic matrix factorization
(PMF) model, the logistic probabilistic matrix factorization (LPMF) model, and the
maximum margin matrix factorization (MMMF) model. When applied to real-world
travel tour data, the extended PMF, LPMF, and MMMF models showed consistently
better performances for travel tour recommendation than classic PMF, LPMF, and
MMMF models which do not consider the cost information. Furthermore, the extended
MMMF and LPMF models lead to better performance improvement than the extended
PMF models. Finally, we have demonstrated that latent user cost information learned
by these models can help to perform customer segmentation for travel companies.

Discussion. People may argue that some dimensions of learned latent factors of
users/packages might somehow capture cost factors implicitly. However, it is hard to
identify which dimensions correspond to these cost factors. At the same time, in our
application (and in many others), the cost information is given explicitly, and it is every
natural to incorporate it into the model(s)—that is what we do in this article. Further-
more, through extensive experimentation, we showed that this additional information,
indeed, boosts the performance of collaborating filtering methods that do not take this
cost information into account.

As shown in Table IX, tail users/packages result in lower performances for different
collaborative filtering methods. Since the long tail is a major challenge in the recom-
mendation field and is not the focus of this article, we would like to study this topic for
travel package recommendations in the future.

Like cost information, time sensitivity is another important factor for travel pack-
age recommendations. For example, Orlando trips may be more attractive to people
in the Northeast of the U.S. during winter. However, since the focus of the article is
on incorporating economic indicators, such as costs, into recommendation models, we
would like to work on time sensitivity as a topic of future research.
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