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Abstract
Generating molecules with high binding affini-
ties to target proteins (a.k.a. structure-based drug
design) is a fundamental and challenging task in
drug discovery. Recently, deep generative mod-
els have achieved remarkable success in gener-
ating 3D molecules conditioned on the protein
pocket. However, most existing methods consider
molecular generation for protein pockets indepen-
dently while neglecting the underlying connec-
tions such as subpocket-level similarities. Sub-
pockets are the local protein environments of lig-
and fragments and pockets with similar subpock-
ets may bind the same molecular fragment (motif)
even though their overall structures are different.
Therefore, the trained models can hardly general-
ize to unseen protein pockets in real-world appli-
cations. In this paper, we propose a novel method
DrugGPS for generalizable structure-based drug
design. With the biochemical priors, we propose
to learn subpocket prototypes and construct a
global interaction graph to model the interactions
between subpocket prototypes and molecular mo-
tifs. Moreover, a hierarchical graph transformer
encoder and motif-based 3D molecule generation
scheme are used to improve the model’s perfor-
mance. The experimental results show that our
model consistently outperforms baselines in gen-
erating realistic drug candidates with high affini-
ties in challenging out-of-distribution settings.

1. Introduction
Structure-based drug design (SBDD), i.e., designing
molecules with high affinities to target protein pockets is one
critical and challenging task in drug discovery (Anderson,
2003; Blundell, 1996; Verlinde & Hol, 1994; Ferreira et al.,
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Figure 1. Illustration of our motivation. (a) Two proteins (PDB ID:
2avd and 1p1r) with low sequence similarity (≤10%) have similar
subpockets and bind to similar ligand fragments. 2avd is colored
yellow and 1p1r is color white. The subpockets are aligned and
highlighted with a red dashed box. (b) The molecular graphs of
ligands binding to protein 2avd and 1p1r. Similar fragments in the
subpockets are marked with green ovals.

2015; Jin et al., 2020b). Traditionally this has been achieved
with virtual screening that identifies candidate molecules
from molecular databases based on rules such as molecular
docking (Morris & Lim-Wilby, 2008; Pagadala et al., 2017)
and molecular dynamics simulations (Hansson et al., 2002;
Karplus & McCammon, 2002). However, such exhaustive
searches are time-consuming and infeasible to generate new
molecules not existing in the database. Recently, a line of
works leverage deep generative models to directly generate
3D molecules inside binding pockets (Luo & Ji, 2021; Liu
et al., 2022; Peng et al., 2022; Zhang et al., 2023b).

However, existing methods suffer from the generalization
issue. The amount of high-quality protein-ligand complex
data is rather limited and the target protein pocket may not
be in the training dataset. In practice, when unpredictable
events like COVID-19 occur, the generative models are re-
quired to generate molecules for new protein targets e.g.,
the main protease of SARS-CoV-2 (Zhang et al., 2020).
Moreover, only atom-level interactions are considered and
encoded in these works and the atom-by-atom generation
may result in invalid molecules with unrealistic 3D struc-
tures. More discussions are included in related works.

In this paper, we propose DrugGPS, a structure-based Drug
design method that is Generalizable with Protein Subpocket
prototypes to address the aforementioned challenges. Firstly,
an atom-level graph and a residue-level graph are con-
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structed to represent the binding context. A hierarchical
3D graph transformer is proposed to capture the hierarchi-
cal information. Secondly, to construct SBDD models that
generalize well to unseen target protein pockets, we incor-
porate an effective biochemical prior into our model design:
although two protein pockets might be dissimilar over-
all, they may still bind the same fragment if they share
similar subpockets (Kalliokoski et al., 2013). Subpockets
are defined as the local protein environment of the ligand
fragments in protein-ligand complexes (Eguida et al., 2022).
For example, in Figure. 1, two proteins (PDB ID: 2avd and
1p1r) with low sequence similarity (≤10%) have similar
subpockets and bind to similar ligand fragments. To cap-
ture the subpocket-level similarities/invariance among the
binding pockets, we propose to learn subpocket prototypes
and construct a global interaction graph to model the inter-
actions between subpocket prototypes and molecular motifs
(fragments) in the training process. To further highlight the
subpocket-motif interactions, we employ an efficient bind-
ing analysis tool BINANA (Young et al., 2022) to identify
polar contacts (hydrogen bonds). In the generation process,
the context representations are enriched with a global in-
formation fusion step and ligand molecules are generated
motif-by-motif. In experiments, to mimic the real-world
use case, we split the dataset based on sequence-similarity
and pocket-similarity and construct two out-of-distribution
(OOD) settings. Experiment results demonstrate that our
method can generalize well to unseen pockets in the test
set. The generated molecules not only show higher binding
affinities and drug-likeness but also contain more realistic
substructures than the state-of-the-art baseline methods. Our
key contributions include:

• In this paper, we propose DrugGPS, a structure-based
Drug design method that is Generalizable with Protein
Subpocket prototypes.

• A hierarchical 3D graph transformer is proposed to
encode both the atom- and residue-level information.

• We propose to construct the subpocket prototypes-
molecular motif interaction graph in the training pro-
cess. At the generation stage, molecules are generated
motif-by-motif with the global interaction information.

• Experiments show that our model consistently outper-
forms baselines on generating realistic drug candidates
with high affinities on challenging OOD settings.

2. Related Works
2.1. Molecule Generation

Recent years have witnessed the great success of deep gen-
erative models in molecule generation (Zhang et al., 2023a;
Lee et al., 2022; Xie et al., 2021; Yang et al.). These models

range from string-based (Gómez-Bombarelli et al., 2018)
and graph-based methods (Jin et al., 2018; Xie et al., 2021)
to recent 3D geometry-based methods (Gebauer et al., 2019;
Luo & Ji, 2021). To enhance the validity of the generated
molecules, some models adopt prior knowledge of molecu-
lar fragments, also known as motifs or rationales, as building
blocks to generate and optimize molecules (Jin et al., 2018;
2020a; Xie et al., 2021). However, the generated molecules
could hardly fit and bind to given pockets in practice if the
3D conditional information, e.g., the shape and chemical
properties of the protein pockets are neglected.

2.2. Structure-based Drug Design.

Structure-based drug design (SBDD) aims to directly gener-
ate 3D molecules binding to target protein pockets. LiGAN
(Ragoza et al., 2022) first uses 3D CNN to encode the
protein-ligand structures and generate ligands by atom fit-
ting and bond inference from the predicted atom densities.
Some follow-up works leverage graph neural networks to
encode the context information and sample atoms auto-
regressively (Luo & Ji, 2021; Liu et al., 2022; Peng et al.,
2022). For example, GraphBP (Liu et al., 2022) adopts
the framework of normalizing flow (Rezende & Mohamed,
2015) and constructs local coordinate systems to predict
atom types and relative positions; Pocket2Mol (Peng et al.,
2022) adopts the geometric vector perceptrons (Jing et al.,
2021) and the vector-based neural network (Deng et al.,
2021) as the context encoder. Some recent works also lever-
age fragment-based methods (Green et al., 2021; Powers
et al., 2022; Zhang et al., 2023b) or pretrained models (Long
et al., 2022) to generate more realistic molecules. For exam-
ple, (Powers et al., 2022) expands a small molecule fragment
into a larger drug-like molecule binding to a given protein
pocket. However, most existing methods suffer from the
generalization concern in practice where only low-quality
and deficient data is available. On the contrary, DrugGPS
leverage the priors of protein subpockets to build generaliz-
able models.

2.3. Generalizable Drug Discovery

The ability to successfully apply previously acquired knowl-
edge/data to new situations is vital to drug discovery (Ji
et al., 2022; Yang et al., 2022; Zhang et al., 2022b). To
this end, many works study drug discovery problems under
out-of-distribution settings. For example, MoleOOD (Yang
et al., 2022) builds generalizable molecule representation
learning models against distribution shifts by learning invari-
ant molecular substructure. PAR (Wang et al., 2021) uses
a meta-learning strategy for few-shot molecular property
prediction. MOOD (Lee et al., 2022) designs an out-of-
distribution molecule generation scheme with score-based
diffusion to explore chemical space. However, these meth-
ods can hardly be applied to the more challenging condi-
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tional molecule generation task, i.e., structure-based drug
design.

3. Methods
3.1. Overview

We first formalize the problem of structure-based drug de-
sign. Given a protein pocket-ligand complex, the 3D ge-
ometry of the ligand molecule can be represented as a set
of atoms Gmol = {(amol

i , rmol
i )}. The protein pocket

(i.e., binding site) can be similarly defined as Gpro =
{(apro

j , rproj )}. In Gmol and Gpro, amol
i and apro

j are one-
hot vectors indicating the atom types and rmol

i , rproj ∈ R3

are the 3D cartesian coordinate vectors. Formally, our objec-
tive is to learn a conditional generative model p(Gmol|Gpro)
that captures the underlying dependencies of pocket-ligand
pairs for 3D ligand molecule generation.

Specifically, we formulate the generation of molecules given
binding pocket as a sequential decision process. Let ϕ be the
generation model and Gmol

t be the intermediate molecule at
the t-th step, the generation process is defined as follows:

Gmol
t = ϕ(Gmol

t−1 ,Gpro), t > 1 (1)

Gmol
1 = ϕ(Gpro), t = 1. (2)

Note that we generate molecules motif-by-motif, i.e., a set
of atoms from the new motif are included into Gmol

t at
each step. Figure. 2(a) demonstrates the four main parts
in one generation step, including (a) context encoding and
focal motif selection, (b) next motif prediction, (c) motif
attachment prediction, and (d) rotation angle prediction.

In this section, we first introduce the motif extraction proce-
dure in Sec. 3.2. In Sec. 3.3 and Sec. 3.4, we will introduce
the hierarchical context encoder and the construction of a
global interaction graph, which are our main contributions
to model architecture. In Sec. 3.5 and Sec. 3.6 we intro-
duce the detailed generation procedures and derive the final
training objectives.

3.2. Motif Vocabulary Construction

Motif vocabulary construction aims to extract common
molecular motifs from ligand molecules in whole dataset
and construct a motif vocabulary VM = {Mi} for the
follow-up molecule generation. For the ease of motif
extraction, molecules can be represented as 2D graphs
Gmol = (V, E) with V as atoms set and E as covalent bonds
set. Similarly, a motifMi = (Vi, Ei) is defined as a molec-
ular subgraph. Each molecule can also be represented as a
set of motifs: V =

⋃
i Vi and E =

⋃
i Ei.

Figure. 3(a) shows the procedures to fragment molecules
and construct the motif vocabulary. To extract structural
motifs, we first decompose a molecule Gmol into molecular

substructures G1, · · · ,Gn by extracting and detaching all
the rotatable bonds that will not violate the chemical valid-
ity. A bond in a molecule is rotatable if cutting this bond
creates two connected components of the molecule, each
of which has at least two atoms. We select Gi as a motif if
its occurrence in the whole training set is more than τ . We
can select hyperparameter τ to control the size of the motif
vocabulary VM ranging from around 500 to over 2000. If
Gi is not selected as a motif, we further decompose it into
finer rings and bonds and select them as motifs. As the
bond length/angles in motifs are largely fixed, we employ
RDkit (Bento et al., 2020) to efficiently determine the 3D
structures of motifs and trains neural networks to predict
the torsion angles of rotatable bonds.

3.3. Hierachical Context Encoder

Inspired by the intrinsic hierarchical structure of protein
(Stoker, 2015), we propose a hierarchical context encoder
based on graph transformer (Min et al., 2022) to capture
the context information of binding sites. Specifically, it
includes an atom-level encoder and a residue-level encoder
as described below.

3.3.1. ATOM-LEVEL ENCODER

For the atom-level encoding, a context 3D graph Cat−1

is first constructed by connecting the Ka nearest neigh-
boring atoms in Gmol

t−1

⋃
Gpro. The atomic attributes are

firstly mapped to node embeddings h(0)
k with a linear trans-

formation layer. The edge embeddings eij are obtained
by encoding pairwise distances with Gaussian functions
(Schlichtkrull et al., 2018). The 3D graph transformer con-
sists of L Transformer layers (Vaswani et al., 2017). Each
Transformer layer has two parts: a multi-head self-attention
(MHA) module and a position-wise feed-forward network
(FFN). Particularly, in the MHA module of the l-th layer
(1 ≤ l ≤ L), the queries are derived from the current node
embeddings h

(l)
i while the keys and values from the re-

lational information r
(l)
ij = Concat(h

(l)
j , e

(l)
ij ) (Concat(·)

denotes concatenation) from neighboring nodes:

q
(l)
i = WQh

(l)
i , k

(l)
ij = WKr

(l)
ij , v

(l)
ij = WV r

(l)
ij , (3)

where WQ,WK and WV are learnable transformation ma-
trices. Then, in each head m ∈ {1, 2, . . . ,M} (M is the
total number of heads), the scaled dot-product attention
mechanism is applied:

headmi =
∑

j∈N (i)

Softmax

q
(l)
i

⊤
· k(l)

ij√
d

v
(l)
ij , (4)

where N (i) denotes the neighbors of the i-th atom in Cat−1

and d is the dimension size of embeddings. Finally, the
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Figure 2. (a) The illustration of one generation step including four parts in our motif-based ligand generation scheme. (b) The hierarchical
context encoder in DrugGPS. The global interaction information is further encoded into the subpocket embedding hc by a weighted GNN.
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Figure 3. (a) The illustration of molecular motif extraction. (b) The
sampled subpockets and subpocket prototypes. (c) The constructed
Subpocket prototype-molecular motif interaction graph.

outputs from different heads are further concatenated and
transformed to obtain the final output of MHA:

MHAi = Concat
(
head1i , . . . ,head

M
i

)
WO, (5)

where WO is the output transformation matrix. The output
of the atom-level encoder is a set of atom representations
{hi}. More architectural details are shown in Appendix. A.

3.3.2. RESIDUE-LEVEL ENCODER

The residue-level encoder only keeps the Cα atom of each
residue and constructs a Kr nearest neighbor graph Crest−1 at
the residue level. The i-th residue (resi) can be represented
by a feature vector fi describing its geometric and chemical

characteristics including its dihedral angles, volume, polar-
ity, charge, hydropathy, and hydrogen bond interactions. We
concatenate the residue features with the sum of atom-level
embeddings hk within that residue as the initial residue
representation:

f̃i = Concat
(
fi,

∑
k∈resi

hk

)
. (6)

A local coordinate frame is built for each residue and the
edge features eresij between residues are computed describ-
ing the distance, direction, and orientation between neigh-
boring residues (Ingraham et al., 2019). Lastly, the encoder
takes the node and edge features into the residue-level graph
transformer to compute the final representations of residues.
The residue-level graph transformer architecture is simi-
lar to that of the atom-level encoder. More details of the
residue-level encoder are shown in Appendix. A.

In summary, the output of our hierarchical encoder is a set
of residue representations {fi} and atom representations
{hi}. Considering the distance range of pocket-ligand inter-
actions (Marcou & Rognan, 2007), we sum all the residue
representations within 6 Å of the focal atom as the sub-
pocket representations (Figure. 3(b)). Since our encoder is
based on the atom/residue attributes and pairwise relative
distances, it is rotationally and translationally equivariant.

3.4. Global Interaction Graph Construction

Most existing methods consider molecular generation for
protein pockets independently while neglecting the underly-
ing connections of subpocket-level similarities (Kalliokoski
et al., 2013). Here, we construct a global interaction graph
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to model the interactions between subpocket and ligand
fragments in the whole dataset. As there are numerous
subpockets in the dataset, we propose to cluster subpocket
embeddings and derive representative subpocket prototypes
(Figure. 3(b)). Therefore, we have two kinds of nodes in
the global interaction graph: subpocket prototype nodes
and molecular motif nodes from the motif vocabulary (Fig-
ure. 3(c)). The embeddings of subpocket prototypes and
molecular motifs are dynamically updated during the train-
ing process. We add an edge between a subpocket prototype
node and a molecular motif node if a subpocket belonging to
the cluster of the prototype binds to the motif in the training
dataset. As the strength of the interaction is different, we
calculate TF-IDF value as the edge weight Wij between a
subpocket prototype i and motif j:

Wij = Cij

(
log

1 +N

1 +Ni
+ 1

)
, (7)

where Cij is the number of times that motif j binds to
subpockets belonging to prototype i, N is the total number
of subpocket prototypes, and Ni is the number of subpocket
prototypes binding to motif i. An edge has a larger weight
if motif j has a higher co-occurrence rate with prototype i
and binds to fewer other prototypes (higher specificity).

To further highlight the interactions between subpockets and
molecular motifs, we employ an efficient binding analysis
tool BINANA (Young et al., 2022) that is able to analyze
the detailed interactions including hydrogen bonds, π-π
stacking, cation-π interactions, electrostatic attraction, and
hydrophobic with respect to each atom. When calculating
edge weights Wij of the interaction graph, we only count
subpocket-molecular motifs pairs with at least one hydrogen
bond, which contributes much to binding affinity.

We update the subpocket prototypes on the fly during the
model training process with an online K-Means algorithm.
Specifically, to stabilize the training process, we update the
prototypes i.e., centroids of clusters with momentum. Al-
gorithm 1 shows the pseudo-codes of updating subpocket
prototypes with a batch of input representations H. Hyperpa-
rameter γ is used to control the momentum. FindNearest(·, ·)
denotes the function to find the nearest prototypes of inputs
in Euclidean space and S is the assignment matrix. Ap-
pendix. B contains more details of the global interaction
graph construction.

3.5. Prototype-augmented Motif Generation

The intuition of this Prototype-augmented Motif Genera-
tion is that according to the similarity principle: molecular
motifs originating from similar subpockets are likely to
bind with the target protein pocket with high affinity.

In the generation process, we firstly obtain atom and residue
embeddings from the hierarchical context encoder. The

Algorithm 1 Subpocket Prototypes Update Algorithm
Input: subpocket representations H, momentum hyper-
parameter γ, Prototypes P , Count of data per cluster c
Output: Updated subpocket prototypes P

1: S = FindNearest(H,P)
2: P ← c · P · γ + S⊤H · (1− γ)
3: c← c · γ + S⊤1 · (1− γ)
4: P ← P/c

subpocket embedding hc can be obtained by sum pooling
all the residue embeddings within 6 Å of the focal atom. To
leverage the knowledge from the global interaction graph,
we take a global information fusion step in Figure. 2(b):
we add edges between the subpocket embedding with Kp

most similar subpocket prototypes in the global interaction
graph with edge weights set as 1. Then we use a weighted
graph neural network to propagate the global information
and take the output subpocket representation as ĥc. The
related subpocket prototype-motif interaction information
can be encoded in ĥc for the next motif prediction. We show
the details of the weighted GNN in the Appendix. B.

Focal Motif Prediction: Before predicting the next motif,
we first select a focal motif which the next motif attaches
with. Two atom-wise MLPs are used as classifiers: protein
atom classifier (for t = 1) and molecular atom classifier (for
t ≥ 2). (1) At t = 1, all the known context information
is the protein pocket. The protein atom classifier takes
the hidden representations of protein atoms as input, and
predicts whether new ligand atoms can be generated within
4 Å. (2) For t ≥ 2, the molecule atom classifier selects a
focal atom from the ligand atoms generated in the previous
t − 1 steps. The motif that the focal atom belongs to is
chosen as the focal motif. If no atom/motif is selected as
focal, the generation process is completed.

Next Motif Prediction: Given the focal motif Mf , the
label of the next motif is predicted as:

Pm = softmax
M∈VM

(MLPM(e(Mf ),
∑

i∈Mf

hi, ĥc) · e(M))

(8)
where Pm is the distribution over the motif vocabulary VM,
e(M) denotes the motif embedding,

∑
i∈Mf

hi is the sum

of the atom embeddings in the focal motif, and ĥc is the
enriched subpocket representation. We use a MLP to fuse
the context information and use a dot product to score each
motif. Since there is no focal motif at the first step (t = 1),
we regard no motif as a special motif type and also learn its
embedding in training.

Motif Attachment Prediction: With the predicted motif,
the next step is to attach the new motif to the generated
molecule. Such a step is not deterministic since there are

5



Learning Subpocket Prototypes for Generalizable Structure-based Drug Design

potentially several attachment configurations (See Figure.2).
Our goal here is to select the most appropriate attachment.
Specifically, we enumerate different valid attachments and
form a candidate set C. We employ GIN (Xu et al., 2019)
to encode the candidate molecular graphs (GIN(·)) and
the probability Pa of picking every molecule attachment is
calculated as:

Pa = softmax
G′∈C

(MLPa(GIN(G′), ĥc)). (9)

We merge atoms or bonds in the process of motif attachment.
By pruning chemically invalid molecules and merging iso-
morphic graphs with RDkit (Bento et al., 2020), we have
|C| ≈ 3 on the CrossDocked dataset. Therefore, the attach-
ment prediction is also very efficient.

Rotation Angle Prediciton: As the flexibility of molecular
structures largely lie in the degree of rotatable bonds (Jing
et al., 2022), we focus on predicting the rotation angles
in DrugGPS. After attaching the new motif and obtaining
the initial coordinates, we apply the encoder again to get
the updated atom embeddings. Let X,Y denote the two
end atoms of the rotatable bond (let Y denote the atom
connecting the new motif). We predict the change of the
torsion angle ∆α:

∆α = MLPα(hX ,hY ,hG)mod2π, (10)

where hX and hY indicate the embeddings of X and Y ;
hG denotes the embedding of the molecule, which is ob-
tained with a sum pooling. ∆α is also rotationally and
translationally invariant since the prediction is based on the
representations from the equivariant encoder. Finally, the
coordinates of the atoms in the new motif are updated by
rotating ∆α around line XY . As for the first motif in the
generation, we use a distance-based initialization for its co-
ordinates as there is no reference ligand atoms. More details
of the generation process are included in Appendix. B.

3.6. Model Training

In the training stage, the motifs of molecules are randomly
masked and DrugGPS is trained to recover the masked ones.
Specifically, for each pocket-ligand pair, we sample a mask
ratio from the uniform distribution U [0, 1] and mask the
corresponding number of molecular motifs. The generation
of motifs is in a breadth-first order where the root motif
is set as the motif closest to the pocket. The atoms with
valence bonds to the masked motifs are defined as focal
atom candidates. If all molecular atoms are masked, the
focal atoms are defined as protein atoms that have masked
ligand atoms within 4 Å.

For the focal atom/motif prediction, we use a binary cross
entropy loss Lfocal for the classification of focal atoms. For
the motif type and attachment prediction, we use cross en-
tropy losses for the classification, denoted as Lmotif and

Lattach. As for the torsion angle prediction, we fit angles
with von Mises distributions with Lα following (Senior
et al., 2020). For the distance-based initialization, we mini-
mize an MSE loss Ld with respect to the pairwise distances.
In the training process, we aim to minimize the sum of the
above loss functions:

L = Lfocal + Lmotif + Lattach + Lα + Ld. (11)

4. Experiments
4.1. Experimental Settings

Dataset: Following previous works (Peng et al., 2022; Liu
et al., 2022), we use the CrossDocked dataset (Francoeur
et al., 2020) which contains 22.5 million protein-molecule
pairs. We filter out data points whose binding pose RMSD
is greater than 1 Å, leading to a refined subset with around
180k data points. We consider two data splitting schemes
to test the generalization abilities of models: (1) Sequence-
based Clustered Split (SCS) uses mmseqs2 (Steinegger &
Söding, 2017) to cluster data at 30% sequence identity and
(2) Pocket-based Clustered Split (PCS) uses PocketMatch
(Yeturu & Chandra, 2008) to cluster data with a similar-
ity threshold of 0.75. Specifically, PocketMatch represents
pockets in a frame-invariant manner and compares pairs of
sites based on the alignment of sorted distance sequences
and the residue types. For both data splits, we randomly
draw 100,000 protein-ligand pairs for training and 100 pro-
teins from remaining clusters for testing. Therefore, the
training and the testing set contain sequentially or struc-
turally different pockets. For evaluation, 100 molecules are
randomly sampled for each protein pocket in the test set.
More details of the dataset split are shown in Appendix. C.

Baselines: DrugGPS is compared with five state-of-the-
art baseline methods including LiGAN (Ragoza et al.,
2022), AR (Luo et al., 2021), GraphBP (Liu et al., 2022),
Pocket2Mol (Peng et al., 2022), and our previous work
FLAG (Zhang et al., 2023b).

Model: The number of layers for the atom and residue-level
encoder is set as 6 and 3 respectively. Ka and Kr are set as
32 and 8 respectively. The number of attention head M is set
as 4; The number of weighted GNN layers is 2. The hidden
dimension d is set as 256. The threshold τ in motif extrac-
tion is set to 100 and |VM| = 890 in the default setting. The
number of subpocket prototypes is set as 128 in the default
setting. We update the prototypes every 200 iterations with
momentum γ = 0.9. In the global information fusion, the
input subpocket embedding is linked with the top 4 clos-
est prototypes measured by cosine similarity. The model
is trained with the Adam optimizer with a learning rate of
0.0001. The batch size is 4 and the number of total training
iterations is 1,000,000. The code of DrugGPS is at https:
//github.com/zaixizhang/DrugGPS_ICML23.
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Table 1. Comparing the generated molecules’ properties by different methods under the pocket-based clustered split. We report the
means and standard deviations. The properties of the test set are shown for reference and the best results are bolded.

Methods Vina Score
(kcal/mol, ↓)

High
Affinity(↑) QED (↑) SA (↑) LogP Lip. (↑) Sim. Train (↓) Div. (↑) Time (↓)

Testset -7.145±2.24 - 0.465±0.25 0.736±0.12 0.941±2.25 4.468±1.54 - - -
LiGAN -6.032±1.89 0.194±0.26 0.365±0.27 0.615±0.20 -0.015±2.48 4.002±0.92 0.410±0.22 0.667±0.15 1819.8±560.7

AR -6.114±1.66 0.235±0.23 0.483±0.18 0.662±0.19 0.210±1.76 4.688±0.45 0.394±0.21 0.650±0.13 15986.4±9851.0
GraphBP -6.745±1.82 0.378±0.29 0.455±0.19 0.710±0.18 0.457±2.10 4.783±0.34 0.378±0.26 0.659±0.12 1162.8±438.5

Pocket2Mol -6.869±2.19 0.413±0.23 0.524±0.24 0.726±0.21 0.830±2.17 4.892±0.22 0.364±0.19 0.695±0.17 2827.3±1456.8
FLAG -6.956±1.92 0.445±0.22 0.552±0.20 0.737±0.19 0.745±2.09 4.904±0.14 0.388±0.18 0.704±0.18 1289.1±378.0

DrugGPS -7.276±2.14 0.565±0.23 0.613±0.22 0.743±0.18 0.913±2.15 4.917±0.12 0.360±0.21 0.681±0.15 1007.8±554.1
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Figure 4. Hyperparameter analysis with respect to the (a) number
of subpocket prototypes N and (b) motif vocabulary size |VM|.

Metrics: We choose widely-used metrics in previous works
(Peng et al., 2022; Liu et al., 2022) to evaluate the sampled
molecules: (1) Vina Score calculates the binding affinity be-
tween the generated molecules and the protein pockets with
QVina (Trott & Olson, 2010; Alhossary et al., 2015); (2)
High Affinity measures the percentage of pockets that have
generated molecules with higher affinity than the references
in the test set; (3) QED measures how likely a molecule is a
potential drug candidate; (4) Synthesizability (SA) repre-
sents the difficulty of drug synthesis (normalized between 0
and 1 and higher values indicate easier synthesis); (5) LogP
is the octanol-water partition coefficient and good drug can-
didates have LogP ranging from -0.4 to 5.6 (Ghose et al.,
1999); (6) Lipinski (Lip.) calculates how many rules the
molecule obeys the Lipinski’s rule of five (Lipinski et al.,
2012); (7) Sim. Train represents the Tanimoto similarity
(Bajusz et al., 2015) with the most similar molecules in the
training set; (8) Diversity (Div.) measures the diversity of
generated molecules for a binding pocket. (9) Time records
the time to generate 100 valid molecules for a pocket. All
the generated molecules by different methods are optimized
with universal force fields (Rappé et al., 1992).

4.2. Experimental Results

We show the generated molecules’ properties in Table. 1
(PCS) and Table. 4 (SCS) in Appendix. D. Generally,
we find PCS more challenging: the average vina scores of
the generated molecules drop a lot for baseline methods
from SCS to PCS (e.g., -7.288 to -6.869 for Pocket2Mol).
This is not surprising since proteins with overall low se-

7.27.06.8
Vina Score (kcal/mol)

w/o Iteraction graph

w/o Hier encoder

w/o BINANA

DrugGPS

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8 Subpocket Embedding
Prototype

(b)

Figure 5. (a) Ablation studies (b) t-SNE visualization of 10000
randomly sampled subpocket embeddings and 56 prototypes.

quence similarities may still have similar pockets (Eguida &
Rognan, 2022) in SCS, which helps generate high-affinity
molecules for pockets in the test set. Table. 7 also shows
that PCS results in larger train-test performance gap. We
use pocket-based clustered split as the default setting in the
rest of this paper to test the generalization abilities. Thanks
to the constructed global interaction graph and prototype-
augmented motif generation scheme, DrugGPS can still
generate molecules with high affinity in PCS and does not
drop much compared with SCS (-7.276 vs. -7.345). More-
over, DrugGPS also manages to generate diverse molecules
with high drug-likeliness and synthesizability, and with low
similarities to the molecules in the training dataset. Note
that 100% of the molecules are valid because DrugGPS ex-
plicitly filter out invalid candidates in the attachment selec-
tion step (A molecule is valid if it can be sanitized by RDkit
(Bento et al., 2020)). Finally, we compare the computational
efficiency for molecule generation. With the motif-based
generation scheme, DrugGPS can shorten the generation
steps and is more efficient than baseline methods. More
results and discussions are included in Appendix. D.

In Fig.5(b), we also use t-SNE (Van der Maaten & Hinton,
2008) to visualize the sampled subpocket embeddings and
their prototypes. We can observe that the prototypes can
mostly occupy the centers of subpocket embeddings, which
verifies the effectiveness of the learned subpocket prototype.
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Ours (4aaw) Reference (4aaw)

Vina: -8.5
QED: 0.79 SA: 0.81

Vina: -9.0
QED: 0.63 SA: 0.86

Vina: -8.5
QED: 0.81 SA: 0.88

Vina: -7.2
QED: 0.65 SA: 0.86

Vina: -7.6
QED: 0.88 SA: 0.83

Vina: -7.7
QED: 0.78 SA: 0.68

Vina: -7.9
QED: 0.72 SA: 0.82

Ours (4m7t)

Vina: -11.7
QED: 0.63 SA: 0.77

Vina: -11.4
QED: 0.46 SA: 0.85

Vina: -11.2
QED: 0.69 SA: 0.74

Vina: -8.6
QED: 0.30 SA: 0.58

Vina: -10.3
QED: 0.40 SA: 0.69

Vina: -11.0
QED: 0.60 SA: 0.73

Vina: -9.5
QED: 0.70 SA: 0.59

Reference (4m7t)

Figure 6. Examples of the generated molecules with higher binding affinities than the references. We report the vina scores, QED, and SA
scores for each molecule. A lower Vina score indicates higher binding affinity.

4.3. Case Studies

In Figure 6, we further provide several generated molecule
examples that have higher binding affinities (lower vina
scores) than their corresponding reference molecules.
Firstly, the generated molecules have novel structures that
are different from the reference molecules. This implies that
DrugGPS can generate novel and diverse structures. Fur-
thermore, the generated molecules also exhibit high QED
and SA scores, showing their potential to be good drug can-
didates. Finally, the generated molecules contain realistic
substructures (e.g., benzene ring), which should attribute to
the motif-based generation scheme. In DrugGPS, we focus
on the prediction of rotatable bonds and use chemical tools
to help determine the motif structures. We further provide
quantitive substructure analysis in Appendix. D.

4.4. Hyperparameter Analysis & Ablation Studies

In Fig. 4, we explore the influence of two key hyperparame-
ters: the number of subpocket prototypes N and the motif
vocabulary size |VM|. We can control hyperparameter τ
to control |VM|. With the increase of N , the average vina
scores of the generated molecules decrease (higher binding
affinity) and gradually stabilize. This may be because a
sufficient number of subpocket prototypes is required to
represent the global distributions of subpocket embeddings.
When it comes to the motif vocabulary size, we find an ap-
propriate size of |VM| is beneficial to generate high-quality

ligand molecules. Too small motif vocabulary may limits
generating large complex molecules while too large vocabu-
lary may inhibit learning good motif representations.

We further perform ablation studies to show the effective-
ness of different modules in DrugGPS (Fig. 5(a)). Specif-
ically, we remove the binding analysis tool BINANA, the
residue-level encoder, and the global interaction graph in
DrugGPS respectively as “w/o BINANA”, “w/o Hier en-
coder”, and “w/o Interaction graph”. We find that remov-
ing these modules, especially the hierarchical encoder and
global interaction graph, indeed degrades the performance
of DrugGPS. This verifies that the necessity to capture the
hierarchical context information and the effectiveness of the
global interaction graph for generalizable ligand generation.

5. Conclusion
In this paper, we propose DrugGPS, a generalizable
structure-based drug design method. Inspired by the bio-
chemical prior of subpockets, we propose a subpocket
prototype-augmented ligand molecule generation scheme
that levrages the global interaction knowledge of the whole
dataset. A hierarchical 3D graph transformer is also pro-
posed to encode both the atom-level and residue-level in-
formation. Experiments show that our model consistently
outperforms baselines in generating realistic drug candi-
dates with high affinities in challenging out-of-distribution
settings. Future works may include further leveraging inter-

8
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pretable machine learning techniques (Zhang et al., 2022a),
unifying protein and molecule pre-training (Zhang et al.,
2021), and extending our framework to other domains such
as protein design (Gao et al., 2023).
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A. More Details of Hierarchical Graph Transformer
Our hierarchical encoder includes the atom-level encoder and the residue-level encoder. The powerful 3D Graph Transformer
is used as the model backbone. Here we first show more details of the graph transformer architecture. Then wen show the
residue-level node and edge features following previous works (Ingraham et al., 2019; Jin et al., 2022).

Graph transformer architecture. The atom/residue-level encoder contains L graph transformer layers. Let h(l) be the set
of node representations at the l-th layer. In each graph transformer layer, there are a multi-head self-attention (MHA) and a
feed-forward block (FFN). The layer normalization (LN) is applied before the two blocks (Xiong et al., 2020). The details
of MHA has been shown in Sec.3.3 and the graph transformer layer is formally characterized as:

h′(l−1) = MHA(LN(h(l−1))) + h(l−1) (12)

h(l) = FFN(LN(h′(l−1))) + h′(l−1), (0 ≤ l < L). (13)

Residue-level node features. The residue-level encoder only keeps the Cα atoms to represent residues and constructs a
Kr nearest neighbor graph at the residue level. Each residue node is represented by six features: polarity fp ∈ {0, 1},
hydropathy fh ∈ [−4.5, 4.5], volume fv ∈ [60.1, 227.8], charge fc ∈ {−1, 0, 1}, and whether it is a hydrogen bond donor
fd ∈ {0, 1} or acceptor fa ∈ {0, 1}. We expand hydropathy and volume features into radial basis with interval sizes 0.1 and
10, respectively. Overall, the dimension of the residue-level feature vector fi is 112.

Residue-level edge features. For each i-th residue, we let xi denote the coordinate of its Cα and define its local coordinate
frame Oi = [ci,ni, ci × ni] as:

ui =
xi − xi−1

∥xi − xi−1∥
, ci =

ui − ui+1

∥ui − ui+1∥
, ni =

ui × ui+1

∥ui × ui+1∥
. (14)

Based on the local frame, the edge features between residues i and j can be computed as:

eresij = Concat

(
Epos(i− j), RBF(∥xi − xj∥), O⊤

i

xj − xi

∥xi − xj∥
, q(O⊤

i Oj)

)
. (15)

The edge feature eresij contains four parts. The positional encoding Epos(i − j) encodes the relative sequence distance
between two residues. The second term RBF(·) is a distance encoding with radial basis functions. The third term is a
direction encoding corresponding to the relative direction of xj in the local frame of i-th residue. The last term q(O⊤

i Oj) is
the orientation encoding of the quaternion representation q(·) of the spatial rotation matrix O⊤

i Oj (Huynh, 2009). Overall,
the dimension of the residue-level edge feature eresij is 39.

B. More Details of Prototype-augmented Motif Generation
Global interaction graph construction. The number of subpocket prototypes is set as 128 in the default setting. For the
stability of optimization, the encoder first goes through a warm-up period with 50,000 iterations. After the warm-up, the
prototypes are first initialized with K-Means and further updated every 200 iterations with momentum γ = 0.9. The edge
weights Wij are updated in the interval of 10,000 iterations. DrugGPS is validated every 10,000 iterations and we take
the checkpoint with the lowest validation loss for ligand generation. For the input subpocket, We add edges between the
subpocket embedding with 4 most similar subpocket prototypes measured by cosine similarity.

Global information fusion with Weighted GNN. To enrich the subpocket representation with the global interaction
information, we use a weighted GNN to propagate information on the constructed interaction graph. The subpocket
prototypes and motif embeddings are firstly converted to the same hidden space with learnable transformation matrices. We
use a weighted GNN adapted from GIN (Xu et al., 2019) for information propagation and aggregation:

xl
v = MLP(xl−1

v +
1∑

u∈N (v) Wuv

∑
u∈N (v)

Wuvx
l−1
u ), (16)

where xl
v denotes node v’s embedding at the l-th layer and N (v) denotes its neighbors. Wuv is the edge weight calculated

in Equation. 7. Finally, we take the input subpocket embedding at the final layer as ĥc. In prototype-augmented motif
generation, ĥc is leveraged in Equation. 8 for next motif prediction. It not only encodes the residue-level context information,
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but capture the similar subpocket prototype-molecular motif interaction as well. Therefore, the next motif prediction classifier
can learn to give motifs with high binding affinity higher scores.

Distance-based initialization. To decide the 3D positions of the generate motifs, it is challenging for the first motif as
there is no reference ligand atoms. Following (Jin et al., 2022), we use a distance-based initialization strategy to determine
the position of the first motif, which is more accurate and stable than random initialization. Specifically, a distance matrix
D ∈ R(n′+m′)×(n′+m′) is set as:

Di,j =


∥ri − rj∥ i, j ≤ n′

MLPd(h
(0)
i ,h

(0)
j ) i ≤ n′, j > n′

∥ri − rj∥ i, j > n′,

(17)

where n′ and m′ denote the number of sampled protein atoms for reference and the number of atoms in the first molecular
motif. ri is the 3D coordinate of the atom. The distances within the protein atoms and motif atoms can be directly calculated.
For the distances between molecular and protein atoms, we use MLPd for prediction with the pairwise atom attributes as the
input. With the distance matrix D, we can obtain the coordinates of atoms by eigenvalue decomposition of its Gram matrix
(Crippen & Havel, 1978):

D̃i,j = 0.5(D2
i,1 +D2

1,j −D2
i,j), D̃ = USU⊤ (18)

where S is a diagonal matrix with eigenvalues in descending order. The coordinate of each atom ri is calculated as:

r̃i = [Xi,1,Xi,2,Xi,3], X = U
√
S. (19)

Note that even though the predicted coordinates {r̃i} retain the original distance D, they are located in a different coordinate
system. Therefore, we apply the Kabsch algorithm (Kabsch, 1976) to find a rigid body transformation {R, t} that aligns the
predicted protein coordinates {r̃1, · · · , r̃n′} with the reference coordinates {r1, · · · , rn′}. Lastly, the coordinates of the
first motif are calculated as:

ri = Rr̃i + t, i > n′. (20)

For generation steps with t > 1, the coordinates of the attached motifs are determined and aligned similarly with RDkit
(Bento et al., 2020) and Kabsch algorithm (Kabsch, 1976).

Rotation matrix. In the generation of new motifs, if the focal motif is rotatable and the rotation angle ∆α is known, we use
the following rotation matrix R3×3 and the translation vector t3×1 to update the coordinates of the new motif. Let X,Y
denote the two end atoms of the rotatable bond (Y denote the atom connecting the new motif) and rX and rY be their
coordinates. Let n denotes the normalized directional vector rY −rX

∥rY −rX∥ and nx, ny and nz be its components along the x, y

and z axis. Let x0, y0, and z0 be the three components of rX . The rotation matrix and translation vector are:

R3×3 =

 n2
xK + cos(∆α) nxnyK − nzsin(∆α) nxnzK + nysin(∆α)

nxnyK + nzsin(∆α) n2
yK + cos(∆α) nynzK − nxsin(∆α)

nxnzK − nysin(∆α) nynxK + nxsin(∆α) n2
zK + cos(∆α)

 , (21)

t3×1 =

 (x0 − nxM)K + (nzy0 − nyz0)sin(∆α)
(y0 − nyM)K + (nxz0 − nzx0)sin(∆α)
(z0 − nzM)K + (nyx0 − nxy0)sin(∆α)

 . (22)

Here, K = 1− cos(∆α) and M = nxx0 + nyy0 + nzz0. The coordinates ri in the motif are updated as:

r′i = Rri + t (23)

C. More Details of Experimental Settings
More training and sampling details. All the experiments are conducted on a NVIDIA Tesla V100 GPU with 32G memory.
It takes around 48 hours to train DrugGPS. The implementation of DrugGPS is based on our previous work FLAG1. To

1https://github.com/zaixizhang/FLAG
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Table 2. Properties of the test set molecules and the generated molecules by different methods under the sequence-based clustered split.
We report the means and standard deviations. This is the same split used in previous works (Peng et al., 2022; Luo & Ji, 2021) and we
borrow part of the baseline results from (Peng et al., 2022). The best results are bolded.

Methods Vina Score
(kcal/mol, ↓)

High
Affinity(↑) QED (↑) SA (↑) LogP Lip. (↑) Sim. Train (↓) Div. (↑) Time (↓)

Testset -7.158±2.10 - 0.484±0.21 0.732±0.14 0.947±2.65 4.367±1.14 - - -
LiGAN -6.114±1.57 0.238±0.28 0.369±0.22 0.590±0.15 -0.140±2.73 4.027±1.38 0.460±0.18 0.654±0.12 -

AR -6.215±1.54 0.267±0.31 0.502±0.17 0.675±0.14 0.257±2.01 4.787±0.50 0.409±0.19 0.742±0.09 19658.56±14704
GraphBP -7.132±1.75 0.477±0.26 0.516±0.15 0.718±0.18 0.442±2.08 4.620±0.37 0.415±0.24 0.649±0.12 1238.7±493.0

Pocket2Mol -7.288±2.53 0.542±0.32 0.563±0.16 0.765±0.13 1.586±1.82 4.902±0.42 0.376±0.22 0.688±0.14 2503.51±2207
DrugGPS -7.345±2.42 0.620±0.29 0.592±0.21 0.728±0.23 1.134±2.26 4.923±0.11 0.370±0.26 0.695±0.17 956.3±451.6

implement the baselines including LiGAN 2, AR3, GraphBP4, and Pocket2Mol5, we use the open-source codes following
their default settings. DrugGPS and baseline methods are trained on the same data split for fair comparisons.

More details of dataset split We use two OOD data split in our work. (1) Sequence-based Clustered Split uses mmseqs2
(Steinegger & Söding, 2017) to cluster data at 30% sequence identity, which is a popular spliting scheme in previous works
(Peng et al., 2022; Luo & Ji, 2021). However, such splitting scheme only considers sequence similarity while neglecting
structural similarities, which is more important in structure-based drug design. (2) Pocket-based Clustered Split uses
PocketMatch (Yeturu & Chandra, 2008) to cluster data with a similarity threshold of 0.75. The range of similarity score in
PocketMatch is from 0 to 1 and higher scores indicate higher pocket similarities. PocketMatch compares binding pockets
in a frame-invariant manner: each binding site is represented by 90 lists of sorted distances capturing the geometric and
chemical properties of the pocket. The pocket pairs are then aligned based on distances and residue types to obtain similarity
scores (Yeturu & Chandra, 2008). Specifically in pocket-based clustered split, a set of initial centroids are sampled with
pairwise similarity scores less than 0.75. The remaining pockets are compared with these centroids and assigned to the
group with the higheset similarity score (> 0.75). If there is no centroid that the pocket has an over 0.75 similarity score to,
the pocket is selected as a new centroid.

The output of the clustering algorithms are a set of clusters such that: (a) all centroids of clusters have similarity < T to
each other, and (b) all members in a cluster have similarity ≥ T to the centroid. T is the predefined similarity threshold. For
both data splits, we randomly draw 100,000 protein-ligand pairs for training. The validation and test dataset are drawn from
remaining clusters. Therefore, the training and test set contains sequentially or structurally different protein pockets.

D. More Experimental Results
Ligand molecule generation under sequence-based clustered split. We include the results under sequence-based clustered
split in Table. 4. This is the same split used in previous works (Peng et al., 2022; Luo & Ji, 2021) and we borrow part of the
baseline results from (Peng et al., 2022). We can observe that DrugGPS can also overperform baseline models on generating
drug-like molecules with higher affinity in the popular SCS setting.

Peformance gap between training and testing set. In Table. 7, we compare the Vina scores of the generated molecules on
the training and testing dataset. For the training set, we randomly sample 100 proteins and generate 100 molecules for each
target protein pocket similar to that of the test set. We compare the performance of our DrugGPS with two competitive
baseline methods. We also show the average vina scores from the sampled training set and the test set for reference. The
vina scores of the sampled training set and the test set are roughly the same.

Generally, we can observe that the pocket-based clustered split results in larger vina score gap and is more challenging.
Compared with baselines, our DrugGPS has smaller gap, which indicates its better generalization ability.

Qualitative substructure analysis. We further show qualitative substructure analysis by calculating the KL divergence
of the bond angles and dihedral angles between the molecules in the test set and the generated molecules in Table. 3.
We observe that DrugGPS can generate more realistic substructures than baseline methods (smaller angle distribution

2https://github.com/mattragoza/LiGAN
3https://github.com/luost26/3D-Generative-SBDD
4https://github.com/divelab/GraphBP
5https://github.com/pengxingang/Pocket2Mol
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(a) Pocket-based clustered split
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(b) Sequence-based clustered split

Figure 7. Comparaing the Vina scores of the generated molecules on the training and testing dataset. (a) shows the pocket-based clustered
split and (b) shows the sequence-based clustered split. A lower Vina score indicates higher binding affinity.

Table 3. The KL divergence of the bond angles (upper part) and dihedral angles (lower part) between the molecules in the test set and the
generated molecules by different methods. The lower letters represent the atoms in the aromatic rings. Pocket-based clustered split is used
and the best results are bolded.

Angles LiGAN AR GraphBP Pocket2
Mol FLAG w/o

BINANA
w/o Hier
Encoder

w/o Interaction
Graph DrugGPS

CCC 7.16 2.31 2.09 0.93 0.59 0.71 0.86 0.75 0.57
CCO 7.68 2.19 1.98 0.94 0.65 0.62 0.67 0.64 0.63
CCN 7.71 2.58 2.46 0.65 0.24 0.27 0.33 0.26 0.25
CNC 6.39 3.28 1.77 0.72 0.54 0.52 0.79 0.53 0.48
OPO 6.08 3.73 3.71 0.43 0.57 0.48 0.74 0.49 0.46

CC=O 6.69 3.42 3.47 0.70 0.48 0.47 0.49 0.48 0.45

cccc 5.26 4.46 3.62 4.54 0.45 0.46 0.46 0.45 0.45
Cccc 3.46 5.05 2.28 2.53 1.41 1.40 1.71 1.34 1.32

CCCC 4.14 2.15 1.40 0.69 0.97 0.94 1.53 0.97 0.92
CCCO 3.50 2.20 1.25 1.14 0.96 0.91 1.32 0.88 0.87
OCCO 2.14 2.16 1.63 1.73 1.72 1.60 1.88 1.52 1.55
CC=CC 6.67 6.38 3.44 3.40 2.20 2.15 2.34 2.08 2.06

discrepancies between the generated molecules and the test set) due to its motif-based generation scheme. Moreover, we
also compare DrugGPS with its variants and find the designed modules are also indispensable. Especially, the hierarchical
encoder is quite important for DrugGPS to encode geometric information and predict rotation angles.

More Hyperparameter analysis. We show more hyperparameter analysis with respect to γ, Kp (number of subpocket
prototypes to link with), and the subpocket size in Table. 8. We observe that DrugGPS is generally robust the choice of
γ. The quality of generated molecules deteriorates slightly when too many subpocket prototypes are linked with in the
global information fusion, which may lead to too much redundant information. Finally, we find choosing an appropriate
subpocket size is important: some key residues may be neglected if the size is too small while some unrelated residue may
be considered when the size is too large. In DrugGPS, we choose to sum up all the residue embeddings within 6 Å to obtain
subpocket representations in the default setting for the best performance.

Failure Examples. Here we show some examples that the generated molecules have lower affinity (higher Vina scores) than
the reference in Figure. 9. Therefore, these molecules have higher probabilities of not binding to the target pocket. The
failure may be due to the following reasons: (1) Some generated molecules accidentally collide with the pocket, which
is unrealistic in nature. (2) The auto-regressive generation scheme may limit its ability for overall optimization. We can
observe that some generated molecules only occupy part of the pocket. In the future, we will tackle the aforementioned
problems by designing penalty loss to prohibit colliding and explore generation schemes that facilitate overall optimization.
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Figure 8. Hyperparameter analysis with respect to (a) γ, (b) Kp: subpocket prototypes to link with in the global knowledge fusion, and (c)
the subpocket size. DrugGPS is generally robust to the choice of hyperparameters.

Structure-based drug design is a complicated conditional generation problem influenced by various factors (e.g., geometric
and chemical constraints). It is common to have failure cases. However, even in the aforementioned failure situations,
DrugGPS can still generate fragments aligning well with the global interaction information or the reference molecule.
For example, for the first molecule in Figure 1, the first fragment generated by DrugGPS is quite similar to the reference
molecule (marked with blue ovals). The fragment is also in the top-ranked fragments (listed on the leftmost) interacting with
the corresponding subpocket prototype in the global interaction graph. Therefore, the prior that we impose into DrugGPS is
generally helpful.

Global interaction helps ligand generation. To show the global interaction graph helps ligand generation, we include case
studies showing the alignment between the generated ligand fragments and the fragment information derived from the global
interaction graph in Figure. 10. Specifically, the encoded subpocked representation is fed into the global interaction graph
and further mapped to the closest subpocket prototype. The molecular motifs with the largest edge weights (Equ. 7) with the
subpocket prototype are shown here. In these cases, we observe that the fragment in the generated ligands (marked with blue
ovals) are also within the top 6 interacted fragments from the global interaction graph (marked with black dashed boxes).
These case studies support our claim that the global interaction graph helps fragment prediction and ligand generation.

The ratio of generated molecules with polycyclic structures. In the CrossDocked dataset, 55.42% of ligand molecules
have polycyclic structures. Therefore the trained DrugGPS model on the CrossDocked dataset also tends to generate many
polycyclic structures as shown in Figure. 6. However, the fragment-based generation scheme used in DrugGPS enables us to
flexibly generate the molecules we want. For example, if we want more monocyclic compounds, we can reduce polycyclic
motifs in the motif library (e.g., increase the threshold τ ) and penalize merging rings at the generating stage (modified
DrugGPS). In Figure. 11, we show the generated molecules with monocyclic structures by the modified DrugGPS.

Results on more datasets. We understand comprehensive evaluations on more datasets could further improve our work.
Here we further evaluate our method on experimentally determined protein-ligand complexes found in Binding MOAD
(Hu et al., 2005). Following (Schneuing et al., 2022), Binding MOAD is filtered and split based on the proteins’ enzyme
commission number, resulting in 40,354 protein-ligand pairs for training and 130 pairs for testing. In the following table, we
compare DrugGPS with selected baselines including Pocket2Mol, FLAG, and DiffSBDD (Schneuing et al., 2022). For a fair
comparison, the hyperparameters are finetuned for Pocket2Mol and FLAG. We use the recommended hyperparameters for
Binding MOAD dataset in the original paper (Schneuing et al., 2022) for DiffSBDD. We can observe that DrugGPS can also
achieve competitive performance on the Binding MOAD dataset.

Table 4. Results on the Binding MOAD dataset.

Methods Vina Score
(kcal/mol, ↓)

High
Affinity(↑) QED (↑) SA (↑) LogP Lip. (↑) Sim. Train (↓) Div. (↑) Time (↓)

Testset -8.103±2.26 - 0.602±0.15 0.336±0.08 0.456±1.15 4.838±0.37 - - -
DiffSBDD -6.234±1.76 0.127±0.11 0.529±0.17 0.324±0.10 0.112±1.20 4.847±0.33 0.369±0.14 0.717±0.09 463.0±171.4

Pocket2Mol -7.690±2.47 0.358±0.22 0.596±0.14 0.329±0.07 0.697±1.66 4.750±0.28 0.375±0.15 0.720±0.16 2618.0±1503.4
FLAG -7.724±2.09 0.364±0.20 0.605±0.16 0.317±0.14 0.719±1.43 4.762±0.23 0.382±0.16 0.695±0.12 1028.5±474.9

DrugGPS -8.215±2.29 0.522±0.21 0.623±0.18 0.341±0.12 0.560±1.41 4.859±0.24 0.363±0.16 0.692±0.13 1007.8±554.1
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Figure 9. Generated examples with lower affinity than the reference ligands.

Figure 10. Global interaction helps ligand generation.

Figure 11. Generated molecules with monocyclic structures by the modified DrugGPS.
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