
Motif-based Graph Self-Supervised Learning for
Molecular Property Prediction

Zaixi Zhang1, Qi Liu1∗, Hao Wang1, Chengqiang Lu1, Chee-Kong Lee2∗
1: Anhui Province Key Lab of Big Data Analysis and Application,

School of Computer Science and Technology,
University of Science and Technology of China

2: Tencent America
{zaixi, wanghao3, lunar}@mail.ustc.edu.cn, qiliuql@ustc.edu.cn

cheekonglee@tencent.com

Abstract

Predicting molecular properties with data-driven methods has drawn much attention
in recent years. Particularly, Graph Neural Networks (GNNs) have demonstrated
remarkable success in various molecular generation and prediction tasks. In cases
where labeled data is scarce, GNNs can be pre-trained on unlabeled molecular data
to first learn the general semantic and structural information before being finetuned
for specific tasks. However, most existing self-supervised pre-training frameworks
for GNNs only focus on node-level or graph-level tasks. These approaches cannot
capture the rich information in subgraphs or graph motifs. For example, functional
groups (frequently-occurred subgraphs in molecular graphs) often carry indicative
information about the molecular properties. To bridge this gap, we propose Motif-
based Graph Self-supervised Learning (MGSSL) by introducing a novel self-
supervised motif generation framework for GNNs. First, for motif extraction from
molecular graphs, we design a molecule fragmentation method that leverages a
retrosynthesis-based algorithm BRICS and additional rules for controlling the
size of motif vocabulary. Second, we design a general motif-based generative
pre-training framework in which GNNs are asked to make topological and label
predictions. This generative framework can be implemented in two different ways,
i.e., breadth-first or depth-first. Finally, to take the multi-scale information in
molecular graphs into consideration, we introduce a multi-level self-supervised
pre-training. Extensive experiments on various downstream benchmark tasks show
that our methods outperform all state-of-the-art baselines.

1 Introduction

The past decade has witnessed the remarkable success of deep learning in natural language processing
(NLP) [5], computer vision (CV) [13], and graph analysis [19]. Inspired by these developments,
researchers in the chemistry domain have also tried to exploit deep learning methods for molecule-
based tasks such as retrosynthesis [47] and drug discovery [8]. To preserve the internal structural
information, molecules can be naturally modeled as graphs where nodes represent atoms and edges
denote the chemical bonds. Recently, some works applied Graph Neural Network (GNN) and some
of its variants for molecular property prediction and obtained promising results [8, 25].

Though GNNs have achieved remarkable accuracy on molecular property prediction, they are usually
data-hungry, i.e. a large amount of labeled data (i.e., molecules with known property data) is required
for training [8, 12]. However, labeled molecules only occupy an extremely small portion of the

∗Qi Liu and Chee-Kong Lee are corresponding authors.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

enormous chemical space since they can only be obtained from wet-lab experiments or quantum
chemistry calculations, which are time-consuming and expensive. Moreover, directly training GNNs
on small labeled molecule datasets in a supervised fashion is prone to over-fitting and the trained
GNNs can hardly generalize to out-of-distribution data.

Similar issues have also been encountered in natural language processing and computer vision.
Recent advances in NLP and CV address them by self-supervised learning (SSL) where a model is
first pre-trained on a large unlabeled dataset and then transferred to downstream tasks with limited
labels [13, 2, 5]. For example, the pre-trained BERT language model [5] is able to learn expressive
contextualized word representations through reconstructing the input text-next sentence and masked
language predictions so that it can significantly improve the performance of downstream tasks.
Inspired by these developments, various self-supervised pre-training methods of GNNs have been
proposed [14, 15, 52, 51, 32, 10, 30]. Based on how the self-supervised tasks are constructed,
these methods can be classified into two categories, contrastive methods and predictive methods.
Contrastive methods force views from the same graph (e.g., sampling nodes and edges from graphs)
to become closer and push views from different graphs apart. On the other hand, the predictive
methods construct prediction tasks by exploiting the intrinsic properties of data. For example, Hu
et.al. [14] designed node-level pre-training tasks such as predicting the context of atoms and the
attributes of masked atoms and bonds. [15] introduced an attributed graph reconstruction task where
the generative model predicts the node attributes and edges to be generated at each step.

However, we argue that existing self-supervised learning tasks on GNNs are sub-optimal since most
of them fail to exploit the rich semantic information from graph motifs. Graph motifs can be defined
as significant subgraph patterns that frequently occur [27]. Motifs usually contain semantic meanings
and are indicative of the characteristics of the whole graph. For example, the hydroxide (–OH)
functional group in small molecules typically implies higher water solubility. Therefore, it is vital
to design motif-level self-supervised learning tasks which can benefit downstream tasks such as
molecular property prediction.

Designing motif-level self-supervised learning tasks brings unique challenges. First, existing motif
mining techniques could not be directly utilized to derive expressive motifs for molecular graphs
because they only rely on the discrete count of subgraph structures and overlook the chemical validity
[1, 18]. Second, most graph generation techniques generate graphs node-by-node [23, 50], which
are not suitable for our task of motif generation. Finally, how to unify multi-level self-supervised
pre-training tasks harmoniously brings a new challenge. One naive solution to do pre-training tasks
sequentially may lead to catastrophic forgetting similar to continual learning [7].

To tackle the aforementioned challenges, we propose Motif-based Graph Self-Supervised Learning
(MGSSL) and Multi-level self-supervised pre-training in this paper. Firstly, MGSSL introduces
a novel motif generation task that empowers GNNs to capture the rich structural and semantic
information from graph motifs. To derive semantically meaningful motifs and construct motif trees
for molecular graphs, we leverage the BRICS algorithm [4] which is based on retrosynthesis from the
chemistry domain. Two additional fragmentation rules are further introduced to reduce the redundancy
of motif vocabulary. Secondly, a general motif-based generative pre-training framework is designed
to generate molecular graphs motif-by-motif. The pre-trained model is required to make topology and
attribute predictions at each step and two specific generation orders are implemented (breadth-first
and depth-first). Furthermore, to take the multi-scale regularities of molecules into consideration,
we introduce Multi-level self-supervised pre-training for GNNs where the weights of different SSL
tasks are adaptively adjusted by the Frank-Wolfe algorithm [16]. Finally, by pre-training GNNs
on the ZINC dataset with our methods, the pre-trained GNNs outperforms all the state-of-the-art
baselines on various downstream benchmark tasks, demonstrating the effectiveness of our design.
The implementation is publicly available at https://github.com/zaixizhang/MGSSL.

2 Preliminaries and Related Work

2.1 Molecular Property Prediction

Prediction of molecular properties is a central research topic in physics, chemistry, and materials
science [44]. Among the traditional methods, density functional theory (DFT) is the most popular
one and plays a vital role in advancing the field [21]. However, DFT is very time-consuming and
its complexity could be approximated as O(N3), where N denotes the number of particles. To find

2

more efficient solutions for molecular property prediction, various machine learning methods have
been leveraged such as kernel ridge regression, random forest, and convolutional neural networks
[6, 26, 36]. To fully consider the internal spatial and distance information of atoms in molecules,
many works [8, 35, 48, 25] regard molecules as graphs and explore the graph convolutional network
for property prediction. To better capture the interactions among atoms, [8] proposes a message
passing framework and [20, 48] extend this framework to model bond interactions. [25] builds a
hierarchical GNN to capture multilevel interactions. Furthermore, [32] integrates GNNs into the
Transformer-style architecture to deliver a more expressive model.

2.2 Preliminaries of Graph Neural Networks

Recent years have witnessed the success of Graph Neural Networks (GNNs) for modeling graph
data [11, 19, 40, 46, 43, 42, 55]. Let G = (V,E) denotes a graph with node attributes Xv for v ∈ V
and edge attributes euv for (u, v) ∈ E. GNNs leverage the graph connectivity as well as node
and edge features to learn a representation vector (i.e., embedding) hv for each node v ∈ G and a
vector hG for the entire graph G. Generally, GNNs follows a message passing paradigm, in which
representation of node v is iteratively updated by aggregating the representations of v’s neighboring
nodes and edges. Specifically, there are two basic operators for GNNs: AGGREGATE(·) and
COMBINE(·). AGGREGATE(·) extracts the neighboring information of node v; COMBINE(·) serves
as the aggregation function of the neighborhood information. After k iterations of aggregation, v’s
representation captures the structural information within its k-hop network neighborhood. Formally,
the k-th layer of a GNN is:

h(k)v = COMBINE(k)
(
h(k−1)v ,AGGREGATE(k)

({
(h(k−1)v , h(k−1)u , euv) : u ∈ N (v)

}))
, (1)

where h(k)v denotes the representation of node v at the k-th layer, euv is the feature vector of edge
between u and v and andN (v) represents the neighborhood set of node v. h(0)v is initialized with Xv .
Furthermore, to obtain the representation of the entire graph hG, READOUT functions are designed
to pool node representations at the final iteration K,

hG = READOUT
({
h(K)
v | v ∈ G

})
. (2)

READOUT is a permutation-invariant function, such as averaging, sum, max or more sophisticated
graph-level pooling functions [49, 53].

2.3 Self-supervised Learning of Graphs

Graph Self-supervised learning aims to learn the intermediate representations of unlabeled graph data
that are useful for unknown downstream tasks. [14, 15, 52, 51, 32, 10, 30, 39, 28, 41]. Traditional
graph embedding methods [9, 29] define different kinds of graph proximities, i.e., the vertex proximity,
as the self-supervised objective to learn vertex representations. Furthermore, [39, 28, 41] proposed to
use the mutual information maximization as the optimization objective for GNNs. Recently, more
self-supervised tasks for GNNs have been proposed [14, 15, 52, 51, 32, 10, 54, 30]. Based on how
the self-supervised tasks are constructed, these models can be classified into two categories, namely
contrastive models and predictive models. Contrastive models try to generate informative and diverse
views from data instances and perform node-to-context [14], node-to-graph [39] or motif-to-graph
[54] contrastive learning. On the other hand, predictive models are trained in a supervised fashion,
where the labels are generated based on certain properties of the input graph data, i.e., node attributes
[32], or by selecting certain parts of the graph [15, 32].

However, few works try to leverage the information of graph motifs for graph self-supervised learning.
Grover [32] use traditional softwares to extract motifs and treat them as classification labels. MICRO-
Graph [54] exploits graph motifs for motif-graph contrastive learning. Unfortunately, both methods
fail to consider the topology information of motifs.

3 Motif-based Graph Self-supervised Learning

In this section, we introduce the framework of motif-based graph self-supervised learning (Figure 1).
Generally, the framework consists of three parts: chemistry-inspired molecule fragmentation, motif
generation and multi-level self-supervised pre-training for GNNs.

3

Bond types

Atom mask

C, N, O, S, Cl…

Bond mask

Motif layer

Atom layer

Topology Prediction Motif Prediction

.

Figure 1: Illustration of Motif-based Graph Self-supervised learning (MGSSL). The multi-level
pre-training consists of two layers, Atom layer and Motif layer. In the Atom layer, we mask node/edge
attributes and let GNNs predict those attributes based on neighboring structures. In the Motif layer,
we construct motif trees and perform motif generative pre-training. In each step, based on existing
motifs and connections, topology and motif predictions are made iteratively.

3.1 Chemistry-inspired Molecule Fragmentation

Given a dataset of molecules, the first step of our method is to decompose molecules into several
fragments/motifs. Based on these fragments, a molecule graph can be converted into a motif tree
structure where each node represents a motif and the edges denotes the relative spatial relationships
among motifs. We choose to represent the structure of motifs as a tree because it facilitates the motif
generation task. Formally, given a molecule graph G = (V,E), a motif tree T (G) = (V, E ,X) is
a connected labeled tree whose node set is V = {M1, ...,Mn} and edge set is E . X refers to the
induced motif vocabulary. Each motif Mi = (Vi, Ei) is a subgraph of G. There are many ways
to fragment a given graph while the designed molecule fragmentation method should achieve the
following goals: 1) In a motif tree T (G), the union of all motifs Mi should equals G. Formally,⋃
i Vi = V and

⋃
iEi

⋃
E = E. 2) In a motif tree T (G), the motifs should have no intersections.

That is Mi ∩Mj = ∅. 3) The induced motifs should capture semantic meanings, e.g., similar to
meaningful functional groups in the chemistry domain. 4) The occurrence of motifs in the dataset
should be frequent enough so that the pre-trained GNNs can learn semantic information of motifs
that can be generalized to downstream tasks. After the molecule fragmentation, the motif vocabulary
of the molecule dataset should have a moderate size.

In Figure 2, we show the overview of molecule fragmentation. Generally, there are three procedures,
BRICS fragmentation, further decomposition, and motif tree construction. A motif vocabulary can be
built via preprocessing the whole molecule dataset following the molecule fragmentation procedures.

To fragment molecule graphs and construct motif trees, we firstly use the Breaking of Retrosyntheti-
cally Interesting Chemical Substructures (BRICS) algorithm [4] that leverages the domain knowledge
from chemistry. BRICS defines 16 rules and breaks strategic bonds in a molecule that match a set
of chemical reactions. "Dummy" atoms are attached to each end of the cleavage sites, marking
the location where two fragments can join together. BRICS cleavage rules are designed to retain
molecular components with valuable structural and functional content, e.g. aromatic rings.

However, we find BRICS alone cannot generate desired motifs for molecule graphs. This is because
BRICS only breaks bonds based on a limited set of chemical reactions and tends to generate several
large fragments for a molecule. Moreover, due to the combination explosion of graph structure, we
find BRICS produces many motifs that are variations of the same underlying structure (e.g., Furan
ring with different combinations of Halogen atoms). The motif vocabulary is large (more than 100k
unique fragments) while most of these motifs appear less than 5 times in the whole dataset.

To tackle the problems above, we introduce a post-processing procedure to BRICS. To alleviate the
combination explosion, we define two rules operating on the output fragments of BRICS: (1) Break
the bond where one end atom is in a ring while the other end not. (2) Select non-ring atoms with three
or more neighboring atoms as new motifs and break the neighboring bonds. The first rule reduces the
number of ring variants and the second rule break the side chains. Experiments show that these rules
effectively reduce the size of motif vocabulary and improve the occurrence frequency of motifs.

4

C1(F)ccccc1OCC(N)O

C1(F)ccccc1*

O

*CC(N)O

C *OH *NH2

C1(F)ccccc1*

C1(*)ccccc1* *F
Motif Tree

1) BRICS Fragmentation 2) Further Decomposition 3) Motif Tree Construction

Motif Vocabulary

*OCC(N)O

O *CC(N)O

Figure 2: Overview of molecule fragmentation. Generally, there are three steps: 1) Firstly a molecule
graph is cleaved based on BRICS. 2) Further decomposition to reduce the redundancy of motifs 3)
Construct motif trees from molecule graphs. A motif vocabulary is built after preprocessing the
whole molecule dataset.

3.2 Motif Generation

Here, we present the framework of motif generation for the generative self-supervised pre-training.
The goal of the motif generation task is to let GNNs learn the data distribution of graph motifs so
that the pre-trained GNNs can easily generalize to downstream tasks with several finetuning steps on
graphs from similar domains.

Given a molecule graph G = (V,E) and a GNN model fθ, we first convert the molecule graph
to a motif tree T (G) = (V, E ,X). Then we can model the likelihood over this motif tree by the
GNN model as p(T (G); θ), representing how the motifs are labeled and connected. Generally,
our method aims to pretrain the GNN model fθ via maximizing the likelihood of motif trees, i.e.,
θ∗ = argmaxθ p(T (G); θ). To model the likelihood of motif trees, special predictions heads for
topology and motif label predictions are designed (as shown in the following sections) and optimized
along with fθ. After pre-training, only the GNN model fθ is transferred to downstream tasks.

We note that most existing works on graph generation [17, 23] follow the auto-regressive manner
to factorize the probability objective, i.e., p(T (G); θ) in this work. For each molecular graph, they
decompose it into a sequence of generation steps. Similarly in this paper, we interleave the addition
of a new motif, and the addition of bonds to connect the newly added motif to the existing partial
motif tree. We denote a permutation vector π to determine the motif ordering, in which iπ denotes
the motif ID of i-th position in permutation π. Therefore, the probability p(T (G); θ) is equivalent to
the expected likelihood over all possible permutations, i.e.,

p(T (G); θ) = Eπ [pθ(Vπ, Eπ)] , (3)

where Vπ denotes the permuted motif labels and Eπ denotes the edges among motifs.

Our formalism permits a variety of orders. For simplicity, we assume that any node ordering π has an
equal probability and we also omit the subscript π when illustrating the generative process for one
permutation in the following sections. Given a permutation order, the probability of generating motif
tree T (G) can be decomposed as follows:

log pθ(V, E) =
|V|∑
i=1

log pθ(Vi, Ei | V<i, E<i). (4)

At each step i, we use motif attributes V<i and structures E<i of all motifs generated before i to
generate a new motif Vi and its connection with existing motifs Ei.
Equation 4 describes the autoregressive generative process of motif trees. Then the question
is how to choose an efficient generation order and how to model the conditional probability
log pθ(Vi, Ei | V<i, E<i). In the following sections, we introduce two efficient generation orders,

5

1

2

3

4

5

7

6
ℎ56

1

2

3

4

5

7

6

ℎ65

Backtrack
1

2

3

4

5

7

6

ℎ57

1

2

3

4

5

7

6

ℎ75

BacktrackDFS

order

1） 2） 3） 4）

1

2

3

4

5

7

6ℎ34
1

2

3

4

5

7

6

ℎ43

1

2

3

4

5

7

6

ℎ45

1

2

3

4

5

7

6
ℎ54

BFS

order

1） 2） 3） 4）

.

Figure 3: Illustration of the motif generation orders. The first row is the illustration of DFS order and
the second row is the BFS order.

breadth-first (BFS) and depth-first (DFS) orders and show the corresponding auto-regressive genera-
tive models.

To generate a motif tree from scratch, we need to first choose the root of motif tree. In our experiments,
we simply choose the motif with the first atom in the canonical order [34]. Then MGSSL generates
motifs in DFS or BFS orders (see Figure 3). In the DFS order, for every visited motif, MGSSL first
makes a topological prediction: whether this node has children to be generated. If a new child motif
node is generated, we predict its label and recurse this process. MGSSL backtracks when there is
no more children to generate. As for the BFS order, MGSSL generates motif nodes layer-wise. For
motifs nodes in the k-th layer, MGSSL makes topological predictions and label predictions. If all the
children nodes of motifs in the k-th layer are generated, MGSSL will move to the next layer. We also
note that the motif node ordering in BFS and DFS are not unique as the order within sibling nodes
is ambiguous. In the experiments, we pre-train in one order and leave this issue and other potential
generation orders for future exploration.

At each time step, a motif node receives information from other generated motifs for making those
predictions. The information is propagated through message vectors hij when motif trees are
incrementally constructed. Formally, let Êt be the set of message at time t. The model visits motif
i at time t and xi denotes the embedding of motif i, which can be obtained by pooling the atom
embeddings in motif i. The message hi,j is updated through previous messages:

hi,j = GRU
(
xi, {hk,i}(k,i)∈Êt,k 6=j

)
, (5)

where GRU is Gated Recurrent Unit [3] adapted for motif tree message passing:

si,j =
∑

(k,i)∈Êt,k 6=j

hk,i (6)

zi,j = σ(Wzxi +Uzsi,j + bz) (7)
rk,i = σ(Wrxi +Urhk,i + br) (8)

h̃i,j = tanh(Wxi + U
∑

k=N (i)\j

rk,i � hk,i) (9)

hi,j = (1− zij)� sij + zij � h̃i,j . (10)

Topology Prediction: When MGSSL visits motif i, it needs to make binary predictions on whether
it has children to be generated. We compute the probability via a one hidden layer network followed
by a sigmoid function taking messages and motif embeddings into consideration:

pt = σ

Ud · τ(W d
1 xi +W d

2

∑
(k,i)∈Êt

hk,i)

 , (11)

where d is the dimension of the hidden layer.

Motif Label Prediction: When motif i generate a child motif j, we predict the label of child j with:

qj = softmax(U lτ(W lhij)), (12)

6

where qj is the distribution over the motif vocabulary X and l is the hidden layer dimension. Let
p̂t ∈ {0, 1} and q̂j be the ground truth topological and motif label values, the motif generation loss is
the sum of cross-entropy losses of topological and motif label predictions:

Lmotif =
∑
t

Ltopo(pt, p̂t) +
∑
j

Lpred(qj , q̂j). (13)

In the optimization process, minimizing the above loss function corresponds to maximizing the log
likelihood in equation 4. Note that in the training process, after topological and motif label prediction
at each step, we replace them with their ground truth so that the MGSSL makes predictions based on
correct histories.

3.3 Multi-level Self-supervised Pre-training

To capture the multi-scale information in molecules, MGSSL is designed to be a hierarchical
framework including Atom-level and Motif-level tasks (Figure 1). For Atom-level pre-training, we
leverage attribute masking to let GNNs firstly learn the regularities of the node/edge attributes. In
attribute masking, randomly sampled node and bond attributes (e.g., atom numbers, bond types) are
replaced with special masked indicators. Then we apply GNNs to obtain the corresponding node/edge
embeddings (edge embeddings can be obtained as a combination of node embeddings of the edge’s
end nodes). Finally, a fully connected layer on top of the embeddings predicts the node/edge attributes.
The cross-entropy prediction losses are denoted as Latom and Lbond respectively.

To avoid catastrophic forgetting in sequential pre-training, we unify multi-level tasks and aim to
minimize the hybrid loss in pre-training:

Lssl = λ1Lmotif + λ2Latom + λ3Lbond, (14)

where λi are weights of losses. However, it is time-consuming to do a grid search to determine
the optimal weights. Here, we adapts the MGDA-UB algorithm [37] from multi-task learning to
efficiently solve the optimization problem (Equation 14). Since MGDA-UB calculates the weights λi
by Frank-Wolfe algorithm [16] at each training step, we do not have to give weights explicitly. The
pseudo codes of the training process is included in the Appendix.

4 Experimental Results

4.1 Experimental Settings

Datasets and Dataset Splittings. In this paper, we mainly focus on the molecular property prediction
tasks, where large-scale unlabeled molecules are abundant whereas downstream labeled data is
scarce. Specifically, we use 250k unlabeled molecules sampled from the ZINC15 database [38]
for self-supervised pre-training tasks. As for the downstream finetune tasks, we consider 8 binary
classification benchmark datasets contained in MoleculeNet [45]. The detailed dataset statistics
are summarized in the Appendix. We use the open-source package RDKit [22] to preprocess the
SMILES strings from various datasets. To mimic the real-world use case, we split the downstream
dataset by scaffold-split [14, 31], which splits the molecules according to their structures. We apply 3
independent runs on random data splitting and report the means and standard deviations.

Baselines. We comprehensively evaluate the performance of MGSSL against five state-of-the-art
self-supervised pre-training methods for GNNs:

• Deep Graph Infomax [41] maximizes the mutual information between the representations
of the whole graphs and the representations of its sampled subgraphs.

• Attribute masking [14] masks node/edge features and let GNNs predict these attributes.
• GCC [30] designs the pretraining task as discriminating ego-networks sampled from a

certain node ego-networks sampled from other nodes.
• Grover [32] predicts the contextual properties based on atom embeddings to encode contex-

tual information into node embeddings.
• GPT-GNN [15] is a generative pretraining task which predicts masked edges and node

attributes.

7

Table 1: Test ROC-AUC (%) performance on molecular property prediction benchmarks using differ-
ent pre-training strategies with GIN. The rightmost column averages the mean of test performance
across the 8 datasets. The best result for each dataset are bolded.

SSL methods muv clintox sider hiv tox21 bace toxcast bbbp Avg.

No pretrain 71.7±2.3 58.2±2.8 57.2±0.7 75.4±1.5 74.3±0.5 70.0±2.5 63.3±1.5 65.5±1.8 67.0
Infomax 75.1±2.8 73.0±3.2 58.2±0.5 76.5±1.6 75.2±0.3 75.6±1.0 62.8±0.6 68.1±1.3 70.6
Attribute masking 74.7±1.9 77.5±3.1 59.6±0.7 77.9±1.2 77.2±0.4 78.3±1.1 63.3±0.8 65.6±0.9 71.8
GCC 74.1±1.4 73.2±2.6 58.0±0.9 75.5±0.8 76.6±0.5 75.0±1.5 63.5±0.4 66.9±0.7 70.4
GPT-GNN 75.0±2.5 74.9±2.7 59.3±0.8 77.0±1.7 76.1±0.4 78.5±0.9 63.1±0.5 67.5±1.3 71.4
Grover 75.8±1.7 76.9±1.9 60.7±0.5 77.8±1.4 76.3±0.6 79.5±1.1 63.4±0.6 68.0±1.5 72.3
MGSSL (DFS) 78.1±1.8 79.7±2.2 60.5±0.7 79.5±1.1 76.4±0.4 79.7±0.8 63.8±0.3 70.5±1.1 73.5
MGSSL (BFS) 78.7±1.5 80.7±2.1 61.8±0.8 78.8±1.2 76.5±0.3 79.1±0.9 64.1±0.7 69.7±0.9 73.7

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

No Pretrain
Attribute Masking
GPT-GNN
BFS
DFS

(a) clintox

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No Pretrain
Attribute Masking
GPT-GNN
BFS
DFS

(b) sider

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No Pretrain
Attribute Masking
GPT-GNN
BFS
DFS

(c) hiv

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No Pretrain
Attribute Masking
GPT-GNN
BFS
DFS

(d) bace

Figure 4: Training and testing curves of different pre-training strategies on GINs. Solid and dashed
lines indicate training and testing curves respectively.

In experiments, we also consider GNN without pre-training (direct supervised finetuning) and MGSSL
with different generation orders (BFS and DFS).

Model Configuration. In the following experiments, we select a five-layer Graph Isomorphism
Networks (GINs) as the backbone architecture, which is one of the state-of-the-art GNN methods.
Mean pooling is used as the Readout function for GIN. In MGSSL, sum pooling is used to get the
embedding of graph motifs. Atom number and chirality tag are input as node features and bond type
and direction are regarded as edge features. In the process of pre-training, GNNs are pre-trained
for 100 epochs with Adam optimizer and learning rate 0.001. In the finetuning stage, we train for
100 epochs and report the testing score with the best cross-validation performance. The hidden
dimension is set to 300 and the batch size is set to 32 for pre-training and finetuning. The split for
train/validation/test sets is 80% : 10% : 10%. All experiments are conducted on Tesla V100 GPUs.

4.2 Results and Analysis

Results on Downstream Tasks. In Table 1, we show the testing performance on downstream
molecular prediction benchmarks using different self-supervised pre-training strategies with GIN.
We have the following observations: 1) Generally, GNN models can benefit from various self-
supervised pre-training tasks. The average prediction ROC-AUC of all the pre-trained models are
better than GNN with direct finetuning. 2) MGSSL methods achieve the best performance on 7 out
of 8 benchmarks, demonstrating the effectiveness of motif-based self-supervised pre-training. 3)
We also show MGSSL with two motif generation orders in Table 1. Both methods show significant
performance improvements on downstream tasks and BFS has a small edge over DFS on average.
This may be explained by the fact that MGSSL is required to generate motifs layer-wise in BFS
orders, which helps GNNs learn more structural information of motifs. In the following experiments,
we use BFS order as the default setting.

In Figure 4, we further show the training and testing curves of MGSSL (BFS and DFS) and the
selected baselines. Due to the page limits, we select 4 benchmark datasets here. Beyond predictive
performance improvement, our pre-trained GNNs have faster training and testing convergence than
baseline methods. Since the pre-training is a one-time-effort, once pre-trained with MGSSL, the
pre-trained GNNs can be used for various downstream tasks with minimal finetuning overhead.

Influence of the Base GNN. In Table 2 we show that MGSSL is agnostic to the GNN architectures
by trying five popular GNN models including GIN [46], GCN [19], RGCN[33], GraphSAGE[11]
and DAGNN [24]. We report the average ROC-AUC and the relative gains on 8 benchmarks. We

8

Table 2: Compare pre-training gains with different GNN architectures, averaged ROC-AUC (%) on 8
benchmark datasets

Model GCN GIN RGCN DAGNN GraphSAGE

No pretrain 68.8 67.0 68.3 67.1 68.3
MGSSL (BFS) 72.7 73.7 73.0 72.3 73.4
Relative gain 5.7% 10.0% 6.9% 7.7 % 7.5%

observe that all these GNN architectures can benefit from motif-based pre-training tasks. Moreover,
GIN achieves the largest relative gain and the best performance after pre-training.

103 104 105

Size of motif vocabulary

0.55

0.60

0.65

0.70

0.75

0.80

JT-VAE Intermediate

Our Method BRICS

clintox
sider
bbbp
muv
hiv

(a) MGSSL (BFS)

103 104 105

Size of motif vocabulary

0.55

0.60

0.65

0.70

0.75

0.80

JT-VAE Intermediate

Our Method BRICS

clintox
sider
bbbp
muv
hiv

(b) MGSSL (DFS)

Figure 5: Influence of the size of motif vocabulary

Influence of Molecule Fragmentation.
Here we show proper molecule frag-
mentation methods are vital for the
motif-based pre-training. Given dif-
ferent molecule fragmentation methods,
different motif vocabulary are gener-
ated with varying sizes. Other than
the fragmentation method introduced in
this paper, we also try other fragmenta-
tion schemes with different granularities
[17, 4]. BRICS alone [4] tends to gener-
ate motifs with large numbers of atoms.
Due to the combinatorial explosion, its
generated motif vocabulary has a size over 100k while more than 90% motifs have frequencies less
than 5. On the other hand, JT-VAE [17] fragments molecules into rings and bonds and has a motif
vocabulary size of less than 800. Our methods generate around 12k distinct motifs. By combining
different fragmentation strategies, we are able to fragment molecules with intermediate granularities.
In Figure 5, we show the influence of the size of motif vocabulary on 5 benchmark datasets. We
can observe that the pre-trained models achieve the optimal performance with the motif vocabulary
generated by our method. This may be explained by the following reasons: 1) When the motif
segmentation is too coarse and the motif vocabulary is too large, the generated motif trees have fewer
nodes. It is harder for GNNs to capture the structural information of motifs. Moreover, the generated
motifs have low occurrence frequencies, which prevents GNNs from learning the general semantic
information of motifs that can be generalized to downstream tasks. 2) When the motif segmentation
is too fine, many generated motifs are single atoms or bonds, which inhibits GNNs from learning
higher level semantic information through motif generation tasks.

Methods Avg. ROC-AUC

w/o atom-level 73.0
Sequential pre-training 73.4
Multi-level 73.7

Table 3: Ablation studies on multi-level self-
supervised pre-training.

Ablation Studies on Multi-level Self-
supervised Pre-training. We perform ablation
studies to show the effectiveness of the multi-level
pre-training. In Table 3, w/o atom-level denotes
pre-training GNNs with Motif-level tasks only
and the sequential pre-training denotes perform-
ing the Motif-level tasks after the Atom-level
tasks. As observed from Table 3, the multi-level
pre-training has larger average ROC-AUC than
the two variants. We can have the following
interesting insights: 1) The Atom-level pre-training tasks enables GNNs to first capture the
atom-level information, which can benefit higher level, i.e., motif-level tasks. 2) Since our multi-level
pre-training unifies multi-scale pre-training tasks and adaptively assigns the weights for hierarchical
tasks, it can achieve better performance than sequential pre-training.

5 Conclusion and Future Works

In this paper, we proposed Motif-based Graph Self-supervised Learning (MGSSL), which pre-trains
GNNs with a novel motif generation task. Through pre-training, MGSSL empowers GNNs to
capture the rich semantic and structural information in graph motifs. First, a retrosynthesis-based

9

algorithm with two additional rules are leveraged to fragment molecule graphs and derive semantic
meaningful motifs. Second, a motif generative pre-training framework is designed and two specific
generation orders are considered (BFS and DFS). At each step, the pre-trained GNN is required to
make topology and motif label predictions. Furthermore, we designed a multi-level pre-training
to unify hierarchical self-supervised tasks. Finally, we conducted extensive experiments to show
that MGSSL overperforms all the state-of-the-art baselines on various downstream benchmark tasks.
Interesting future work includes 1) Designing more self-supervised pre-training tasks based on graph
motifs. 2) Exploring motif-based pre-training in other domains other than molecules.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for valuable feedback. This research was supported by grants
from the National Natural Science Foundation of China (Grants No. 61922073 and U20A20229) and
2021 Tencent Rhino-Bird Research Elite Training Program.

References
[1] Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. Nemofinder: Dissecting genome-wide

protein-protein interactions with meso-scale network motifs. In SIGKDD, pages 106–115, 2006.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML, pages 1597–1607. PMLR, 2020.

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[4] Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of
compiling and using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling
Drug Discovery, 3(10):1503–1507, 2008.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. ACL, 2018.

[6] Felix A Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S Schoenholz, George E
Dahl, Oriol Vinyals, Steven Kearnes, Patrick F Riley, and O Anatole Von Lilienfeld. Prediction
errors of molecular machine learning models lower than hybrid dft error. Journal of chemical
theory and computation, 13(11):5255–5264, 2017.

[7] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[8] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages 1263–1272. PMLR, 2017.

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
SIGKDD, pages 855–864, 2016.

[10] Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. Graphcl: Contrastive
self-supervised learning of graph representations. arXiv preprint arXiv:2007.08025, 2020.

[11] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. NeurIPS, 2017.

[12] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,
and Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular
property prediction. KDD ’20, 2020.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pages 9729–9738, 2020.

[14] Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2020.

10

[15] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In SIGKDD, pages 1857–1867, 2020.

[16] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML,
pages 427–435. PMLR, 2013.

[17] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, pages 2323–2332. PMLR, 2018.

[18] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–
1758, 2004.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ICLR, 2017.

[20] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In ICLR, 2020.

[21] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation
effects. Physical review, 140(4A):A1133, 1965.

[22] Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013.

[23] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S Zemel. Efficient graph generation with graph
recurrent attention networks. NeurIPS, 2019.

[24] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In
SIGKDD, pages 338–348, 2020.

[25] Chengqiang Lu, Qi Liu, Chao Wang, Zhenya Huang, Peize Lin, and Lixin He. Molecular prop-
erty prediction: A multilevel quantum interactions modeling perspective. In AAAI, volume 33,
pages 1052–1060, 2019.

[26] James L McDonagh, Arnaldo F Silva, Mark A Vincent, and Paul LA Popelier. Machine learning
of dynamic electron correlation energies from topological atoms. Journal of chemical theory
and computation, 14(1):216–224, 2017.

[27] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[28] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and
Junzhou Huang. Graph representation learning via graphical mutual information maximization.
In Proceedings of The Web Conference 2020, pages 259–270, 2020.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In SIGKDD, pages 701–710, 2014.

[30] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
SIGKDD, pages 1150–1160, 2020.

[31] Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande. Deep learning for the
life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. "
O’Reilly Media, Inc.", 2019.

[32] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. NeurIPS, 33, 2020.

[33] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic
web conference, pages 593–607. Springer, 2018.

11

[34] Nadine Schneider, Roger A Sayle, and Gregory A Landrum. Get your atoms in order an open-
source implementation of a novel and robust molecular canonicalization algorithm. Journal of
chemical information and modeling, 55(10):2111–2120, 2015.

[35] Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre
Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature com-
munications, 8(1):1–8, 2017.

[36] Kristof T Schütt, Pieter-Jan Kindermans, Huziel E Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. NeurIPS, 2017.

[37] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. NeurIPS,
2018.

[38] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

[39] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2019.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[41] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[42] Hao Wang, Defu Lian, Hanghang Tong, Qi Liu, Zhenya Huang, and Enhong Chen. Hypersorec:
Exploiting hyperbolic user and item representations with multiple aspects for social-aware
recommendation. ACM Trans. Inf. Syst., 2021.

[43] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
Mcne: An end-to-end framework for learning multiple conditional network representations of
social network. KDD ’19, 2019.

[44] Junmei Wang and Tingjun Hou. Application of molecular dynamics simulations in molecular
property prediction ii: diffusion coefficient. Journal of computational chemistry, 2011.

[45] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[47] Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, JINYU YANG, Yang Yu,
and Junzhou Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, NeurIPS, volume 33,
pages 11248–11258. Curran Associates, Inc., 2020.

[48] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molec-
ular representations for property prediction. Journal of chemical information and modeling,
59(8):3370–3388, 2019.

[49] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, NeurIPS, volume 31,
2018.

[50] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Gener-
ating realistic graphs with deep auto-regressive models. In ICML, pages 5708–5717. PMLR,
2018.

12

[51] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. NeurIPS, 33, 2020.

[52] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In ICML. PMLR, 2020.

[53] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, volume 32, 2018.

[54] Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. Motif-driven contrastive
learning of graph representations. arXiv preprint arXiv:2012.12533, 2020.

[55] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, and Enhong
Chen. Graphmi: Extracting private graph data from graph neural networks. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21.

13

	Introduction
	Preliminaries and Related Work
	Molecular Property Prediction
	Preliminaries of Graph Neural Networks
	Self-supervised Learning of Graphs

	Motif-based Graph Self-supervised Learning
	Chemistry-inspired Molecule Fragmentation
	Motif Generation
	Multi-level Self-supervised Pre-training

	Experimental Results
	Experimental Settings
	Results and Analysis

	Conclusion and Future Works

