
Hierarchical Graph Transformer with Adaptive
Node Sampling

Zaixi Zhang1,2 Qi Liu1,2∗, Qingyong Hu3, Chee-Kong Lee4
1: Anhui Province Key Lab of Big Data Analysis and Application,

School of Computer Science and Technology, University of Science and Technology of China
2:State Key Laboratory of Cognitive Intelligence, Hefei, Anhui, China

3:Hong Kong University of Science and Technology, 4: Tencent America
zaixi@mail.ustc.edu.cn, qiliuql@ustc.edu.cn

qhuag@cse.ust.hk, cheekonglee@tencent.com

Abstract

The Transformer architecture has achieved remarkable success in a number of
domains including natural language processing and computer vision. However,
when it comes to graph-structured data, transformers have not achieved competitive
performance, especially on large graphs. In this paper, we identify the main
deficiencies of current graph transformers: (1) Existing node sampling strategies
in Graph Transformers are agnostic to the graph characteristics and the training
process. (2) Most sampling strategies only focus on local neighbors and neglect
the long-range dependencies in the graph. We conduct experimental investigations
on synthetic datasets to show that existing sampling strategies are sub-optimal. To
tackle the aforementioned problems, we formulate the optimization strategies of
node sampling in Graph Transformer as an adversary bandit problem, where the
rewards are related to the attention weights and can vary in the training procedure.
Meanwhile, we propose a hierarchical attention scheme with graph coarsening
to capture the long-range interactions while reducing computational complexity.
Finally, we conduct extensive experiments on real-world datasets to demonstrate
the superiority of our method over existing graph transformers and popular GNNs.

1 Introduction

In recent years, the Transformer architecture [33] and its variants (e.g., Bert [7] and ViT [8]) have
achieved unprecedented successes in natural language processing (NLP) and computer vision (CV).
In light of the superior performance of Transformer, some recent works [21, 38] attempt to generalize
Transformer for graph data by treating each node as a token and designing dedicated positional
encoding. However, most of these works only focus on small graphs such as molecular graphs
with tens of atoms [38]. For instance, Graphormer [38] achieves state-of-the-art performance on
molecular property prediction tasks. When it comes to large graphs, the quadratic computational
and storage complexity of the vanilla Transformer with the number of nodes inhibits the practical
application. Although some Sparse Transformer methods [30, 2, 19] can improve the efficiency of
the vanilla Transformer, they have not exploited the unique characteristics of graph data and require
a quadratic or at least sub-quadratic space complexity, which is still unaffordable in most practical
cases. Moreover, the full-attention mechanism potentially introduces noise from numerous irrelevant
nodes in the full graph.

To generalize Transformer to large graphs, existing Transformer-based methods [9, 46, 7] on graphs
explicitly or implicitly restrict each node’s receptive field to reduce the computational and storage

∗Qi Liu is the corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

complexity. For example, Graph-Bert [41] restricts the receptive field of each node to the nodes
with top-k intimacy scores such as Personalized PageRank (PPR). GT-Sparse [9] only considers
1-hop neighboring nodes. We argue that existing Graph Transformers have the following deficiencies:
(1) The fixed node sampling strategies in existing Graph Transformers are ignorant of the graph
properties, which may sample uninformative nodes for attention. Therefore, an adaptive node
sampling strategy aware of the graph properties is needed. We conduct case studies in Section 4 to
support our arguments. (2) Though the sampling method enables scalability, most node sampling
strategies focus on local neighbors and neglect the long-range dependencies and global contexts of
graphs. Hence, incorporating complementary global information is necessary for Graph Transformer.

To solve the challenge (1), we propose Adaptive Node Sampling for Graph Transformer (ANS-GT)
and formulate the optimization strategy of node sampling in Graph Transformer as an adversary
bandit problem. Specifically in ANS-GT, we modify Exp4.P method [3] to adaptively assign weights
to several chosen sampling heuristics (e.g., 1-hop neighbors, 2-hop neighbors, PPR) and combine
these sampling strategies to sample informative nodes. The reward is proportional to the attention
weights and the sampling probabilities of nodes, i.e. the reward to a certain sampling heuristic is
higher if the sampling probability distribution and the node attention weights distribution are more
similar. Then in the training process of Graph Transformer, the node sampling strategy is updated
simultaneously to sample more informative nodes. With more informative nodes input into the
self-attention module, ANS-GT can achieve better performance.

To tackle the challenge (2), we propose a hierarchical attention scheme for Graph Transformer to
encode both local and global information for each node. The hierarchical attention scheme consists
of fine-grained local attention and coarse-grained global attention. In the local attention, we use the
aforementioned adaptive node sampling strategy to select informative local nodes for attention. As
for global attention, we first use graph coarsening algorithms [26] to pre-process the input graph and
generate a coarse graph. Such algorithms mimic a down-sampling of the original graph via grouping
the nodes into super-nodes while preserving global graph information as much as possible. The
center nodes then interact with the sampled super-nodes. Such coarse-grained global attention helps
each node capture long-distance dependencies while reducing the computational complexity of the
vanilla Graph Transformers.

We conduct extensive experiments on real-world datasets to show the effectiveness of ANS-GT. Our
method outperforms all the existing Graph Transformer architectures and obtains state-of-the-art
results on 6 benchmark datasets. Detailed analysis and ablation studies further show the superiority
of the adaptive node sampling module and the hierarchical attention scheme.

In summary, we make the following contributions:

• We propose Adaptive Node Sampling for Graph Transformer (ANS-GT), which modifies a
multi-armed bandit algorithm to adaptively sample nodes for attention.

• In the hierarchical attention scheme, we introduce coarse-grained global attention with
graph coarsening, which helps graph transformer capture long-range dependencies while
increasing efficiency.

• We empirically evaluate our method on six benchmark datasets to show the advantage over
existing Graph Transformers and popular GNNs.

2 Related Work

2.1 Transformers for Graph

Recently, Transformer [33] has shown its superiority in an increasing number of domains [7, 8, 40],
e.g. Bert [7] in NLP and ViT [8] in CV. Existing works attempting to generalize Transformer to graph
data mainly focus on two problems: (1) How to design dedicated positional encoding for the nodes;
(2) How to alleviate the quadratic computational complexity of the vanilla Transformer and scale
the Graph Transformer to large graphs. As for the positional encoding, GT [9] firstly uses Laplacian
eigenvectors to enhance node features. Graph-Bert [41] studies employing Weisfeiler-Lehman code to
encode structural information. Graphormer [38] utilizes centrality encoding to enhance node features
while incorporating edge information with spatial (SPD-indexed attention bias) and edge encoding.
SAN [21] further replaces the static Laplacian eigenvectors with learnable positional encodings and

2

designs an attention mechanism that distinguishes local connectivity. For the scalability issue, one
immediate idea is to restrict the number of attending nodes. For example, GAT [34] and GT-Sparse
[9] only consider the 1-hop neighboring nodes; Gophormer [46] uses GraphSAGE [11] sampling
to uniformly sample ego-graphs with pre-defined maximum depth; Graph-Bert [41] restricts the
receptive field of each node to the nodes with top-k intimacy scores (e.g., Katz and PPR). However,
these fixed node sampling strategies sacrifice the advantage of the Transformer architecture. SAC
[22] tries to use an LSTM edge predictor to predict edges for self-attention operations. However, the
fact that LSTM can hardly be parallelized reduces the computational efficiency of the Transformer.

2.2 Sparse Transformers

In parallel, many efforts have been devoted to reducing the computational complexity of the Trans-
former in the field of NLP [23] and CV [32]. In the domain of NLP, Longformer [2] applies block-wise
or strode patterns while only fixing on fixed neighbors. Reformer [19] replaces dot-product attention
by using approximate attention computation based on locality-sensitive hashing. Routing Trans-
former [30] employs online k-means clustering on the tokens. Linformer [35] demonstrates that the
self-attention mechanism can be approximated by a low-rank matrix and reduces the complexity from
O(n2) to O(n). As for vision transformers, Swin Transformer [24] proposes the shifted windowing
scheme which brings greater efficiency by limiting self-attention computation to non-overlapping
local windows while also allowing for cross-window connection. Focal Transformer [37] presents a
new mechanism incorporating both fine-grained local and coarse-grained global attention to capture
short- and long-range visual dependencies efficiently. However, these sparse transformers do not take
the unique graph properties into consideration.

2.3 Graph Neural Networks and Node Sampling

Graph neural networks (GNNs) [18, 11, 12, 44, 43, 31, 45, 42] follow a message-passing schema
that iteratively updates the representation of a node by aggregating representations from neighboring
nodes. When generalizing to large graphs, Graph Neural Networks face a similar scalability issue.
This is mainly due to the uncontrollable neighborhood expansion in the aggregation stage of GNN.
Several node sampling algorithms have been proposed to limit the neighborhood expansion, which
mainly falls into node-wise sampling methods and layer-wise sampling methods. In node-wise
sampling, each node samples k neighbors from its sampling distribution, then the total number of
nodes in the l-th layer becomes O(kl). GraphSage [11] is one of the most well-known node-wise
sampling methods with the uniform sampling distribution. GCN-BS [25] introduces a variance
reduced sampler based on multi-armed bandits. To alleviate the exponential neighbor expansion
O(kl) of the node-wise samplers, layer-wise samplers define the sampling distribution as a probability
of sampling nodes given a set of nodes in the upper layer [4, 16, 49]. From another perspective, these
sampling methods can also be categorized into fixed sampling strategies [11, 4, 49] and adaptive
strategies [25, 39]. However, none of the above sampling methods in GNNs can be directly applied
in Graph Transformer as Graph Transformer does not follow the message passing schema.

3 Preliminaries

3.1 Problem Definition

Let G = (A,X) denote the unweighted graph where A ∈ Rn×n represents the symmetric adjacency
matrix with n nodes, and X ∈ Rn×p is the attribute matrix of p attributes per node. The element Aij
in the adjacency matrix equals to 1 if there exists an edge between node vi and node vj , otherwise
Aij = 0. The label of node vi is yi. In the node classification problem, the classifier has the
knowledge of the labels of a subset of nodes VL. The goal of semi-supervised node classification is
to infer the labels of nodes in V \VL by learning a classification function.

3.2 Transformer Architecture

The Transformer architecture consists of a series of Transformer layers [33]. Each Transformer layer
has two parts: a multi-head self-attention (MHA) module and a position-wise feed-forward network
(FFN). Let H = [h1, · · · ,hm]

⊤ ∈ Rm×d denote the input to the self-attention module where d is

3

the hidden dimension, hi ∈ Rd×1 is the hidden representation at position i, and m is the number of
positions. The MHA module firstly projects the input H to query-, key-, value-spaces, denoted as
Q,K,V, using three matrices WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV :

Q = HWQ, K = HWK , V = HWV . (1)

Then, in each head i ∈ {1, 2, . . . , B} (B is the total number of heads), the scaled dot-product
attention mechanism is applied to the corresponding {Qi,Ki,Vi} :

headi = Softmax

(
QiK

T
i√

dK

)
Vi. (2)

Finally, the outputs from different heads are further concatenated and transformed to obtain the final
output of MHA:

MHA(H) = Concat (head1, . . . , headB)WO, (3)

where WO ∈ Rd×d. In this work, we employ dK = dV = d/B.

3.3 Graph Coarsening

The goal of Graph Coarsening [29, 26, 17] is to reduce the number of nodes in a graph by clustering
them into super-nodes while preserving the global information of the graph as much as possible.
Given a graph G = (V,E) (V is the node set and E is the edge set), the coarse graph is a smaller
weighted graph G′ = (V ′, E′). G′ is obtained from the original graph by first computing a partition
{C1, C2, · · · , C|V ′|} of V , i.e., the clusters C1 · · ·C|V ′| are disjoint and cover all the nodes in V .
Each cluster Ci corresponds to a super-node in G′ The partition can also be characterized by a matrix
P̂ ∈ {0, 1}|V |×|V ′|, with P̂ij = 1 if and only if node vi in G belongs to cluster Cj . Its normalized
version can be defined by P ≜ P̂D− 1

2 , where D is a |V ′| × |V ′| diagonal matrix with |Ci| as its i-th
diagonal entry. The feature matrix and weighted adjacency matrix of G′ are defined by X ′ ≜ PTX
and A′ ≜ PTAP . After Graph Coarsening, the number of nodes/edges in G′ is significantly smaller
than that of G. The coarsening rate can be defined as c = |V ′|

|V | .

4 Motivating Observations

To generalize Transformer to large graphs, existing Graph Transformer models typically choose to
sample a batch of nodes for attention. However, real-world graph datasets exhibit different properties,
which makes a fixed node sampling strategy unsuitable for all kinds of graphs. Here, we present a
simple yet intuitive case study to illustrate how the performance of Graph Transformer changes with
different node sampling strategies. The main idea is to use four popular node sampling strategies
for node classification: 1-hop neighbors, 2-hop neighbors, PPR, and KNN. Then, we will check the
performance of Graph Transformer on graphs with different properties. If the performance drops
sharply when the property varies, it will indicate that graphs with different properties may require
different node sampling strategies.

0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

1-hop
2-hop
KNN
PPR

Figure 1: Performance of Graph Trans-
former using different node sampling mech-
anisms: 1-hop, 2-hop, PPR and kNN re-
spectively on Newman networks.

We conduct experiments on the Newman artificial net-
works [10] since it enable us to obtain networks with
different properties easily. More detailed settings can
be found in Appendix A. Here, we consider the prop-
erty of homophily/heterophily as one example. Fol-
lowing previous works [47], the degree of homophily
α can be defined as the fraction of edges in a net-
work connecting nodes with the same class label, i.e.
α ≜ |(vi,vj)∈E∧yi=yj |

|E| . Graphs with α closer to 1 tend
to have more edges connecting nodes within the same
class, i.e. strong homophily; whereas networks with
α closer to 0 have more edges connecting nodes in
different classes, i.e. strong heterophily.

As shown in Figure 1, there is no sampling strategy
that dominates other strategies across the spectrum of

4

α, which supports our claim that an adaptive sampling
method is needed for graphs with different properties. For graphs with strong homophily (e.g.,
α = 1.0), it is easy to obtain high accuracy by sampling 1-hop neighbors or nodes with top PPR
scores. On the other hand, for graphs with strong heterophily (e.g., α = 0.05), the accuracy of using
2-hop neighbors as neighborhoods (i.e., 73.1%) is much higher than that of using 1-hop neighbors
and PPR. The probable reason is that the homophily ratio of 2-hop neighbors may rise with the
increase of inter-class edges. Finally, Graph Transformer with KNN node sampling can get the most
consistent results since KNN only calculates the similarity of attributes. Thus, KNN achieves the best
performance (i.e., 77.2% accuracy) when all the nodes are connected randomly, i.e. α = 0.25 for the
Newman network.

Hence, considering different graph properties (e.g., homophily/heterophily), Graph Transformer
should adaptively sample the most informative nodes for attention. These observations motivate us to
design the proposed hierarchical Graph Transformer with adaptive node sampling in Section 5.

5 The Proposed Method

In light of the limitations of existing Graph Transformers for large graphs and the motivating
observation in the previous section, we propose two effective methods for Graph Transformer to
adaptively sample informative nodes and capture the long-range coarse-grained dependencies in this
section. We also show that our method has a computational complexity of O(n). The overview of
the model framework is shown in Figure 2.

5.1 Adaptive Node Sampling

Our Adaptive Node Sampling module aims to adaptively choose the batch of most informative nodes
by a multi-armed bandit mechanism. In our setting, it is intuitive that the contributions of nodes to
the learning performance can be time-sensitive. Meanwhile, the rewards which are associated with
the model training process are not independent random variables across the iterations. The above
situation can satisfy the adversarial setting in the multi-armed bandit problem [1]. To adaptively
choose the most informative nodes with the designed sampling strategies, we adjust the method ALBL
proposed in [14], which modifies the EXP4.P method [3]. EXP4.P possesses a strong theoretical
guarantee for the adversarial setting.

Formally, let wt = (wt1, · · · , wtK) be the adaptive weight vector in iteration t, where the k-th non-
negative element wtk is the weight corresponding to the k-th node sampling strategy. The weight
vector wt is then scaled to a probability vector pt = (pt1, · · · , ptK) where ptk ∈ [pmin, 1] with
pmin > 0. Our ANS-GT adaptively sample nodes based on the probability vector and then obtains
the reward of the action.

For each center node, we consider the sampling probability matrix Qt ∈ RK×n, where K is the
number of sampling heuristics and n is the number of nodes in the graph. Specifically, Qtk,j denotes
the k-th sampling strategy’s preference on selecting node j in iteration t and Qt is normalized to
satisfy

∑n
j=1Q

t
k,j = 1. Note that our ANS-GT is a general framework and is not restricted to a

certain set of sampling heuristics. In our work, we adopt four representative sampling heuristics:

1-/2-hop neighbors: We adopt the normalized adjacency matrix Ã = D̂− 1
2 ÂD̂− 1

2 for 1-hop neigh-
bors and Ã2 for 2-hop neighbors, where Â = A+ I is the adjacency matrix of the graph G with self
connections added and D̂ is a diagonal matrix with D̂ii =

∑
j Âij .

KNN: We adopts the cosine similarity of node attributes to measure the similarities of nodes.
Mathematically, the similarity score Sij between node i and j is calculated as Sij = xi ·xj/(|xi|·|xj |)
where xi is the feature vector of node vi.

PPR: The Personalized PageRank [27] matrix S is calculated as: S = c(I − (1 − c)A)−1, where
factor c ∈ [0, 1] (set to 0.15 in our experiments). A denotes the column-normalized adjacency matrix.

5

1-hop neighbors

2-hop neighbors

PPR

Linear Linear Linear

Q K V

Matmul

Matmul

Softmax

Scale

L×

KNN

…Attribute

Similarity

Input Graph Proximity Encoding

Sampling Strategies

Graph Coarsening

Adaptive Node Sampling Module

…

Input Sequence

Attention of the center node

over the other nodes

Score of each node:

Calculate reward:

Update

(a)

(b)

(e)

(d)

(c) (h)(f)

(g)

Figure 2: Model framework of our proposed method: (a) An example input graph. The center node for
sampling is colored red. (b) We consider four sampling strategies in this work, i.e. 1-hop neighbors,
2-hop neighbors, PPR, and KNN. (c) The proximity encoding module. (d) Graph coarsening to
cluster nodes into super-nodes. (e) The adaptive node sampling module. (f) The self-attention module
in Graph Transformer. The output node embeddings are used for node classification. (g) In the
sampled input node sequences, the gray nodes are the fine-grained nodes; the white nodes are the
coarse-grained nodes from graph coarsening; the green nodes denote the global nodes. (h) We use the
first row of the attention matrix, i.e., A1,i multiplying the magnitude of the corresponding value Vi to
represent the significance of each node. Then we calculate the reward for each sampling strategy and
update the weights.

Finally, given the probability vector pt and the node sampling matrices Qt, the final node sampling
probability is:

ψti =

K∑
k=1

ptkQ
t
ki. (4)

We introduce a novel reward scheme based on the attention weights which is intrinsic in Transformer.
Formally, given an attention matrix A = Softmax(QKT)/

√
d, we use the first row of the attention

matrix, i.e., A1,i multiplying the magnitude of corresponding value Vi to represent the significance
of each node to the center node: si = A1,i × ∥Vi∥. In the situation of multiple heads and layers
in the Transformer, we average the significance scores in multiple attention matrices. The reward
to the k-th sampling strategy is: rk =

∑N
i=1

siQ
t
ki

ψt
i

, where N is the number of sampled nodes for
each center node. rk can be interpreted as the dot product between the significance score vector
and the normalized sampling probability vector. The intuition behind the reward design is that the
reward to a certain sampling heuristic is higher if the sampling probability distribution and the node
significance score distribution are closer. Thus, exploiting such a sampling heuristic can help graph
transformer sample more informative nodes. Finally, we update wt with the reward. In experiments,
for the efficiency and stability of training, we update the sampling weights and resample nodes every
T epochs. The pseudo-code of ANS-GT is listed in Algorithm 1.

5.2 Hierarchical Graph Attention

We argue that most node sampling strategies (e.g., 1-hop neighbors) focus on local information
and neglect long-range dependencies or global contexts. Therefore, to efficiently capture both the
local and global information in the graph, we propose a novel hierarchical graph attention scheme
including fine-grained attention and coarse-grained attention. Specifically, we use the proposed
adaptive node sampling for local fined-grained attention. On the other hand, we adopt the graph

6

Algorithm 1 ANS-GT
Input: Total training epochs E; pmin; update period T ; the number of sampled nodes N .
Output: Trained Graph Transformer model, optimized wt.

1: Set w1
k = 1 for k = 1, · · · ,K.

2: Calculate the sampling probability matrix Qt.
3: for t = 1, 2, · · · , E do
4: Train Graph Transformer with the sampled node sequences.
5: if t%T = 0. then
6: Obtains the attention matrices and calculate the significance scores: si = A1,i × ∥Vi∥.

7: Set W t =
∑K
k=1 w

t
k, and set ptk = (1−Kpmin)

∑K
j=1

wt
j

W t + pmin for k = 1, · · · ,K.
8: Calculate ψti in Equ. 4 and sample N nodes.
9: Set rk =

∑N
i=1

siQ
t
ki

ψt
i

and update the weight vector wt+1
k using

wt+1
k = wtke

(
pmin

2)(rk+
1

Pt
k

)

√
ln(N/0.1)

KT .
10: end if
11: end for

coarsening algorithm [26] to generate the coarsened graph G′. The sampled ns super-nodes from
G′ are used to capture long-range dependencies. Similar to [46], we also use ng global nodes with
learnable features to store global context information. Finally, the hierarchical nodes are concatenated
with the center nodes as the input sequences.

For the positional encoding, we use the proximity encoding in [46]: Φm(vi, vj) = Ãm[i, j],m ∈
{0, · · · ,M − 1}, where Ã denotes the normalized adjacency matrices with self-loop. Note that
our framework is agnostic to the positional encoding scheme and we left other positional encoding
methods such as Laplacian eigenvectors [9] for future exploration. We follow the Graphormer
framework to obtain the output of the l-th transformer layer, H(l):

Ĥ(l−1) = MHA(LN(H(l−1))) +H(l−1) (5)

H(l) = FFN(LN(Ĥ(l−1))) + Ĥ(l−1). (6)

We apply the layer normalization (LN) before the multi-head self-attention (MHA) and the feed-
forward network (FFN).

5.3 Optimization and Inference

In the training and inference, we sample S input sequences for each center node and use the center
node representation from the final Transformer layer z(s)c for prediction. Note that the computational
complexity is controllable by choosing suitable number of sampled nodes. A MLP (Multi-Layer
Perceptron) is used to predict the node class:

ỹ(s) = fMLP

(
z(s)
c

)
, (7)

where ỹc ∈ RC×1 stands for the classification result, C stands for the number of classes. In the
training process, we optimize the average cross entropy loss of labeled training nodes VL:

L = − 1

S
∑
vi∈VL

S∑
s=1

yTi log ỹ
(s)
i , (8)

where yi ∈ RC×1 is the ground truth label of center node vi. In the inference stage, we take a
bagging aggregation to improve accuracy and reduce variance:

ỹi =
1

S

S∑
s=1

ỹ
(s)
i . (9)

7

Table 1: Node classification performance (mean±std%, the best results are bolded).

Model Cora Citeseer Pubmed Chameleon Actor Squirrel Texas Cornell Wisconsin

GCN 87.33±0.38 79.43±0.26 84.86±0.19 60.96±0.75 31.39±0.23 43.15±0.18 75.16±0.95 66.74±1.39 64.31±2.16
GAT 86.29±0.53 80.13±0.62 84.40±0.05 63.90±0.46 36.05±0.35 42.72±0.39 78.76±0.87 76.04±1.35 66.01±3.48

GraphSAGE 86.90±0.84 79.23±0.53 86.19±0.18 62.15±0.42 38.55±0.46 41.26±0.26 79.03±1.44 72.54±1.50 79.41±3.60
APPNP 87.15±0.43 79.33±0.35 87.04±0.17 51.91±0.56 38.80±0.25 37.76±0.45 91.18±0.75 91.75±0.72 82.56±3.57
JKNet 87.70±0.65 78.43±0.31 87.64±0.26 62.92±0.49 33.42±0.28 42.60±0.50 77.51±1.72 64.26±1.16 81.20±1.96

H2GCN 87.92±0.82 77.60±0.76 89.55±0.14 61.20±0.95 36.22±0.33 38.51±0.20 86.37±2.67 84.93±1.89 87.73±1.57
GPRGNN 88.27±0.40 78.46±0.88 89.38±0.43 64.56±0.59 39.27±0.21 46.34±0.77 91.84±1.25 90.25±1.93 86.58±2.58

GT 71.84±0.62 67.38±0.76 82.11±0.39 57.86±1.20 37.94±0.26 25.68±0.22 66.70±1.13 60.39±1.66 65.08±4.37
SAN 74.02±1.01 70.64±0.97 86.22±0.43 55.62±0.43 38.24±0.53 25.56±0.23 70.10±1.82 61.20±1.17 65.30±3.80

Graphormer 72.85±0.76 66.21±0.83 82.76±0.24 36.81±1.96 37.85±0.29 25.45±0.12 68.56±1.74 59.41±1.21 67.53±3.38
Gophormer 87.65±0.20 76.43±0.78 88.33±0.44 57.40±0.14 37.50±0.42 37.85±0.36 88.25±1.96 89.46±1.51 85.09±2.60

ANS-GT 88.60±0.45 80.25±0.39 89.56±0.55 65.42±0.71 40.10±1.12 45.88±0.34 93.24±1.85 92.10±1.78 88.62±2.24

5.4 Computational Complexity

Compared with existing Graph Transformers, ANS-GT requires extra computational costs on graph
coarsening and sampling weights update. Here we want to show that the overall computational
complexity of ANS-GT is linear with the number of nodes n. Hence, ANS-GT is scalable to large
graphs. First, the computational complexity of graph coarsening is linear with n [26] and we only
need to do it once before training. Second, the computational cost of self-attention calculation in one
epoch is O(nS(N + ns + ng)

2) where the number of sampled nodes N , the number of sampled
super-nodes ns, the number of global nodes ng, and the number of augmentations S are specified
constants. Finally, the cost of updating sampling weights is linear to n, which is mainly attributed to
the computation of rewards. Empirical efficiency analyses of ANS-GT are shown in the Appendix C.

6 Experiments

6.1 Experimental Setup

Datasets. To comprehensively evaluate the effectiveness of ANS-GT, we conduct experiments on
the six benchmark datasets including citation graphs Cora, CiteSeer, and PubMed [18]; Wikipedia
graphs Chameleon, Squirrel; the Actor co-occurrence graph [5]; and WebKB datasets [28] including
Cornell, Texas, and Wisconsin. We set the train-validation-test split as 60%/20%/20%. The statistics
of datasets are shown in the Appendix C.

Baselines. To evaluate the effectiveness of ANS-GT on graph representation learning, we com-
pare it with 12 baseline methods, including 8 popular GNN methods, i.e. GCN [18], GAT [34],
GraphSAGE [11], JKNet [36], APPNP [20], Geom-GCN [28], H2GCN [48], and GPRGNN [6]
along with four state-of-the-art Graph Transformers, i.e. GT [9], SAN [21], Graphormer [38], and
Gophormer [46]. We use node classification accuracy as the evaluation metric.

Implementation Details. We adopt AdamW as the optimizer and set the hyper-parameter ϵ to 1e-8
and (β1, β2) to (0.99,0.999). The peak learning rate is set to 2e-4 with a 100 epochs warm-up stage
followed by a linear decay learning rate scheduler. We adopt the Variational Neighborhoods [26]
with a coarsening rate of 0.01 as the default coarsening method. All models were trained on one
NVIDIA Tesla V100 GPU.

Parameter Settings. In the default setting, the dropout rate is set to 0.5, the end learning rate is set
to 1e-9, the hidden dimension d is set to 128, the number of training epochs is set to 1,000, update
period T is set to 100, N is set to 20, M is set to 10, and the number of attention head H is set as
8. We tune other hyper-parameters on each dataset based on by grid search. The searching space
of batch size, number of data augmentation S, the number of layers L, number of sampled nodes,
number of sampled super-nodes, number global nodes are {8, 16, 32}, {4, 8, 16, 32}, {2, 3, 4, 5, 6},
{10, 15, 20, 25}, {0, 3, 6, 9}, {1, 2, 3} respectively.

8

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

0.5

Sa
m

pl
in

g
W

ei
gh

t

1-hop
2-hop
KNN
PPR

(a) Cora

0 200 400 600 800 1000
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Sa
m

pl
in

g
W

ei
gh

t

1-hop
2-hop
KNN
PPR

(b) Citeseer

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

0.5

Sa
m

pl
in

g
W

ei
gh

t

1-hop
2-hop
KNN
PPR

(c) Actor

0 200 400 600 800 1000
Epoch

0.20

0.22

0.24

0.26

0.28

0.30

Sa
m

pl
in

g
W

ei
gh

t

1-hop
2-hop
KNN
PPR

(d) Squirrel

Figure 3: The normalized sampling weights as a function of training epochs on four datasets.

6.2 Effectiveness of ANS-GT

Node Classification Performance. The node classification results are shown in Table 1. We
apply 3 independent runs on random data splitting and report the means and standard deviations.
We have the following obervations: (1) Generally, we observe that ANS-GT overperforms all
Graph Transformer baselines and achieves state-of-the-art results on nearly all datasets, which
demonstrates the effectiveness of our proposed model. (2) We note that some Graph Transformer
baselines achieve poor performance on node classification (e.g., GT only obtains 25.68% on Squir-
rel) compared with graph neural network models. This is probably due to the full graph atten-
tion mechanisms or the fixed node sampling schemes of existing Graph Transformers. For in-
stance, ANS-GT achieves an accuracy of 45.88% on Squirrel while the best baseline has 43.15%.

Citeseer Chameleon Actor Squirrel
Dataset

30

40

50

60

70

80

A
cc

ur
ac

y
ANS-GT
HGT

Figure 4: Ablation studies to show the ef-
fectiveness of the adaptive node sampling
module. HGT refers to the Hierarchical
Graph Transformer without adaptive node
sampling.

Effectiveness of Adaptive Node Sampling. Our pro-
posed adaptive node sampling module can adjust the
weights for sampling based on the rewards as the train-
ing progresses. To evaluate its effectiveness and give
more insights into the ANS module, we show the nor-
malized sampling weights as a function of training
epochs on four datasets in Figure 3. Generally, we
observe that the sampling weights of different sam-
pling strategies are time-sensitive and gradually stabi-
lize with the increase of the number of epochs. Inter-
estingly, we find PPR and 1-hop neighbors achieves
high weights on Cora while 2-hop neighbors dominate
other sampling strategies on Squirrel. This may be ex-
plained by the fact that Cora and Squirrel are strong
homophily/heterophily dataset respectively. For Cite-
seer and Actor, the weights of KNN firstly goes up and
gradually decreases. This is probably due to the reason
that nodes with similar attributes are most useful for
the training at the beginning stage; local neighbors such as nodes with high PPR scores are more
useful at the fine-tuning stage. Furthermore, Figure 4 shows the ablation studies of the adaptive
node sampling module. We can observe that ANS-GT has a large advantage compared to its variant
without the adaptive sampling module denoted as HGT (e.g., On Chameleon, ANS-GT achieves
65.42% while HGT only has 57.20%).

Table 2: Sensitivity analysis of coarsening algo-
rithms and coarsening rate.

Dataset Method c=0.01 c=0.05 c=0.10 c=0.50 c=1.00

Cora
VN 88.60 88.55 88.14 87.85 87.26
VE 87.95 88.13 88.30 87.32 87.22
JC 88.49 88.20 87.46 87.36 87.28

Actor
VN 39.72 39.45 40.10 38.83 39.08
VE 39.20 39.66 39.51 38.94 39.06
JC 39.15 39.85 39.92 39.16 39.09

Graph Coarsening Methods. In ANS-GT, we
apply a hierarchical attention mechanism where
the interactions between the center node and super-
nodes generated by graph coarsening are consid-
ered. Here, we evaluate ANS-GT with different
coarsening algorithms and different coarsening
rates. Specifically, the considered coarsening al-
gorithms include Variation Neighborhoods (VN)
[26], Variation Edges (VE) [26], and Algebraic
(JC) [29]. We vary the coarsening rate from 0.01
to 0.50. In Table 2, we can observe that there is
no significant difference between different coars-

9

ening algorithms, indicating the robustness of ANS-GT w.r.t. them. As for the coarsening rate, the
results indicate that the coarsening rate of 0.01 to 0.10 has the best performance.

7 Conclusion

Motivated by the obstacles to generalize Transformer to large graphs, we propose Adaptive Node
Sampling for Graph Transformer (ANS-GT), which modifies a multi-armed bandit algorithm to
adaptively sample nodes for attention in this paper. To incorporate long-range dependencies and
global contexts, we further design a hierarchical graph attention scheme in which coarse-grained
attention is achieved with graph coarsening. We empirically evaluate our method on six benchmark
datasets to show the advantage over existing Graph Transformers and popular GNNs. The detailed
analysis demonstrates that the adaptive node sampling module could effectively adjust the sampling
strategies according to graph properties. Finally, We hope our work can help Transformer generalize
to the graph domain and encourage the unified modeling of multi-modal data.

8 Acknowledgments

This research was partially supported by grants from the National Natural Science Foundation of
China (Grant No.s 61922073 and U20A20229).

References
[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic

multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[3] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop
and Conference Proceedings, 2011.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. ICLR, 2018.

[5] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. ICLR, 2020.

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In ICLR, 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[9] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[10] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[11] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pages 1025–1035, 2017.

10

[12] Xueting Han, Zhenhuan Huang, Bang An, and Jing Bai. Adaptive transfer learning on graph
neural networks. In SIGKDD, pages 565–574, 2021.

[13] Dongxiao He, Zhiyong Feng, Di Jin, Xiaobao Wang, and Weixiong Zhang. Joint identification
of network communities and semantics via integrative modeling of network topologies and node
contents. In AAAI, 2017.

[14] Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In AAAI, 2015.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[16] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast
graph representation learning. NeurIPS, 2018.

[17] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. SIGKDD, 2021.

[18] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ICLR, 2017.

[19] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
ICLR, 2020.

[20] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. ICLR, 2018.

[21] Devin Kreuzer, Dominique Beaini, William L Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. arXiv preprint arXiv:2106.03893,
2021.

[22] Xiaoya Li, Yuxian Meng, Mingxin Zhou, Qinghong Han, Fei Wu, and Jiwei Li. Sac: Accelerat-
ing and structuring self-attention via sparse adaptive connection. NeurIPS, 2020.

[23] Rui Liu and Barzan Mozafari. Transformer with memory replay. AAAI, 2022.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. ICCV, 2021.

[25] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and Yuan Qi.
Bandit samplers for training graph neural networks. NeurIPS, 2020.

[26] Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res.,
20(116):1–42, 2019.

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[28] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In ICLR, 2020.

[29] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

[30] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. Transactions of the Association for Computational
Linguistics, 9:53–68, 2021.

[31] Zixing Song, Yifei Zhang, and Irwin King. Towards an optimal asymmetric graph structure for
robust semi-supervised node classification. In KDD, pages 1656–1665, 2022.

[32] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732, 2020.

11

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

[35] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv:2006.04768, 2020.

[36] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
ICML, pages 5453–5462, 2018.

[37] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. NeurIPS, 2021.

[38] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? NeurIPS, 2021.

[39] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang. Performance-
adaptive sampling strategy towards fast and accurate graph neural networks. In SIGKDD,
2021.

[40] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivariate time series representation learning.
In SIGKDD, pages 2114–2124, 2021.

[41] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

[42] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chee-Kong Lee, and Enhong Chen. Model
inversion attacks against graph neural networks. TKDE, 2022.

[43] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
self-supervised learning for molecular property prediction. NeurIPS, 34:15870–15882, 2021.

[44] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards
self-explaining graph neural networks. In AAAI, pages 9127–9135, 2022.

[45] Zaixi Zhang, Qi Liu, Shengyu Zhang, Chang-Yu Hsieh, Liang Shi, and Chee-Kong Lee.
Graph self-supervised learning for optoelectronic properties of organic semiconductors. ICML
AI4Science Workshop, 2021.

[46] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie,
and Yanfang Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint
arXiv:2110.13094, 2021.

[47] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. NeurIPS,
2020.

[48] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
NeurIPS, 2020.

[49] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
NeurIPS, 2019.

12

Checklist

1. Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

2. Did you describe the limitations of your work? [Yes] Please see Appendix.
3. Did you discuss any potential negative social impacts of your work? [Yes] Please see

Appendix.
4. Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

1. Did you state the full set of assumptions of all theoretical results? [N/A]
2. Did you include complete proofs of all theoretical results? [N/A]

1. Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [No] The code will be released
once the paper is accepted.

2. Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes]

3. Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

4. Did you include the total amount of computing and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes]

1. If your work uses existing assets, did you cite the creators? [Yes]
2. Did you mention the license of the assets? [N/A]
3. Did you include any new assets either in the supplemental material or as a URL? [N/A]
4. Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
5. Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

1. Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

2. Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

3. Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

13

