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The subject of BCS–Bose–Einstein condensation (BEC) crossover is
particularly exciting because of its realization in ultracold atomic
Fermi gases and its possible relevance to high temperature super-
conductors. In this paper we review the body of theoretical work
on this subject, which represents a natural extension of the semi-
nal papers by Leggett and by Nozières and Schmitt-Rink (NSR).
The former addressed only the ground state, now known as the
‘‘BCS-Leggett” wave-function, and the key contributions of the lat-
ter pertain to calculations of the superfluid transition temperature
Tc . These two papers have given rise to two main and, importantly,
distinct, theoretical schools in the BCS–BEC crossover literature.
The first of these extends the BCS-Leggett ground state to finite
temperature and the second extends the NSR scheme away from
Tc both in the superfluid and normal phases. It is now rather widely
accepted that these extensions of NSR produce a different ground
state than that first introduced by Leggett. This observation pro-
vides a central motivation for the present paper which seeks to
clarify the distinctions in the two approaches. Our analysis shows
how the NSR-based approach views the bosonic contributions
more completely but treats the fermions as ‘‘quasi-free”. By con-
trast, the BCS-Leggett based approach treats the fermionic contri-
butions more completely but treats the bosons as ‘‘quasi-free”. In
a related fashion, the NSR-based schemes approach the crossover
between BCS and BEC by starting from the BEC limit and the
BCS-Leggett based scheme approaches this crossover by starting
from the BCS limit. Ultimately, one would like to combine these
two schemes. There are, however, many difficult problems to sur-
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mount in any attempt to bridge the gap in the two theory classes.
In this paper we review the strengths and weaknesses of both
approaches. The flexibility of the BCS-Leggett based approach and
its ease of handling make it widely used in T ¼ 0 applications,
although the NSR-based schemes tend to be widely used at
T – 0. To reach a full understanding, it is important in the future
to invest effort in investigating in more detail the T ¼ 0 aspects
of NSR-based theory and at the same time the T–0 aspects of
BCS-Leggett theory.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The subject of BCS–Bose–Einstein condensation (BEC) crossover has recently become an extremely
active research area. This is due principally to the discovery [1–10] of superfluid phases in ultracold
atomic Fermi gases which exhibit this crossover. Adding to the importance of this work is the view
espoused by a number of theorists [11–15] that the high temperature superconductors are mid-
way between BCS and BEC. Now, with an unambiguous realization of this scenario in the fermionic
superfluids, one has the opportunity to investigate this physical picture more closely and, it is hoped,
gain insight into the cuprate superconductors. Equally exciting is the opportunity to generalize, and in
the process, gain insight into what is arguably the paradigm for all theories in condensed matter phys-
ics: Bardeen-Cooper-Schrieffer (BCS) theory. For all these reasons a large number of variants of BCS–
BEC crossover theory have been suggested in the literature. It is the purpose of the present paper to
present an overview of two main classes of theories, discussing their strengths and weaknesses. Con-
trasting and comparing different approaches will, hopefully, point to new directions for future theo-
retical and experimental research.

Initial theoretical work [16,17] on the subject of BCS–BEC crossover focused on a ground state
which was shown to be the same as that proposed by Bardeen, Cooper, and Schrieffer, when it is ex-
tended to accommodate a continuous evolution from BCS to BEC. We call this the ‘‘BCS-Leggett” state.
Here the fermionic chemical potential l is solved self-consistently as the attractive interaction
strength is varied. In this way it became clear that the BCS trial wavefunction was far more general
than was originally thought. Somewhat later, Noziéres and Schmitt-Rink (NSR) [18] presented a
scheme for calculating the superfluid transition temperatures Tc , which made the case that the evo-
lution from BCS to BEC was again continuous at finite temperature.

The discovery of high temperature superconductivity and the observation that their coherence
length n (or equivalently pair size) was anomalously small led Lee and Friedberg to argue that one
should include bosonic degrees of freedom in addressing high Tc superconductors [19,20]. These
authors introduced the ‘‘boson-fermion” model almost immediately after the discovery of cuprate
superconductivity. In a similar vein, Randeria [11] proposed that the NSR scheme might be directly
applicable to these exciting new materials. Subsequently other theorists have applied this BCS–BEC
crossover scenario to the high Tc cuprates [21–23,15]. Additional support has come from the experi-
mental condensed matter community among whom a number [24–27] have presented data which can
be interpreted within this picture. Adding to the enthusiasm is the observation of a ubiquitous (albeit
controversial) ‘‘pseudogap” phase [28,12,13] in the underdoped cuprates, which was argued [29,30] to
be consistent with a BCS–BEC crossover scenario.

The characterization of pseudogap effects associated with BCS–BEC crossover was, in fact, a crucial
step. It was first recognized that one should distinguish the pair formation temperature T� from the
condensation temperature Tc [31,11]. That the magnetic properties of the normal phase of a supercon-
ductor in the temperature regime between Tc and T� would be anomalous was pointed out on the ba-
sis of numerical calculations, on a two-dimensional (2D) lattice. Here it was found that the spin
susceptibility was depressed at low temperatures [32] and this depression was associated with a ‘‘spin
gap” which is to be distinguished [29] from a pseudogap, which affects the ‘‘charge channel” as well.
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The fact that BCS–BEC crossover theory was, indeed, associated with a more general form of pseudo-
gap, thus, required further analysis and calculations. Using the formalism of the BCS-Leggett based ap-
proach, subsequent, theoretical studies of the spectral function (both above [30] and below [33] Tc)
and of the superfluid density [21] showed that a normal state pairing gap appeared in both the spin
and charge channels. It, furthermore, affected the behavior below Tc as well as above.

The BCS–BEC crossover approach was applied to the ultracold atomic Fermi gases, by Holland et al.
[34] and by Ohashi and Griffin [35] in advance of the experimental realization of fermionic superflu-
idity in these systems. The two groups predicted that the magnetic field tuneability associated with an
atomic Feshbach resonance would lead to an unambiguous realization of the crossover scenario. These
earliest applications to ultracold Fermi gases considered a Hamiltonian rather similar to the ‘‘boson-
fermion” model of Lee and Friedberg [19,20], where the bosons were the so-called closed-channel
molecules associated with the Feshbach resonance and the fermions with the open channel. Subse-
quent work has shown that these two channel complications can be essentially ignored in the widely
studied Fermi gases 6Li and 40K so that the description of Fermi gas superfluidity is addressed using
the same, simpler (or one-channel) model with an effective variable interaction as was used in the
cuprates.

There is now a fairly extensive theoretical literature [12,13,36,37] on the Fermi gas superfluids.
Nevertheless, there are two main theoretical schools, which have emerged. These address a wide vari-
ety of different issues and experiments. The first of these builds more directly on the BCS-Leggett
ground state and its finite temperature extensions [30,38–41]. The second approach
[35,42,43,37,36,44,45] builds on the contribution of Nozières and Schmitt-Rink [18] which addressed
a calculation of the transition temperature Tc . The NSR scheme has been extended by these and other
authors away from Tc both in the superfluid and normal phases. It is now rather widely accepted that
these extensions of NSR produce a different ground state [12,46,47] than that first introduced by Leggett
[17] and by Eagles [16]. This observation provides a central motivation for the present paper. We want
to set down our current understanding of what is known about the NSR-based theories from zero to
very high T and similarly, address how the simplest ground state of BCS-Leggett evolves with increas-
ing temperature away from zero. Since the ground states are different, we can safely assume that the
finite T behavior is as well. It should be stressed that while we attribute these author group names to
the two different schools, the eponymous authors are not the origin of the theory reviewed here. The
original paper by Leggett was only concerned with the ground state and that by Nozières and Schmitt-
Rink recapitulated and expanded on the results of Leggett and then went on to compute Tc using an
approach which was not associated with this same (BCS-Leggett) T ¼ 0 state.

The task in any finite temperature crossover theory is to arrive at a characterization of the thermal
excitations of both the normal and superfluid phases. From this analysis all transport and thermal
properties can in principle be obtained. Without any detailed microscopic theory one can still antic-
ipate the general features of BCS–BEC crossover theory. In the BCS limit and below Tc , the excitations
are the usual fermionic quasi-particles with an excitation gap equivalent to the order parameter. This
gap represents the energy cost of unbinding the condensed pairs. By contrast, above Tc this gap is ab-
sent and the normal state is a Fermi liquid. In the BEC limit, except at very high T, it is energetically
unfavorable to break up the pairs and so the excitations are purely bosonic above and below Tc . In the
superfluid phase, they are, moreover, gapless. In between, in the interesting unitary regime, the exci-
tations are expected to be a mix of both fermionic and bosonic character. Here, importantly even the
normal state has some bosonic features associated with the formation of ‘‘pre-formed pairs”. These
pairs arise from stronger-than-BCS attractive interactions. As a consequence there is an excitation
(pseudo)gap for fermionic excitations which appears already above Tc. With progressively lower tem-
peratures below Tc , more and more of these pairs drop into the condensate. The challenge then is to
treat the strongly interconnected bosonic and fermionic degrees of freedom in the most physically
correct fashion.

Below Tc the two schools referred to above emphasize different aspects of this picture. One can
summarize in the simplest fashion the key differences. The NSR-based approach views the bosonic
contributions more completely but it treats the fermions as ‘‘quasi-free”. Many-body effects are effec-
tively absent in the fermionic dispersion (called E0

k, which appears in the counterpart gap equation),
except via a renormalization of the fermionic chemical potential l�. The BCS-Leggett based approach
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treats the fermionic contributions more completely than the alternative approach but it treats the bo-
sons as ‘‘quasi-free”. Many-body effects in the bosonic dispersion, (which we call X0

q), are absent ex-
cept via an effective pair mass renormalization M�.

More specifically, the NSR-based approach incorporates a linear dispersion in the bosonic degrees
of freedom at small wavevector which is associated with the collective mode spectrum of the conden-
sate. However, Tc is calculated in the same way as for non-interacting fermions, except for the renor-
malization in l�. The BCS-Leggett based approach in effect approximates the bosonic degrees of
freedom associated with the non-condensed pairs. While the collective modes of the order parameter
have a linear dispersion, the non-condensed pairs have a quadratic dispersion and represent otherwise
free ‘‘bosons”. Here, Tc is calculated in the presence of a pseudogap so that the condensing fermions
have admixed bosonic character.

It is reasonable to conclude that the NSR-based scheme approaches the crossover between BCS and
BEC by effectively starting from the BEC limit and the BCS-Leggett based scheme approaches this
crossover by starting from the BCS limit. For the former, indeed, the boson-like propagators which
one deduces are found to have many similarities to Bogoliubov theory for true bosons. It is claimed
[48] that the NSR-based approach is most accurate at temperatures low compared to Tc , presumably
because there the bosonic degrees of freedom are those associated with the condensate and its collec-
tive modes. Thus, it is reasonable to assume that this represents the better ground state in the BEC
regime although some concerns have been raised [48]. By contrast the BCS-Leggett based scheme is
more suitable at moderate temperatures within the superfluid phase and up to the pairing onset tem-
perature T�. Above T�, the two approaches can be viewed as equivalent.

Ultimately, one would like to combine these two schemes. There are, however, many difficult prob-
lems to surmount in any attempt to bridge the gap in the two theory classes. Not only is it difficult to
effect such a combination but, thus far, there is no appropriate generalized mean field theory of a
weakly interacting Bose gas [49,50] which addresses the entire regime from T ¼ 0 through and above
Tc and which does not exhibit at the same time a problematic first order transition. Thus, for the inter-
acting Bose gases, there is no counterpart of BCS theory which works so well over the entire temper-
ature range. These complications, in true Bose systems, appear to be transmitted to NSR-based
theories of the Fermi gases. These spurious first order transitions [51] can lead to derivative disconti-
nuities in the density profiles at the condensate edge and non-monotonic or discontinuous behavior in
the superfluid density as a function of temperature, even in the intermediate or unitary regime. BCS
theory, by contrast, exhibits none of these effects. If one is to find a smooth crossover between BCS
and BEC at all temperatures T these issues will need to be overcome.

Additional problems appear if one tries to bridge the gap by starting with the BCS-Leggett based
scheme. The first task is to establish how non-condensed pair effects modify the collective mode spec-
trum. This appears to be a difficult problem. While, some progress [52] has been made towards com-
puting pseudogap effects on the Anderson-Bogoliubov mode, there is, however, an even greater
difficulty in coupling the non-condensed pairs with the renormalized collective modes. To arrive at
this hybridization, one needs to introduce boson-boson coupling which requires that one go beyond
the simple T-matrix scheme which one considers in addressing the non-condensed component. This
is not to say that the coupling between condensed and non-condensed pairs is absent, it must be there
in the ultimate theory, but it will be difficult to implement.

To summarize, the ground state produced by NSR-based approaches is likely to represent an
improvement over that of the BCS-Leggett based approach, particularly when it comes to quantitative
comparisons, and most particularly when the system is in the BEC regime. However at the semi-quan-
titative or qualitative level one is often required to consider the BCS-Leggett ground state, and its finite
temperature extensions, since globally this state behaves more smoothly. Moreover, this state is easier
to handle and can accommodate inhomogeneities via Bogoliubov-de Gennes theory [53–56]. It is also
the primary way to study phases with population imbalance [57–61], particularly in the presence of a
trap. As of now, there is no easy way to explicitly represent the ground state in the NSR-based ap-
proaches, particularly in the fermionic regime.

An understanding of BCS–BEC crossover provides an excellent vehicle for reviewing the central fea-
tures of two types of generalized mean field theories: strict BCS theory and the theory(s) of the weakly
interacting Bose gas. In both systems there is the potential for carrying some confusion over to the
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crossover problem, since there are important ‘‘degeneracies” which are not general and which occur at
each endpoint. In strict BCS theory the order parameter Dsc is the same as the excitation gap D. This
relationship cannot persist in BCS–BEC crossover. In the Bogoliubov theory of the weakly interacting
Bose gas the collective mode frequency is the same as the single particle excitation energy. This degen-
eracy derives from the coupling between the order parameter and single particle excitation spectrum.
This situation is not the case in BCS theory. The way in which the linearly dispersing order parameter
collective modes interact with the quasi-particle (fermionic) excitations and the extent to which they
couple is subtle in BCS theory.

Indeed, if one applies the Landau criterion to a magnetically dirty, gapless superconductor, (where
importantly it is found that D – Dsc) it must, of course, reveal that superconductivity is stable. This
Landau criterion should not, then, refer to all possible excitations of the system but only those which
couple to the condensate, that is associated with, crudely speaking, the density fluctuations [62]. The
gapless single particle excitations do not compromise superfluidity and thus one can presume that
they do not couple directly to the collective modes. An analogous inference can, then, be made about
a clean BCS superconductor which suggests a decoupling between the condensed and non-condensed
pair components – at the strict BCS level.

There is another avenue for confusion. The flexibility of the BCS-Leggett based approach and its
ease of handling make it widely used in T ¼ 0 applications. In comparison, the NSR-based schemes
are often applied to compute properties at finite temperature, most widely, to compute Tc. One has
seen just this dichotomy in the original paper [18] by Nozières and Schmitt-Rink. To reach a full under-
standing, it is important, then, to invest some effort in investigating in more detail the T ¼ 0 aspects of NSR-
based theory and at the same time the T – 0 aspects of BCS-Leggett-based theory.

The remainder of the paper is divided into four sections. Section 2 presents a theoretical overview
of BCS-BEC crossover theory beginning first with an alternative presentation of strict BCS theory at
general temperatures T, which provides general insights. Then a brief overview of the ground state
equations for the BCS-Leggett approach is presented. Sections 3 and 4 give a more detailed description
of the BCS-Leggett and Nozières–Schmitt-Rink theretical schools, respectively, at general tempera-
tures T. There we review the general equations and the specific application to the BEC limit as well
as the superfluid density. Other issues are discussed as well which pertain to special features of each
of the two schools. These sections are more technical and they can be skipped by a reader so inclined
who is advised to go directly to Section 5. Section 5 summarizes crucial comparisons between the two
theoretical schools. Many of these are presented in the form of two tables. In addition we compare
plots of the transition temperature in a homogeneous and trapped configuration and plots of the den-
sity profiles. Our conclusions are summarized in Section 6.
2. Theoretical overview

2.1. Ground state wavefunctions

We begin with a summary of possible ground state wavefunctions for describing BCS–BEC cross-
over. The simplest one is that of BCS-Leggett
W0 ¼ Pkðuk þ vkcyk"c
y
�k#Þj0i; ð1Þ
where vk and uk are variational parameters, often referred to as the coherence factors. If we define
ak ¼ vk=uk we may write
W0 / exp
X

k

akby0;k

 !�����0
+
: ð2Þ
Note that this state represents an essentially ideal Bose gas treatment of the pair degrees of freedom in
the sense that it can be written entirely in terms of a single ‘‘Bose” operator with net zero momentum
by0;k � cyk"c
y
�k#: ð3Þ
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One can also contemplate something closer to a Bogoliubov-level wave function which can be simply
written for the case of point bosons. A reasonable ansatz is:
jwBogoliubovi ¼ exp by0b0 þ
X
q>0

xqbyqby�q

 !�����0
+
: ð4Þ
For the fermionic system, a natural extension, which has been discussed in the literature [63] can be
written as
jw1i ¼ exp
1
2!

X
K

aKcyKcy�K þ
1
4!

X
K0s

bK1K2K3K4
cyK1

cyK2
cyK3

cyK4

 !�����0
+
; ð5Þ
where each Ki represents a shorthand notation for kiri, and�K refers to a reversal of both the momen-
tum and spin. In actuality, it has been shown that to recover a consistent treatment of Lee–Yang con-
tributions, and to include the exact constraint on the inter-boson scattering length [64], it is necessary
to keep terms of the form 1

6!

P
K0sscK1 ���K6

cyK1
� � � cyK6

:

We stress that this Bogoliubov-based wavefunction is not the basis for extended NSR theories. Nev-
ertheless, this hierarchy of ground states should underline the observations made above, that we are
dealing with two different and complementary treatments of the bosonic degrees of freedom, when
we investigate these two different approaches to BCS–BEC crossover theory. It should be stressed that,
despite some confusion in the literature, bosonic contributions are present in the BCS-Leggett scheme
as well, but they are appear as less strongly correlated than their counterparts in the NSR scheme. This
point is re-inforced by a discussion of the BEC limit in Section 3.2. This point is also reinforced by a
recognition of the extensive fluctuation literature in BCS superconductors (at low dimension), which
bears strong similarity [65] to our discussion of the BCS-Leggett approach.

2.2. Strict BCS theory and BCS-Leggett ground state

We begin by recasting strict BCS theory in a slightly different way which replaces the usual Gor’kov
F functions with the product of one dressed and one bare Green’s function. This alternate representa-
tion builds a basis to extend to the BCS-Leggett phase. We define the T-matrix for a BCS superfluid as
tscðQÞ ¼ �D2
scdðQÞ=T; ð6Þ
where Dsc is the superfluid order parameter. This leads to the fermionic self-energy, given by
RBCSðKÞ ¼
X

Q

tscðQÞG0ðQ � KÞ ð7Þ
so that RBCSðKÞ ¼ �D2
scG0ð�KÞ. Throughout this paper, we adopt a four-vector notation:

Q � ðiXl;qÞ;K � ðixn;kÞ, and
P

Q � T
P

l

P
q;
P

K � T
P

n

P
k, where xn and Xl are the odd and even

Matsubara frequencies, respectively. Here G0 is the Green’s function of the non-interacting system.
We write
GBCSðKÞ � ½G�1
0 ðKÞ � RBCSðKÞ��1

: ð8Þ
The well known BCS gap equation is:
1þ U
X

K

GBCSðKÞG0ð�KÞ ¼ 0; T 6 Tc; ð9Þ
which can be written in the more familiar form of the BCS self-consistency condition on the order
parameter
DscðTÞ ¼ �U
X

k

DscðTÞ
1� 2f ðEBCS

k Þ
2EBCS

k

; ð10Þ
where U < 0 is the attractive interaction which drives superfluidity. For the sake of clarity, we assume
a short-range contact potential, which is appropriate for ultracold Fermi gases. Extension to other
pairing symmetries can be found in, e.g., Ref. [39]. Here
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EBCS
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � lÞ2 þ D2

scðTÞ
q

; ð11Þ
where �k ¼ k2
=2m is the bare fermion dispersion.

Once the self-energy is known, the two-body or transport properties are highly constrained
through gauge invariance or Ward identities. For convenience, we work in the transverse gauge.
The response kernel for a fictitious vector potential A in an isotropic system is given by
KðQÞ ¼ n
m
� PðQÞ; ð12Þ
where PðQÞ is the current–current correlation function [52] and we have JðQÞ ¼ KðQÞA. Now, following
the standard procedure one uses a Ward identity to construct a consistent form for the correlation
function
PBCSðQÞ ¼ � 2
3m2

X
K

kþ q
2

� �2
½GðKÞGðK þ QÞ þ D2

scGðKÞG0ð�KÞGðK þ QÞG0ð�K � QÞ�; ð13Þ
where, for convenience, we have dropped the superscript BCS which must appear on all dressed
Green’s functions.

The second term in Eq. (13) is important here. One can represent this diagrammatically as in a
‘‘Maki-Thompson” diagram. More traditionally this is written as the product of two Gor’kov F func-
tions in the q ¼ 0 limit. After analytic continuation (iXl ! Xþ i0þ) and taking X! 0 then q! 0,
Eq. (12) leads to the usual BCS result for the superfluid density
nBCS
s

m
¼ 4

3m2

X
n;k

k2D2
sc

x2
n þ ðE

BCS
k Þ

2
h i : ð14Þ
Another important collective feature of the BCS superfluid state is the dispersion Xq ¼ cq for the Gold-
stone boson which is given by solving the equation
0 ¼ 2
U
þ
X

K

½GðKÞGðK þ QÞ þ D2
scGðKÞG0ð�KÞGðK þ QÞG0ð�K � QÞ�: ð15Þ
Note that the four Green’s functions in Eq. (15) are very similar to their counterparts in the superfluid
density. This underlines the fact that the dynamics associated with BCS theory, effectively involves in-
ter-pair interactions, but only within the condensate.

We end this section by using this analysis to write the central T ¼ 0 equations for BCS-Leggett the-
ory. The gap equation is that of strict BCS theory at T ¼ 0 and the only difference is that it is solved in
the presence of a self-consistent equation for the fermionic chemical potential l, which must vary as
the attractive interaction U varies:
Dscð0Þ ¼ �U
X

k

Dscð0Þ
1

2EBCS
k

: ð16Þ
with
n ¼
X

k

1� �k � l
EBCS

k

" #
: ð17Þ
Importantly, we note that an equation analogous to Eq. (15) can also be used throughout the crossover
as the basis for addressing collective behavior of the order parameter such as the superfluid density
and condensate sound mode [66,67,52]. For the ground state, in the BCS regime this yields
cðT ¼ 0Þ ¼ vF=

ffiffiffi
3
p

, while in the BEC limit cðT ¼ 0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnaB=M2

B

q
. Here we identify the inter-boson

scattering length aB ¼ 2a and MB ¼ 2m, where a is the s-wave scattering length between fermions.
All of this is relevant to the following observations. One might be concerned that, since the BCS

wavefunction seems to treat the pairs or ‘‘bosons” at a cruder level than associated with the counter-
part Bogoliubov wavefunction, this quasi-ideal gas behavior would somehow destabilize superfluidity.
This presumption is based on the observation that an ideal Bose gas cannot be a superfluid. We have



240 K. Levin et al. / Annals of Physics 325 (2010) 233–264
now seen that effects appearing in the collective behavior associated with the condensate, such as the
superfluid density and the speed of sound, do not correspond to those of an ideal Bose gas. We thus
infer that the condensate can reflect a rather complex dynamics, through the effective incorporation
of higher order Green’s functions into the generalized linear response.

2.3. Characterizing the fermionic degrees of freedom in BCS–BEC crossover at general T

The above summary based on strict BCS theory provides an underlying basis for describing the fer-
mionic degrees of freedom in both theoretical approaches to BCS–BEC crossover. We emphasize that
the bosonic degrees of freedom are absent at this level and that the fermionic degrees of freedom
are not treated in an equivalent fashion in the two theoretical schools, although some of the expres-
sions representing the fermions look rather similar.

We write for the ‘‘gap” and ‘‘number” equations
1þ U
X

k

1� 2f ðEmf
k Þ

2Emf
k

¼ 0; ð18Þ

n ¼
X

k

1� �k � l
Emf

k

þ 2
�k � l

Emf
k

f ðEmf
k Þ

" #
; ð19Þ
where mf corresponds to ‘‘mean field” and the fermionic dispersion is
Emf
k ðTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � lÞ2 þ D2

mf ðTÞ
q

: ð20Þ
This system of equations has been used by both schools to find a reasonable estimate for the temper-
ature at which pairing or the pseudogap first occurs. This is called T�, (which satisfies Tc 6 T�) and can
be computed by solving for the transition temperature in the strict mean field equations.

We will show that this mean field theoretic approach with
Dmf ðTÞ ¼ DðTÞ ð21Þ

D2ðTÞ ¼ D2
pgðTÞ þ D2

scðTÞ ð22Þ
is associated with the finite temperature extension of the BCS-Leggett theory. We have argued that the
ground state wave function, Eq. (1), must necessarily also contain bosonic excitations. This can be seen
most clearly when we examine the BEC limit in Section 3.2. Therefore, within this theoretical school,
one must not presume that the mean field gap is equivalent to the order parameter. These bosonic
excitations are accomodated by decomposing D2 into condensate and non-condensate contributions
called D2

sc and D2
pg , respectively. We will see that the number of non-condensed pairs associated with

the pseudogap (pg) (represented by D2
pg) can be determined once one knows their effective mass M�.

And this, in turn, is determined by requiring that the BEC condition on the pair chemical potential,
lpair ¼ 0, in the propagator for the non-condensed pairs must be consistent with the gap equation (18).

As expected, the BCS-Leggett approach, which is naturally associated with a T-matrix scheme, does
not include all the effects of Bogoliubov theory. Within a T-matrix approach, one has a choice of fac-
toring the 4-point correlation function hcycycci in two possible ways: to yield (indirectly) condensate
terms associated with D2

sc or pseudogap (pg) terms associated with D2
pg . At this level one drops terms

which couple the condensate and pair excitations. To mimic the effects of Bogoliubov-like theory, one
would need to introduce cross terms of the form D2

scD
2
pg , which clearly involve higher order propaga-

tors and go beyond a T-matrix approach.
By contrast the NSR-based approach uses Eq. (18) with
Dmf ¼ Dsc: ð23Þ
That is, the ‘‘gap” parameter is replaced by the order parameter. Eq. (19) is not used. Rather one deter-
mines the fermionic chemical potential l� by first establishing the bosonic propagators. The latter are
taken to be the collective mode propagators for the mf Hamiltonian but with the renormalized
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chemical potential l�. The fermionic propagators, which also contribute to determine l�, are derived
via a T-matrix approach which couples the fermions and bosons.

From Eqs. (21) and (22) we see that in the BCS-Leggett based approach the fermionic quasi-particle
dispersion Ek, which appears in the gap equation, contains pseudogap effects. That is, the fermions
which pair are not the bare fermions. However the bosonic dispersion X0

q, which also contributes to
a separate (pseudo) gap equation, contains interaction effects in a mean field sense only via a renor-
malized effective mass M�. By contrast, the NSR-based approach is based on a fermionic quasi-particle
dispersion E0

k in which the fermions which pair are the bare fermions. However, many-body effects
enter via a renormalized chemical potential l�. The interacting bosonic dispersion relation Xq ¼ cq
is derived. Interestingly, the complexity of both approaches, at the level of numerical implementation,
may lie in determining either renormalized parameter M� or l�, which, in a compact way, reflects an
approximate treatment of many-body effects in the respective theories.
3. BCS-Leggett approach at finite T<Tc

3.1. Theoretical framework

At issue then is the incorporation of bosonic degrees of freedom into the gap and number equa-
tions. The two different approaches build on the fact that there are two different ways of arriving
at soft bosonic modes within a generalized BCS structure. These modes may come from the collective
phase mode of the order parameter (Goldstone boson) which is necessarily gapless in the superfluid
phase. They may also arise from the condition that the non-condensed pair excitation spectrum is gap-
less. Both of these are simultaneously satisfied in both theory classes.

We turn first to the BCS-Leggett based theory, which provides a very natural and straightforward
extension of BCS theory. Here one builds on Eq. (9) rather than (as in NSR based approaches) on the
self consistent conditions for the Goldstone boson. We begin by presenting the central equations,
rather than giving a full derivation. Two of these equations have already been written down in Section
2.3 for the superfluid regime. These are Eqs. (18) and (19), importantly, with the substitution
Dmf ðTÞ ¼ DðTÞ, as in Eq. (21).

In order to quantify the pair fluctuations, our task is to decompose D2ðTÞ into D2
scðTÞ and D2

pgðTÞ. The
difference between the gap D and the order parameter Dsc is to be associated with pair fluctuations
(involving Dpg), as should be implicitly evident in Eq. (22). The physical arguments which we apply
next are rather analogous to Bose–Einstein condensation: once we know the propagator for the
non-condensed pairs we determine the number of such pairs and in this way we determine D2

pg .
We can essentially anticipate the answer simply by counting all non-condensed pairs as
D2
pgðTÞ ¼ Z�1

X
bðX0

q � lpair; TÞ; ð24Þ
where Z is an overall coefficient of proportionality, to be determined below and
bðx; TÞ ¼ 1=½expðx=TÞ � 1� is the Bose function. Here X0

q is the non-condensed pair dispersion. Then
just as in BEC theory, knowing the non-condensed pair contribution (D2

pg) and the total (D2) one can
find the condensate term D2

sc .
To make progress we need to evaluate X0

q (and Z). We equate the condition that the propagator for
non-condensed pairs has zero chemical potential
lpair ¼ 0; ð25Þ
at and below Tc , with the gap equation (18), where Eq. (21) must be imposed, so that we have
1þ U
X

k

1� 2f ðEkÞ
2Ek

¼ 0; T 6 Tc ð26Þ
with
Ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � lÞ2 þ D2ðTÞ

q
: ð27Þ
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Note that it is the excitation gap and not the order parameter which appears here. That the BCS form
for the gap equation is equivalent to the gapless condition on non-condensed pairs imposes a con-
straint on the non-condensed pair propagator which can be written in the form
tpgðQÞ ¼
U

1þ UvðQÞ ; ð28Þ
where, importantly, a consistent choice for the pair susceptibility is
vðQÞ ¼
X

K

G0ðQ � KÞGðKÞ: ð29Þ
Here G and G0 are the full and bare Green’s functions, respectively. We have met the combination GG0

in the context of our review of conventional BCS theory. To expand on this point, note that the full
Green’s function is determined in terms of the usual BCS-like form for the self-energy
RðKÞ ¼ D2

ixn þ �k � l
; T 6 Tc: ð30Þ
Using this self-energy, one determines G and thereby can evaluate tpg . The gap equation in Eq. (26)
thus requires that tpgð0Þ ¼ 1. Similarly, using
n ¼ 2
X

K

GðKÞ ð31Þ
one derives
n ¼
X

k

1� �k � l
Ek

þ 2
�k � l

Ek
f ðEkÞ

� �
ð32Þ
which is the natural generalization of Eq. (19).
The final set of equations which must be solved is rather simple and given by Eqs. (32), (24), and

(26). This set has a more detailed derivation, and we summarize it by noting that there are two con-
tributions to the full T-matrix t ¼ tpg þ tsc , where tscðQÞ ¼ � D2

sc
T DðQÞ. Similarly, we have for the fermion

self-energy RðKÞ ¼ RscðKÞ þ RpgðKÞ ¼
P

Q tðQÞG0ðQ � KÞ. It follows then that
RscðKÞ ¼
D2

sc

ixn þ �k � l
: ð33Þ
A vanishing chemical potential means that tpgðQÞ diverges at Q ¼ 0 when T 6 Tc. Thus, we [68,38]
approximate RðKÞ to yield
RpgðKÞ � �D2
pgG0ð�KÞ; T 6 Tc; ð34Þ
with
D2
pg � �

X
Q–0

tpgðQÞ: ð35Þ
This equation will be shown below to lead to Eq. (24). We write
RpgðKÞ �
D2

pg

ixn þ �k � l
ð36Þ
from which one finds RðKÞ � D2=ðixn þ �k � lÞ, where we have used Eq. (22). In this way one derives
Eq. (26). Note that in the normal state (where lpair is non-zero), Eq. (34) is no longer a good approx-
imation, although a natural extension can be readily written down [69].

At small four-vector Q, we may expand the inverse of tpg after analytical continuation. Because we
are interested in the moderate and strong coupling cases, where the contribution of the quadratic term
in X term is small, we drop this term and thus find the following expression, which, after analytical
continuation, yields X0

q ¼ q2=ð2M�Þ via the expansion
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tpgðQÞ ¼
1

ZðX�X0
q þ lpairÞ þ iCQ

; ð37Þ
where Z is the inverse residue given by
Z ¼
@t�1

pg

@X
jX¼0;q¼0 ¼

1
2D2 n� 2

X
k

f ð�k � lÞ
" #

: ð38Þ
Below Tc the imaginary contribution in Eq. (37) CQ ! 0 faster than q2 as q! 0. It should be stressed
that this approach yields the ground state equations and that it represents a physically meaningful
extension of this ground state to finite T.

We note that the approximation in Eq. (34) is not central to the physics, but it does greatly simplify
the numerical analysis. One can see that correlations which do not involve pairing, such as Hartree
terms are not included here. This is what is required to arrive at the BCS-Leggett ground state. It
should be clear that, in principle, the T-matrix approach discussed here is more general and that in
order to address experiments at a more quantitative level it will be necessary to go beyond Eq.
(34). Indeed, the simplest phenomenological correction is to write
Rpgðk;xÞ �
D2

k;pg

xþ �k � lþ ic
þ R0ðk;xÞ: ð39Þ
Here the broadening C – 0 and ‘‘incoherent” background contribution R0 reflect the fact that non-con-
densed pairs do not lead to true off-diagonal long-range order. By contrast Rsc is associated with long-
lived condensed Cooper pairs, and as shown in Eq. (33), it is similar to Rpg but without the broadening.
It is important to note that this same analysis has been applied to describing the spectral function in
the pseudogap [70,71] and the superfluid phases [72] of the high temperature superconductors, where
here R0ðk;xÞ is taken to be an imaginary constant. In summary, the simplifying approximation in Eq.
(34) is most problematic when the pairing gap is small so that other correlations and contributions
(which are otherwise in the ‘‘background”) become important. Perhaps the most nobable example
of when this simplification affects the qualitative physics is in the population imbalanced gases. At
a quantitative level, a clear shortcoming comes from the neglect of Hartree interaction effects. These
issues are discussed in Section 5.4.

Finally, we present results for the thermodynamical potential, which is given by
X ¼ Xf þXb;

Xf ¼ D2vð0Þ þ
X

k

½ð�k � l� EkÞ � 2T lnð1þ e�Ek=TÞ�;
Xb ¼
X

q

T lnð1� e�X0
q=TÞ: ð40Þ
This thermodynamical potential can be used to generate the self consistent equations presented above
@X
@D
¼ 0; ð41Þ
which is equivalent to the gap equation of Eq. (26). Similarly, we have
@X
@lpair

¼ 0; ð42Þ
which leads to the equation for the pseudogap given by Eq. (35). Finally, the number equation
n ¼ � @X
@l

; ð43Þ
which yields Eq. (32).
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We recapitulate by rewriting the central gapless condition for the non-condensed pairs as
tpgð0Þ ¼
U

1þ U
P

kG0ð�KÞGðKÞ ¼ 1: ð44Þ
This equation is equivalent to Eq. (26) or Eq. (25). Expanding tpgðQÞ determines the excited pair
dispersion
X0
q ¼ q2=2M�: ð45Þ
In conclusion, we see that in this BCS Leggett approach one focuses on the integrated contribution of
the bosonic degrees of freedom to the fermionic self-energy rather than on the individual bosonic
excitations. In this sense, the precise details of the bosonic dispersion are not as essential. The nature
of the expanded form of the T-matrix outlined above is further discussed in Appendix A.

3.2. BCS-Leggett approach to BEC

There has been some confusion voiced about whether the BCS-Leggett ground state requires that
one ignore bosonic degrees of freedom. To respond (in the negative) to this concern it is useful to ad-
dress the extreme BEC limit. We begin by making the important observation [73] that for T 6 Tc , the
fermionic parameters associated with the wavefunction of Eq. (1), DðTÞ and lðTÞ are temperature inde-
pendent in the BEC, for all T 6 Tc . This is consistent with the physical picture of well established, pre-
formed pairs in the BEC limit, so that the fermionic energy scales are unaffected by T below Tc.

We now extend these qualitative observations to a more quantitative level. The self-consistent
equations in the BEC limit for general temperature T can then be written as
m

4p�h2a
¼
X

k

1
2�k
� 1

2Ek

� �
; ð46Þ

n ¼
X

k

1� �k � l
Ek

� �
; T 6 Tc; ð47Þ
where we have now introduced the usual s-wave scattering length, a, which is needed to regularize
the gap equation for a contact potential. Note that we have used the T ¼ 0 conditions [17] in Eqs.
(46) and (47), since the Fermi function f ðEkÞ is essentially zero in the BEC limit, where Ek=T � 1.
Eqs. (46) and (47) are central to the BEC-theory. They show that even in the strong attraction limit,
where the system can be viewed as consisting of ‘‘bosons”, the underlying fermionic constraints on D
and l must be respected.

It follows from the above equations that for general T 6 Tc ,
npairs �
n
2
¼ ZD2; ð48Þ
where the coefficient of proportionality
Z � m2a

8p�h4 : ð49Þ
This coefficient Z was obtained directly from the ground state equations [43,74]. However, it can also
be readily derived at non-zero T using the propagator for non-condensed pairs following Eq. (38). Here
one drops the last term involving the summation over free fermion states, which are clearly negligible
in the BEC. That the same answer is obtained from the ground state and from tpgðQÞ demonstrates an
internal consistency of the calculations.

We arrive at an important physical interpretation of the BEC limit. Even though D or npairs is a con-
stant in T, this constant must be the sum of two temperature dependent terms. Indeed it follows from
Eq. (22) that, just as in the usual theory of BEC these two contributions correspond to condensed and
non-condensed components
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n
2
¼ ncondensed

pairs ðTÞ þ nnoncondensed
pairs ðTÞ: ð50Þ
Note also that at Tc
nnoncondensed
pairs ðTcÞ ¼

n
2
¼
X

q

bðX0
q; TcÞ: ð51Þ
We now rewrite the central Eqs. (46) and (47) in the BEC limit to compare more directly with the case
of a weakly interacting Bose gas.
n ¼ D2 m2

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjlj

p
�h3 ; ð52Þ
which, in conjunction with the expansion of Eq. (46),
m

4p�h2a
¼ 2m

�h2

� 	3=2 ffiffiffiffiffiffi
jlj

p
8p

1þ 1
16

D2

l2

" #
; ð53Þ
yields
l ¼ � �h2

2ma2 þ
apn�h2

m
: ð54Þ
These expressions are used to eliminate the fermionic parameters altogether and arrive at an expres-
sion which, at T ¼ 0 some have interpreted [74,43] to be equivalent to the results of Gross Pitaevski
(GP) theory. Here one identifies an effective inter-pair scattering length aB � 2a with nB � n=2 which
represents the number density of pairs, and finally lB � 2lþ �h2

=ma2 is the ‘‘bare” chemical potential
of the pairs, with MB � 2m the pair mass. We emphasize that the value of 2 for the scattering length
ratio is entirely dictated by the assumed form for the ground state, Eq. (1).

With these definitions,
lB ¼
4paB�h2

MB
ðnÞ: ð55Þ
For true bosonic systems, this GP equation is usually considered only at T ¼ 0, where all the pairs are
condensed. In this regard we should interpret lB as a ‘‘bare” chemical potential which includes only a
mean field Hartree shift. This is to be contrasted with lpair which is the chemical potential of the non-
condensed pairs and reflects many body physics beyond Hartree terms. Similarly M� is the effective
mass of the non-condensed pairs which is generally distinct from MB.

Note, however, that our derivation of Eq. (55) should, in principle, apply to all T 6 Tc , and, thus, the
physics is very different from that of GP theory. Clearly lB as defined above is a constant in temper-
ature. The quantity it n appearing in Eq. (55) is, of course, temperature independent, but we note here
that via Eq. (50) it contains both condensed and non-condensed pairs. Their relative contribution can
be determined via an ideal gas dispersion relation with renormalized effective mass. This X0

q / q2 dis-
persion is, in turn, a consequence of the underlying gap equation (46). We stress that this gap equation
has no counterpart in the GP theory for true bosons, although it can be interpreted in the fermionic
context as reflecting the condition that lpair ¼ 0.

Another essential distinction between the fermionic BEC and that of true bosons is that the effec-
tive mass contains interaction effects due to compositeness. The general expression for the (non-con-
densed) pair mass 1=M� in the near BEC limit is given by
1
M� ¼

1
ZD2

X
k

1
m

v2
k �

4Ek�h2k2

3m2D2 v4
k

" #
; ð56Þ
where we have used Eq. (37), as well as Eqs. (46) and (47). After expanding to lowest order in na3,
M� � 2m 1þ pa3n
2

� 	
: ð57Þ
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Physically this increase in effective mass away from the ideal gas asymptote reflects the fact that pairs
are less mobile, as a consequence of the inter-pair repulsion. This means that the asymptotic limit of Tc

is approached from below, which is different from the behavior found in the NSR approach [18]. The
issue of whether the asymptotic limit for Tc in a mean field composite BEC should be approached from
above or below has been addressed [75] in the literature, where it was argued in favor of the latter
alternative.

We turn now to a quantitative calculation of Tc , based on X0
q [via Eq. (51)]. Eq. (51) reflects the fact

that, in the near-BEC limit, and at Tc , all fermions are constituents of uncondensed pairs. It, then, fol-
lows that ðM�TcÞ3=2 / n ¼ const: which, in conjunction with Eq. (57) implies
Tc � T0
c

T0
c

¼ �pa3n
2

: ð58Þ
Here T0
c is the transition temperature of the ideal Bose gas with MB ¼ 2m. This downward shift of Tc

follows the effective mass renormalization, much as expected in a Hartree treatment of GP theory at
Tc . Here, however, in contrast to GP theory for a homogeneous system with a contact potential [76],
there is a non-vanishing renormalization of the effective mass.

3.3. Bogoliubov de Gennes theory and critical velocity calculations

The most widely used theoretical formalism for the trapped Bose gases is probably Gross Pitaevski
theory [76]. This is because it has the flexibility to address inhomogeneous systems and general per-
turbations. For the trapped Fermi gases, the emerging counterpart formalism appears to be Bogoliubov
de Gennes (BdG) theory. Both BdG and GP theory are presumed to be appropriate to the ground state.
Moreover the ground state in question for the Fermi gases is associated with the BCS-Leggett
wavefunction.

The BdG equation is
HðrÞ DðrÞ
DðrÞ �HðrÞ

� 	
unðrÞ
vnðrÞ

� 	
¼ En

unðrÞ
vnðrÞ

� 	
: ð59Þ
Here HðrÞ ¼ �h2

2mr
2 � l. The solution of these equations is subject to the self-consistent gap and number

equations
DðrÞ ¼ �U
X

n

unðrÞv�nðrÞ½1� 2f ðEnÞ� ð60Þ
and
nðrÞ ¼
X
r;n

junðrÞj2f ðEnÞ þ jvnðrÞj2½1� 2f ðEnÞ�
n o

: ð61Þ
Finally, the mass current is
JðrÞ ¼ 2fJun
f ðEnÞ � Jvn

½1� f ðEnÞ�g; ð62Þ
where Jun
¼ Imðu�nrunÞ and Jvn

¼ Imðv�nrvnÞ. The general solution to the BdG equation depends on the
geometries and coupling constant and therefore usually requires full numerical calculation.

This system of equations has been applied to the problem of BCS–BEC crossover in a number of
important ways at T ¼ 0. It was shown in Ref. [77] that in the deep BEC, this scheme becomes equiv-
alent to Gross Pitaevski theory. This observation may not be, in some sense, entirely surprising based
on the arguments we have just presented in Section 3.2. Moreover, one can see that there is a close
analogy between the wavefunction of Eq. (1) and that of Gross Pitaevski theory for point bosons.
BdG theory has been used to address the behavior of a single vortex [53–55] as the system evolves
from BCS to BEC. One of the key observations here is that the core size (related to the coherence length
n) is non-monotonic with scattering length, exhibiting a minimum near unitarity. Moreover, there
have been systematic studies based on BdG theory in the presence of [56] population imbalance.
Finally, we want to call attention to work which addresses the behavior of the critical current as
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extracted from both vortex calculations [55] and from Josephson junction studies [78]. Direct calcula-
tions using Eq. (62) show a maximum in this current as a function of distance from the vortex core
center and this maximum can be loosely associated with the critical current, Ic . Because Ic scales in-
versely with n, one can infer from BdG calculations of n [54] that the critical current is largest close
to unitarity, as observed experimentally [79].

Physically, this maximum in Ic has been interpreted [80,55] as suggesting that on the BCS side of
resonance Ic is determined by the breaking of condensate pairs, while on the BEC side of resonance,
Ic reflects the collective modes of the condensate. These two different mechanisms have different
dependences on the fermionic scattering length, leading to a maximum which one might argue is close
to unitarity. We emphasize here that Ic is a property of the condensed pairs within BCS-Leggett theory.
As noted earlier, one has to exercise caution in applying the so-called Landau criterion in calculating Ic .
Only those excitations which couple to the condensate (that is, to the density) are to be included in
establishing the stability of the superfluid.

3.4. Superfluid density and collective mode calculations

We noted in Section 2.2, that the superfluid density ns is highly constrained by a Ward identity
once the self-energy is chosen. These considerations have been applied [38,21] to the BCS-Leggett-
based formalism where it has been shown that the contribution of non-condensed pairs does not di-
rectly contribute to a Meissner effect, as expected. The Aslamazov-Larkin and Maki-Thompson dia-
grams associated with these finite momentum pairs cancel out and one is left with only a
condensate contribution of the form
ns

m

� �
¼ D2

sc

D2

ns

m

� �BCS
; ð63Þ
where ðns=mÞBCS is defined in Eq. (14), but with Dsc now replaced by D. Obviously, ðns=mÞBCS does not
vanish at Tc , but because of the prefactor, the superfluid density reflects the order parameter and will
be zero in the normal state. One can interpret this expression using D2

scðTÞ ¼ D2ðTÞ � D2
pgðTÞ and noting

that there are two forms of condensate excitation which lead to a decrease in superfluid density with
increasing T; the fermionic excitations, which are important to the extent that DðTÞ contains an appre-
ciable temperature dependence below Tc , and the non-condensed pairs which enter via D2

pgðTÞ.
In a related fashion, there is an extensive literature [66,67,52] which has addressed the T ¼ 0 col-

lective modes of the BCS-Leggett state. In the BCS limit the sound mode velocity is cðT ¼ 0Þ ¼ vF=
ffiffiffi
3
p

,
while in the BEC limit cðT ¼ 0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pnaB=M2

BÞ
q

, with the inter-boson scattering length aB ¼ 2a, as de-
rived in Section 3.3. As noted in Section 2.2, the inter-boson interactions arise in the condensate
dynamics just as in Eq. (13) through the presence of four Green’s functions in the second term in this
expression.

With the introduction of non-zero temperature, the collective mode spectrum must be deduced on
the basis of a gauge invariant formulation of the response of the system to a fictitious vector potential,
which enforces the Ward identity constraints deriving from the self-energy. Because DðTÞ – DscðTÞ,
this calculation is much more difficult to implement. A lowest order approximation was discussed
in Ref. [52]. In this case c(T) becomes complex, but both real and imaginary contributions are seen
to vanish at Tc . If there is to be an eventual reconciliation between the two approaches to BCS–BEC
crossover it will be necessary, at the least to find a full solution to this problem.
4. Nozières–Schmitt-Rink theory: Bogoliubov-based approach to finite T<Tc

Although the normal state is similar to that originally proposed by Nozieres and Schmitt-Rink, the
philosophy underlying this theoretical scheme for describing BCS–BEC crossover [81] begins with
Galitskii’s approach [82] to the dilute Fermi gas with repulsive interactions. Here a self-energy based
on a particle–particle ladder is introduced. Moreover, it is clear that this scheme can be readily ex-
tended to the case of a weak attractive interaction in the normal phase, and then further extrapolated
to the BEC limit (still remaining in the normal phase), where the particle–particle ladder acquires the
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form of the propagator for non-interacting bosons. It then becomes natural to extend this scheme to
the superfluid phase, for which the particle–particle ladder acquires a matrix structure that maps onto
the bosonic normal and anomalous propagators within Bogoliubov theory. For these reasons the main
physical emphasis is on the self-energy itself, and as a consequence on the related dynamical
quantities.

One of the virtues of this type of diagrammatic approach is that it is ‘‘modular” in nature, in the
sense that it can be progressively improved by including additional self-energy corrections which
are thought to be important, particularly at the BCS and BEC endpoints. In this way, upon successive
improvements one can address the Popov theory for composite bosons, the Gor’kov and Melik-Bark-
udarov corrections [81], etc. Of course, practical implementation of these theoretical improvements
suffers by the increase in numerical complexity.

For want of a better short name, we will refer to this as the ‘‘NSR-based approach”. One can also
think of it as a diagrammatic T-matrix scheme which involves a matrix form of the T-matrix. By con-
trast the BCS-Leggett approach is a diagrammatic T-matrix scheme which involves a scalar form for
the T-matrix.

In this alternative approach, Eq. (18) is used [83,36] to yield
1þ U
X

k

1� 2f ðE0
kÞ

2E0
k

¼ 0; T 6 Tc ð64Þ
with
E0
k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � l�Þ2 þ D2

scðTÞ
q

: ð65Þ
Here, as above, Dsc represents the order parameter. We can rewrite this gap equation, along with the
number equation as
Dsc ¼ �U
X

K

bGo
12ðKÞ ð66Þ

n ¼ 2
X

K

bG11ðKÞ: ð67Þ
Here bGo is the bare matrix Green function with components given by bGo
11 ¼ �ðnk þ ixnÞ=½ðEo

kÞ
2 þx2

n�
and bGo

12 ¼ Dsc=½ðEo
kÞ

2 þx2
n� with nk ¼ �k � l�. Note that there are two different levels of Green’s func-

tions which appear in these equations. In effect, fluctuations associated with the collective modes will
appear in the number equation, but not the gap equation.

The fully dressed Green’s functions which include collective mode effects are determined in terms
of the matrix self energies
R11ðk;xnÞ ¼ �R22ð�k;�xnÞ ¼ �
X

Q

C11ðQÞbGo
11ðQ � KÞ; ð68Þ

R12ðk;xnÞ ¼ R21ðk;xnÞ ¼ �Dsc; ð69Þ
from which the important dressed Green’s function which reflects the pair fluctuations and which is
used in the number equation (Eq. (67)) can be derived [81]:
bG11ðKÞ ¼
1

G�1
0 ðKÞ � r11ðKÞ

; ð70Þ

r11ðKÞ ¼ R11ðKÞ þ
R12ðKÞR21ðKÞ

G�1
0 ðKÞ � R22ðKÞ

:

Here G�1
0 ðKÞ ¼ ixn � nk.

The pair propagator (which is the analogue of tpg in the BCS-Leggett theory) is related to the ‘‘bare
collective modes”. In particular,



K. Levin et al. / Annals of Physics 325 (2010) 233–264 249
C11ðQÞ ¼
v0

11ð�QÞ
v0

11ðQÞv0
11ð�QÞ � ½v0

12ðQÞ�
2

�v0
11ðQÞ ¼

X
K

bGo
11ðK þ QÞbGo

11ð�KÞ � 1
U

ð71Þ

v0
12ðQÞ ¼

X
K

bGo
12ðK þ QÞbGo

21ð�KÞ: ð72Þ
We end by recapitulating the central gapless condition of this class of theories:
C11ð0Þ ¼
v0

11ð0Þ
v0

11ð0Þv0
11ð�0Þ � ½v0

12ð0Þ�
2 ¼ 1: ð73Þ
The speed of sound is obtained from the finite Q generalization of the denominator in Eq. (73):
v0

11ðQÞv0
11ð�QÞ � ½v0

12ðQÞ�
2 ¼ 0 which can be seen [80] to yield an answer equivalent to that obtained

from Eq. (15). Quite generally at small wave-vector this bosonic dispersion is given by
Xq ¼ cðTÞq: ð74Þ
4.1. Nozieres–Schmitt-Rink-based theory in the BEC limit: T 6 Tc

It has been shown that [83] in the BEC limit, the equations for the collective mode propagators C11

and C12 are very similar to the diagonal and off-diagonal bosonic Green’s functions at the level of
Bogoliubov theory [49]. In the deep BEC these bosonic Green’s functions have a pole at
Xq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2MB
þ lB

� 	2

� l2
B

s
ð75Þ
which represents the characteristic dispersion relation for bosons in a weakly interacting Bose gas.
Here lB is defined in Eq. (55) and MB ¼ 2m is the boson mass.

The associated fermionic Green’s functions are in some sense the more important, since these are
fundamentally fermionic gases. In the BEC limit the equation
R11ðk;xnÞ ¼ �
X

Q

C11ðQÞbGo
11ðQ � KÞ ð76Þ
can be approximated by ignoring terms which involve Dsc compared to jl�j. The fermion Green’s func-
tions in the BEC limit are approximated as the following expressions which are derived in Ref. [83] and
we summarize the derivation in Appendix B.
bG11 ¼ �
ixn þ nk

x2
n þ n2

k þ D2
pg þ D2

sc

: ð77Þ
Here the approximation
D2
pg � �

X
Q

C11ðQÞ ð78Þ
has been used. This approximation is similar in spirit to that shown in Eq. (34). It is also demonstrated
[83] that in the deep BEC regime, the fermion Green’s function leads to
X

K

bG11ðKÞ ¼
n
2
� n0 þ n0: ð79Þ
Here n0 and n0 denote densities of condensed and noncondensed pairs, respectively. Similarly, it fol-
lows that
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bG12 ¼
Dsc

x2
n þ n2

k þ 2D2
pg þ D2

sc

: ð80Þ
The modified gap equation,
Dsc ¼ U
X

K

bG12ðKÞ; ð81Þ
gives [83], in the deep BEC limit,
lB �
4paB

MB

� 	
ðn0 þ 2n0Þ: ð82Þ
Under these approximations, pairs in the deep BEC limit behave like bosons in the Popov approxima-
tion. Although there is an asymmetry between the denominators of these two component Green’s
functions, one can see that the diagonal term has a strong similarity to the previous approach of Sec-
tion 3.1. The effective excitation gap is given by the contribution from condensed and excited pairs.

To go beyond this scheme, it is necessary to incorporate corrections to the gap equation (64) with
concomitantly those to the collective mode spectrum. In this way collective mode effects have to be
treated at a level beyond the bare modes of BCS theory. Some progress has been made [83] in imple-
menting this scheme in the BEC limit.

4.2. The controversy surrounding the number equation in the NSR approach

In the original NSR approach the number equation was determined from a thermodynamical po-
tential, Here, above and below [36] Tc , one approximates the thermodynamical potential
XNSR ¼ Xmf þX0
pf ; ð83Þ

Xmf ¼
X

k

ðnk � Eo
k þ

D2
sc

2k2Þ � 2T
X

k

lnð1þ e�Eo
k=TÞ; ð84Þ

X0
pf ¼

X
Q

ln½v0
11ðQÞv0

11ð�QÞ � ½v0
12ðQÞ�

2�: ð85Þ
Note that in this RPA-like scheme, only the bare pair susceptibilities v0 are included.
Quite generally, the number equation is given by
n ¼ @X
@l�

ð86Þ
which is necessarily equivalent to Eq. (67), providing one has a complete theory. However, because of
the lack of full self consistency, the original NSR approach was criticized by Serene [84]. By approxi-
mating the pair fluctuation contributions, it corresponds to a T-matrix theory in which one takes only
the lowest order terms in a Dyson expansion, rather than a full resummation, so that
GðKÞ � G0ðKÞ þ G0ðKÞR0ðKÞG0ðKÞ: ð87Þ
This criticism, not withstanding, it has recently been argued [85,86,47] that, below Tc one should write
the number equation as
n ¼ �dXNSR

dl�
¼ � @XNSR

@l�
þ @XNSR

@Dsc

dDsc

dl�

� 	
ð88Þ
with dDsc=dl� determined from the BCS gap equation.
In earlier work [36], the second term on the right hand side of Eq. (88) was dropped. Indeed the fact

that
@XNSR

@Dsc
– 0 ð89Þ
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in our view reflects a problem in the theory– that the gap equation is non-variational, or non-self-con-
sistent. This non-variational behavior implies that a Landau Ginsburg like analysis, (and even its gen-
eralization to first order phase transitions), is not possible. This anomalous term appears
discontinuously below Tc and, it will enhance first order discontinuities at Tc , which may already
be present in Bogoliubov or Popov level approaches.

Nevertheless, it has been argued that in the BEC this non-variational term provides a quantitative
improvement over previous work since it evidently yields the nearly ‘‘correct” [86] relationship be-
tween the inter-boson ðaBÞ and inter-fermion (a) scattering lengths. Exact few body calculations
[64] show that this ratio should be 0.6. It appears difficult to understand physically how an evidently
non-self-consistent gap equation can capture the same physics as these precise four fermion calcula-
tions. Indeed, this claim appears to be at odds with detailed calculations presented elsewhere which
show that to arrive at this correct ratio, one must go beyond [87,83] T-matrix based schemes.

For ease in identification of these two different versions of NSR theory, we now refer to that based
on Eq. (67) as NSR-1 and that based on Eq. (88) as NSR-2.

4.3. Superfluid density and collective mode calculations

The superfluid density ns as a function of temperature has been calculated using both NSR-1 and
NSR-2 like theories. For the former, a diagrammatic calculation of the current–current correlation
function based on Aslamazov-Larkin and Maki-Thompson contributions was adopted [48], which is,
in many ways, similar to that discussed in Section 3.4 within the BCS-Leggett framework [38,21].
For NSR-2 like theories a framework based on changes in the thermodynamic potential associated
with a ‘‘phase twist” was adopted [88,89]. The results appear to be rather similar, at a qualitative level.
For some parameter regimes, there are either first order transitions at Tc or multi-valued results for ns

which presumably reflect the analogous behavior found in Bogoliubov or Popov level treatments of
true Bose systems [50,49]. See Appendix C.

An important check on these calculations is to verify that there is no Meissner effect in the normal
state. We can follow the same analysis as used in Eq. (12). Quite generally, above Tc one has
n
m

� �
xx
� Pxxð0Þ ¼ 0: ð90Þ
We show below that the appropriate form for NSR-1 is
n
m

� �
ab
¼ 2

X
K

@2nk

@KaKb
GðKÞ ð91Þ
ða; b ¼ x; y; zÞ and that this is consistent with the absence of a normal state Meissner effect.
Here the current–current correlation function is
PlmðQÞ ¼
Z b

0
dseiXlshjlðs;qÞjmð0;�qÞi ¼ �2

X
K

KlðK;KþÞG0ðKþÞkmðKþ;KÞG0ðKÞ; ð92Þ
where k and K denote the bare and full vertices and they necessarily satisfy a Ward identity. Impor-
tantly, as shown in Appendix D, the two contributions cancel each other as a consequence of a Ward
identity. This necessary cancellation imposes a necessary consistency. We have presumed that the
number equation appears as in Eq. (67) (which we call NSR-1) which is then consistent with Eq.
(91). If, on the otherhand, we had assumed the number equation as in NSR-2, the cancellation can
be enforced as well, but only by proper imposition of the corresponding Ward identity. This may ex-
plain why the results for the superfluid density in Refs. [88] and [89] were not precisely the same as
those found in Ref. [48]. This analysis also serves to help establish those diagrams which must be used
below Tc in order to be assured that there are no contributions to the Meissner current from non-con-
densed pairs. In view of the above arguments and Appendix D, the diagrammatic choice in Ref. [48]
seems to be validated, although it is of interest to reformulate these calculations by explicitly impos-
ing the Ward Identity below Tc .
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The collective mode spectrum appropriate to the NSR scheme was originally discussed by Griffin
and Ohashi [36] based on the pole structure in Eq. (72). This calculation involves a natural extension
of the collective mode calculations performed at the mean field level [66,67], but here one uses the
fully self-consistent l�. In addition there has been work on the collective modes using NSR-2 which
addresses an improved ground state and which includes quantum fluctuations [47]. This, thus, goes
beyond the mean field calculations of this earlier work, and quantifies the changes in the sound
velocity.

4.4. Alternative schemes

In this review we have confined our attention to the two schools of BCS-BEC crossover which rep-
resent natural extensions of the seminal [18,17] NSR and Leggett papers. There are alternate ap-
proaches, including also Monte Carlo based studies, [90] which have been introduced into the
literature. Most notable among the analytical studies is a scheme associated with Zwerger and co-
workers [91], Haussmann [75] and their collaborators. The original work [75] could be viewed as a
third alternative T-matrix scheme in which the pair propagator vðQÞ appearing in Eq. (28) involves
two dressed Green’s functions. In the context of work on high temperature superconductors, this
scheme (and a closely related approach known as ‘‘fluctuation exchange” or FLEX) has been addressed
by a number of different groups [92–94] and there has been some controversy [95,94,92] about
whether pseudogap effects (which are to be expected) naturally emerge. This approach has recently
been extended [91] below Tc in somewhat the same spirit as the NSR-based schemes.

5. Detailed comparisons

5.1. Overview of salient qualitative comparisons

Because this paper is principally aimed at addressing theoretical issues, we do not review the vast
number of theory-experiment comparisons now in the literature. These are based on radio frequency
spectroscopy, thermodynamics, collective modes and other techniques. Rather, here we address some
of the major ‘‘milestone” issues which are often used to assess the general quality of a given BCS–BEC
crossover theory. We begin with Table 1 which presents an overview of the two theoretical schools as
summarized in Sections 3 and 4. The first two lines characterize the behavior of the fermionic and bo-
sonic dispersion as they appear in the respective ‘‘gap equations” of the two schools. As is consistent
with the hierarchy of ground state wavefunctions in Section 2.1, one can infer that the NSR-based
scheme approximates the fermionic contribution and focuses more directly on the bosonic contribu-
Table 1
Comparison of conceptual issues in the two different theoretical schools.

NSR based scheme for general T BCS-Leggett based scheme for general T

Fermionic dispersion below
Tc

E0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ D2
scðTÞ

q
, approximate

treatment of fermions

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ D2
q

; D2 ¼ D2
scðTÞ þ D2

pgðTÞ

Bosonic dispersion below Tc Xq ¼ cðTÞq X0
q ¼ q2=2M� , approximate treatment of

bosons
Order of transition at Tc First order Second order
Density profiles at unitarity Features indicating condensate edge Smooth, quasi-Thomas-Fermi
Superfluid density Multi-valued or discontinuous at Tc Smooth and monotonic at all T
Calculations of critical

velocity at T ¼ 0
Either from vortex or Josephson effect
calculations

T ¼ 0 superfluid fraction at
unitarity

100% 100%

Order parameter collective
modes

x ¼ cðTÞq x ¼ c0ðTÞq

Major advantage of ground
state

Captures physics of Bogoliubov theory,
esp. good for BEC

Allows spatial dependence. via Bogoliubov
deGennes theory
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tion; it thereby arrives at a linear dispersion for the pairs. By contrast the BCS-Leggett school approx-
imates the bosonic contribution and focuses more directly on the fermionic dispersion, thereby incor-
porating pseudogap effects into Ek. The order of the transition at Tc is second order in the BCS-Leggett
scheme and first order [51] in NSR-based approaches. The finite T density profiles in a trapped gas will
reflect this behavior and be rather smooth and featureless in the BCS-Leggett scheme [96] while there
will be derivative discontinuities and non-monotonic features [45] which reflect the condensate edge
in the NSR based scheme. Similarly the first or second order of the transition will also show up in the
superfluid density within the BCS-Leggett [96,38,21] which displays smooth monotonic behavior or
NSR based [48,88,89] scheme which shows multi-valued or discontinuous features at Tc . We point
out that these spurious first order effects are also seen in the Bogoliubov theory for true bosons, as
discussed in Appendix C.

Calculations of the critical velocity have been addressed within the BCS-Leggett school using Bogo-
liubov deGennes theory [55] and from Josephson junction studies [78]. Here an experimental compar-
ison can also be made and the agreement [79] is reasonable. Table 1 shows that in both schools the
superfluid fraction in the ground state is 100% in both schools. In the NSR [66,67] and BCS-Leggett
[52] schemes the dispersion of the order parameter displays the expected linear behavior at long
wavelengths. Finally we address the strengths of both ground states by noting that the NSR-based
scheme captures the physics of Bogoliubov theory and should, thus be the quantitatively better
ground state, particularly in the BEC limit [48]. By contrast the BCS-Leggett scheme is the more flexible
and allows a spatial dependence to be readily incorporated in the form of Bogoliubov deGennes the-
ory. Moreover, within the BEC, this BdG theory leads to a Gross Pitaevski picture of the ground state,
which allows one to exploit a well established body of literature on true Bose systems.

5.2. Comparison of superfluid transition temperatures

Figs. 1 and 2 present comparisons of the superfluid transition temperatures in the two schemes for
the homogeneous situation and in a trap. The black lines correspond to the BCS-Leggett scheme
[12,13] and the red lines are for the NSR approach as obtained in Ref. [45]. For the homogeneous case,
it can be seen that there are only small quantitative differences, while in the trapped situation the
BCS-Leggett scheme leads to considerable lower Tc values slightly above unitarity. The root of the dif-
ference in the two calculational schemes lies physically in the fact that the BCS-Leggett scheme com-
putes the transition temperature in the presence of a finite (pseudo)gap at Tc . In the NSR based
scheme, these pair fluctuation effects do not appear as a pseudogap in the expression for Tc , but rather
enter through corrections to the fermionic chemical potential l�.
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Fig. 1. Comparison of Tc=TF as a function of inverse scattering length 1=kF a in a homogeneous system within the BCS-Leggett
scheme [12,13] (black curve) and the Nozieres Schmitt-Rink [45] (red curve) scheme. The former has a maximum closer to
unitarity and a dip close to the point where l changes sign. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 2. Comparison of Tc=TF in the trapped case for the two schools, using the local density approximation. As in the previous
figure, the red curve (higher on the right-hand side) is for the NSR scheme [45] and the black curve for the BCS-Leggett approach
[12,13]. Experimental data from [98] are shown as blue dots with error bars. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Section 3.2 presented simple arguments which show that the ideal gas asymptote for Tc is ap-
proached from below in the BCS-Leggett scheme, while it evidently is approached from above in
the scheme of Nozieres and Schmitt-Rink. Both of these are generalized mean field approaches and
the behavior should not be compared with expectations [97] based on a critical fluctuation description
of true Bose systems which clearly include other physical mechanisms. Indeed, the fact that at Tc there
is a discontinuity in the NSR-based schemes suggests that this approach should be more suitable at
T � 0, away from Tc.

Because of the different approaches to the ideal gas asymptote, in a trap one sees from Fig. 2 that
the differences between the two transition temperatures are more marked. The ideal gas asymptote is
quickly reached in the NSR scheme very close to the point where 1=kFa � 1. In the BCS-Leggett scheme
there is an extended regime at and on the BEC side of unitarity where Tc is rather constant, and the
asymptote is only reached for 1=kF a considerably larger than its counterpart in the alternate school.
Some recent data [98] are superposed for comparison purposes.

5.3. Comparison of density profiles

Fig. 3 presents a plot from Ref. [46] of the axial density profiles in the BCS-Leggett ground state
(dashed lines) as compared with the NSR-derived ground state (black lines) and the data points
(shown in red (For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)) for 6Li. In axial profiles two of the three dimensions of the theoretical
trap profiles were integrated out to obtain a one-dimensional representation of the density distribu-
tion along the transverse direction: �nðxÞ �

R
dydznðrÞ. Three different values of the magnetic field near

unitarity are shown, and the upper and lower panels correspond to slight changes in the number of
atoms, N which are assumed in the theoretical calculations. The figure shows that the agreement be-
tween theory and experiment is better for the smaller value of N. While the difference in the profiles
associated with the two ground states is not particularly dramatic, it should be stressed that this dif-
ference is reflected in rather large changes in the coefficient b discussed below. Overall the quantita-
tive agreement between theory and experiment is seen to be better for the NSR-based ground state.

In Fig. 4 are shown density profiles at finite temperatures for the BCS-Leggett case, from Ref. [96].
The experimental data and theory correspond to roughly T=TF ¼ 0:19. These profiles are estimated to
be within the superfluid phase (Tc � 0:3TF at unitarity). This figure presents Thomas-Fermi fits [100]
to the experimental Fig. 4a and theoretical Fig. 4b profiles as well as their comparison Fig. 4c, for a
chosen RTF ¼ 100 lm, which makes it possible to overlay the experimental data (circles) and theoret-
ical curve (line). Finally Fig. 4d indicates the relative v2 or root-mean-square (rms) deviations for these
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TF fits to theory. This figure was made in collaboration with the authors of Ref. [100]. To probe the
deviations from a TF functional form, in Fig. 4d, the (relative) rms deviation, or v2, from the TF fits
as a function of T is plotted. v2 increases rapidly below Tc and reaches a maximum around 0:7Tc . Quite
good agreement between theory and experiment is observed here in the BCS-Leggett scheme for the
finite T profiles.
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�nðxÞdx ¼ 1, and we set RTF ¼ 100 lm in order

to overlay the two curves. v2 reaches a maximum around T ¼ 0:19TF .
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5.4. Addressing b effects

One of the most widely used milestones for assessing crossover theories is the numerical value ob-
tained for the coefficient b. At unitarity the chemical potential must scale with the Fermi energy with a
coefficient of proportionality
l ¼ ð1þ bÞEF : ð93Þ
In the BCS-Leggett ground state b � �0:41. By contrast experimental data [99] suggest an answer
which is closer to Monte Carlo calculations [101] b ¼ �0:56. Calculations [46] based on NSR-1 yield
b ¼ �:545, which is in quite good agreement with experiment. In the NSR-2 scheme (based on the
thermodynamical potential with the non-variational contribution included), the same good agree-
ment with experiment (and Monte Carlo) was presented [85,86,47].

The BCS-Leggett- based scheme, as it has been implemented here, can be seen to ignore Hartree
effects, just as is consistent with the ground state wavefunction. This is a shortcoming of the scheme
and in the context of the formalism presented here, one can trace it to Eq. (34). This approximation, in
effect, includes only pairing correlations in the self-energy. Correlations that are not associated with
pairing, such as Hartree effects have been omitted. With the full T-matrix formalism as outlined in
Section 3.1, it should be clear that this assumption can be avoided and is not fundamental to the phys-
ical picture presented here. However, dropping this simplification does lead to considerable numerical
complexity. We note that the NSR-based theories both above [15,102] and below [83] Tc include these
correlations in a fairly automatic way. Moreover, at high temperatures T � T� when pairing is weak
they were studied some time ago [30] and compared [68] with the more strongly pair-correlated the-
ory discussed in the context of BCS-Leggett theory.

One can think of these omitted correlations as entering via Eq. (28) when the pair susceptibility is
assumed [103] to include only two bare Green’s functions. Most recently, it has been shown that these
‘‘G0G0” correlations are responsible for some important physical observations in the context of gases
which are so strongly polarized that superfluidity is driven away [104]. A bound state associated with
the minority spins is found to occur [105,106] in these highly imbalanced gases, which is responsible
[107,102] for anomalies in the RF spectra [104].

In summary, it is possible to estimate the size of these Hartree corrections, if one goes beyond Eq.
(34) and includes the effects deriving from ‘‘G0G0” correlations, noted above. This will have to be done
in future calculations for better quantitative comparisons of various properties, including b.
5.5. Condensate fraction and ‘‘quantum depletion”

It is interesting to contemplate the concept of ‘‘quantum depletion” in a fermionic system, partic-
ularly as one approaches the BEC. It is generally believed that the BCS-Leggett theory is to be distin-
guished from that based on NSR (which is closer to Bogoliubov theory) because of the neglect of
quantum depletion. However, because of the presence of unpaired fermions, the condensate fraction
will automatically show less than 100% condensation, except in the deepest BEC. Similarly, in the BCS
regime this condensate fraction is vanishingly small. Establishing the degree to which ‘‘quantum
depletion” is present in a Fermi gas is, thus, a subtle issue.

We begin with the BCS-Leggett ground state. Following earlier work [109], at T ¼ 0, the pair wave-
function is defined as Fk � hN � 2jc�k#ck"jNi, where ckr is the fermion annihilation operator for r ¼"; #.
It can be shown that in this ground state we have Fk ¼ ukvk, where the coefficients are
u2

k; v
2
k ¼ ½1
 ð�k � lÞ=Ek�=2 and Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � lÞ2 þ D2

q
. The condensate fraction at T ¼ 0 is
Nc ¼
X

k

jFkj2 ¼
Z

drjFðrÞj2: ð94Þ
Here FðrÞ ¼
P

kFk expðik � rÞ. This pair density reflects off-diagonal-long-range-order. There have been
a number of numerical calculations of this quantity over the entire BCS-BEC crossover [108] and the
agreement with direct Monte Carlo schemes [108] is not unreasonable, as will be summarized below.
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It is natural to try to extend this picture to finite temperature, taking the quantity
Fk ¼ T

P
xn

Fðixn;kÞ ¼ ukvk½1� 2f ðEkÞ� as a measure of the pair density. We stress that this is not re-
lated to off-diagonal long-range order, but rather contains the contributions from condensed and
non-condensed pairs, through the decoupling of D2 into D2

sc and D2
pg . One has, thus,
npair ¼ D2
X

k

½1� 2f ðEkÞ�2

4E2
k

; T – 0: ð95Þ
To emphasize that there is no unique representation of the pair fraction away from the BEC limit, we
note that Eq. (38) provides another natural decomposition We can rewrite this equation representing
the total density of fermions it n in the form
n ¼ 2ZD2 þ 2
X

k

f ð�k � lÞ ð96Þ
or equivalently
n ¼ 2ZD2
sc þ 2ZD2

pg þ 2
X

k

f ð�k � lÞ; ð97Þ
from which
npair ¼ 2ZD2
sc þ 2ZD2

pg ; ð98Þ
can be obtained. There are three terms on the right hand side of Eq. (97). The second term corresponds
to the density of fermions in the non-condensed pairs. The first term may be identified as Nc ¼ 2ZD2

sc ,
representing an alternative way of quantifying the density of fermions in the condensate, and the third
term may be identified as the density of remaining (unpaired) fermions, nf ¼ 2

P
kf ð�k � lÞ. This

decomposition is of interest, in part because it relates more directly to the decomposition of pairing
contributions and free fermions introduced in the original NSR paper.

Recent calculations of Nc [88,89] have also been presented using the NSR-2 approach, where the
fraction is found to be somewhat smaller than in the BCS-Leggett state. Importantly, the difference be-
tween these two results for Nc is viewed as a possible way to represent quantum depletion, which is
naturally larger in NSR based theories as compared to the BCS-Leggett counterpart.

5.6. Effects of first order transitions

Essentially all NSR-based theories, as well as some which claim higher levels of consistency, report
first order transitions [51]. These effects presumably originate in the same way as their counterparts in
true Bose systems treated at the Bogoliubov [49] or Popov level. We outline the origin of these first
order effects in Appendix C. They lead to derivative discontinuities in the density profiles at the con-
densate edge [110] and are thus, not as problematic in the case of a trapped gases as compared to a
homogeneous system. They are also not as problematic in the BEC limit where bi-modality is present
and one would expect signatures of the condensate edge.

Despite these theoretical observations, experiments show a behavior which is far from first order.
One of the most striking features about the unitary gases is that there is so little indication of the
phase transition and thus no evidence for first order behavior. This is seen by noting the historical dif-
ficulties encountered in establishing whether a particular experiment is performed in the superfluid or
normal phase. In the absence of population imbalance, the unitary gas profiles are featureless [8] with
no clear bi-modality or other indications of a condensate edge. Similarly, RF spectroscopic studies of
the pairing gap show a smooth behavior [111] from high T to temperatures well below Tc . As a con-
sequence, Tc is difficult to identify, although important thermodynamical measurements, have indeed,
indicated a phase transition [8].

These theoretically generated first order effects become even more difficult to reconcile with the
fact that in BCS–BEC crossover, the pseudogap, which appears well above Tc leads to an even smoother
transition than in strict BCS theory (which also is of second order). Thus a first order transition in sys-
tems undergoing BCS–BEC crossover can be viewed as somewhat problematic, except, perhaps if
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attention is restricted to a narrow temperature range. This points to an advantage of the BCS-Leggett
based approach where the density profiles are rather featureless and well fit to a Thomas Fermi form.
A related advantage is that without first order transitions one can arrive at a theoretical basis
[112,113] for adiabatic sweep thermometry. This is an experimental technique [114,4] which has been
rather widely applied. Using the theoretically determined entropy, it is possible to arrive at reasonable
estimates of a final temperature, based on an experimentally known initial temperature connected by
an adiabatic sweep.

5.7. Quantitative comparisons

In specific quantitative comparisons, the NSR-based approaches appear to have some advantage,
although there are variations depending on how the number equation is implemented (either via
NSR-1 or NSR-2). Table 2 summarizes specific key numbers which have been used to assess the differ-
ent schools. Listed in the first row is the scattering length ratio associated with the inter-boson and
inter-fermion interactions, while the second row compares the quantity b defined in Eq. (93) which
is associated with the unitary limit. Finally, the third and fourth rows address the value of the conden-
sate fraction in the ground state in the near-BEC and very deep BEC. This is relevant to quantifying the
degree of quantum depletion. We have previously addressed our concerns about NSR-2 which,
through Eq. (88), builds on inconsistencies associated with the fact that the gap equation does not sat-
isfy the variational condition. Rather we argue in favor of the approach we call NSR-1 which uses Eq.
(67). While there seems to be considerable interest in the community in comparing numbers such as
those shown in Table 2, because of just these concerns about more fundamental issues, we are of the
opinion that it may be premature to give too much weight to the numerical comparisons shown in
Table 2. Instead we attach greater importance to Table 1 for assessing a given theory and for indicating
new directions for improvement.

6. Summary

One of the major goals of this review has been to clarify the genesis of a large number of contribu-
tions to the theoretical literature by associating them clearly with one or the other theoretical ap-
proaches to BCS–BEC crossover. We stress that these two theoretical schemes are different in the
ground state and in their thermal properties. One should, thus, avoid the tendency to present results
from the Leggett BCS ground state and simultaneously use the Nozieres Schmitt-Rink calculations for
treating T – 0 aspects of BCS–BEC crossover.

It was also our goal to summarize the major strengths and weaknesses within these two schools.
While it clearly includes bosonic degrees of freedom, there is a concern about the Leggett-BCS theory
which concern derives from the fact that this approach does not yield a Bogoliubov-like or sound
mode dispersion for the non-condensed pair excitations. Formally, this is a consequence of the associ-
ated T-matrix description of the q – 0 pairs, which drops higher order terms and which are needed to
couple the condensate and pair excitations. Although it has not been seen as yet [115], this sound-like
excitation spectrum could show up in future experiments on unitary gases, particularly through
power law dependences in thermodynamics, and perhaps, through Bragg spectroscopy. If signatures
of the sound mode appear via condensate dynamics, it will be compatible with both theoretical
schools. If the mode appears specifically to be associated with the non-condensed pair dispersion
Table 2
Quantitative comparisons among the different schools. References for each number are listed in the first row from left to right:
Refs. [83,86,74,64]. For the second row from left to right the references are: Refs. [46,86,74,99]. For the third row from left to right
the references are Refs. [89,108,108]. Finally in the last row from left to right the references are Refs. [89,108,108].

NSR-1 NSR-2 BCS-Leggett ‘‘Answer”

Scatt. length ratio: aB=a 2.0 �0.55 2.0 0.6 (exact calc.)
b ¼ l

EF
� 1 �0.545 �0.59 �0.41 �0.55 (from experiment)

Nc at T = 0, 1=kF a ¼ 2 0.84 0.99 0.96 (Monte Carlo)
Nc at T=0, 1=kF a ¼ 1 0.48 0.69 0.58 (Monte Carlo)
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(e.g., in thermodynamics), then it will present a challenge for the BCS-Leggett approach. On the posi-
tive side, calculations in this BCS-Leggett phase are very tractable; one can readily handle inhomoge-
neities such as vortices (through the Bogoliubov deGennes approach); one can introduce trap effects,
as well as population imbalance and address all temperatures T.

For the NSR based schemes a comparably major problem is that there is no satisfactory generalized
mean field theory for the weakly interacting Bose gas which works at all temperatures. The NSR based
school is based on this Bose gas mean field starting point and this introduces unphysical first order
transitions which, at least around Tc , will interrupt the smooth crossover from BCS to BEC and limit
the applicability of theory to specified ranges of temperature. On the positive side, it is believed that
this scheme, which works best at low temperatures, will produce the better ground state [48] and al-
low more quantitative comparison with experiment at T � 0.

With these weaknesses identified, each of these schools has a large agenda in hand for future re-
search. In the short term the BCS-Leggett scheme should be readily extended to include additional
non-pairing contributions to the self-energy (such as Hartree effects) which will make it more favor-
able for quantitative comparisons. Similarly, in the short term, the NSR-based approach should be ex-
tended to implement the inclusion of Popov like correlations, and thereby include corrections to the
BCS gap equation (which treats the fermions as non-interacting). In the longer term one would hope
that NSR scheme (which approaches the crossover from the BEC end and oversimplifies the fermionic
dispersion) and the BCS-Leggett scheme (which approaches the crossover from the BCS end and over-
simplifies the bosonic dispersion), will ultimately be unified. It is also to be expected that experiments
will guide the way.
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Appendix A. Details of the T-matrix calculations

The T-matrix is t�1
pg ðQÞ ¼ U�1 þ vðQÞ. Near Tc can it be expanded near Q ¼ 0 in the form
tpgðq;XÞ ¼
1

ZðX� q2=2M� þ lpairÞ þ iCQ
ð99Þ
after analytic continuation (iXl ! Xþ i0þ). The pair chemical potential lpair vanishes below Tc . The
relaxation term iCQ is neglected near Tc in most applications. Firstly we calculate Z.
Z ¼
@t�1

pg

@X

�����
X¼0;q¼0

¼ 1
2D2 n� 2

X
k

f ð�k � lÞ
" #

: ð100Þ
The effective mass of pairs, M�, is given by
1
2M� ¼

1
6Z

@2t�1
pg ðq;0Þ
@q2

�����
q¼0

: ð101Þ
Here
@2t�1
pg ðq;0Þ
@q2

�����
q¼0

¼ � 1
2D2

X
k

(
2f ð�k � lÞ ðr2

k�kÞ þ 4
�k � l

D2

� 	
ðrk�kÞ2

� �

� 2f ðEkÞ
�k � l

Ek

� 	
ðr2

k�kÞ þ 2
ðE2

k þ ð�k � lÞ2Þ
D2Ek

( )
ðrk�kÞ2

" #

þ 4f 0ð�k � lÞðrk�kÞ2 � 1� �k � l
Ek

� 	
ðr2

k�kÞ þ
2Ek

D2

� 	
1� �k � l

Ek

� 	2

ðrk�kÞ2
)
:

ð102Þ
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Appendix B. Details on Eqs. (77) and (80)

We review how Eqs. (77) and (80) are derived following [83]. The Dyson’s equation, Eq.(32) in
Ref.[83], is
bG11ðKÞ ¼ �bG22ð�KÞ ¼ bGo

11ðKÞ þ bGo
11ðKÞ½R11ðKÞbG11ðKÞ þ R12ðKÞbG21ðKÞ�;

bG12ðKÞ ¼ bG12ðKÞ ¼ bGo
11ðKÞ½R11ðKÞbG12ðKÞ þ R12ðKÞbG22ðKÞ�: ð103Þ
Following the approximation shown in Eq. (78), the self-energy becomes
R11ðKÞ �
D2

pg

ixn þ nk
; ð104aÞ

R22ðKÞ �
D2

pg

ixn � nk
: ð104bÞ
In the BEC limit, Dsc=jl�j � 1 and we assume this also holds for Dpg=jl�j. Then
bG11ðKÞ ¼
ixn þ nk �

D2
pg

ixn�nk

ixn � nk �
D2

pg

ixnþnk

� 	
ixn þ nk �

D2
pg

ixn�nk

� 	
� D2

sc

¼ �
ðixn þ nkÞðx2

n þ n2
k þ D2

pgÞ
ðx2

n þ n2
k þ D2

pgÞ
2 þ Dscðx2

n þ n2
kÞ
¼ � ixn þ nk

x2
n þ n2

k þ D2
pg þ D2

sc
x2

nþn2
k

x2
nþn2

kþD2
pg

� � ixn þ nk

x2
n þ n2

k þ D2
pg þ D2

sc

: ð105Þ
Here we made the approximation, which is valid in the BEC limit,
x2
n þ n2

k

x2
n þ n2

k þ D2
pg

¼ 1�
D2

pg

x2
n þ n2

k þ D2
pg

� 1: ð106Þ
The off-diagonal fermion Green’s function
bG12ðKÞ ¼ �
Dsc

ixn � nk �
D2

pg

ixnþnk

� 	
ixn þ nk �

D2
pg

ixn�nk

� 	
� D2

sc

¼ Dscðx2
n þ n2

kÞ
ðx2

n þ n2
k þ D2

pgÞ
2 þ D2

scðx2
n þ n2

kÞ
¼ Dsc

x2
n þ n2

k þ 2D2
pg þ D2

sc þ
D4

pg

ðx2
nþn2

kÞ

� Dsc

x2
n þ n2

k þ 2D2
pg þ D2

sc

: ð107Þ
Note that the corresponding gap equation, Eq. (81), derived from this expression is different from the

BCS gap equation when Ek is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ D2
sc þ D2

pg

q
.

Appendix C. First order transitions in generalized boson mean field theories

It is well known [116,50] that generalized mean field theories of the weakly interacting Bose gas
are associated with unphysical first order transitions. It is, thus, often argued that these theories
should only be applied at temperatures much lower than Tc. Since the same issues arise with BCS-
BEC crossover theories of the extended Nozieres Schmitt-Rink school (based on the Hartree-Fock-



K. Levin et al. / Annals of Physics 325 (2010) 233–264 261
Bogoliubov or Popov approximations), it is useful to understand the physical origin of these first order
effects.

We summarize here the central issues which lead to first order transitions:

1. The BEC transition temperature predicted by generalized mean field theories is the same as the BEC
temperature of an ideal Bose gas, T0

BEC .
2. Below T0

BEC , interaction effects are found to suppress thermal excitations. This suppression arises
from interaction effects in the dispersion relation which lead to a systematic increase in the exci-
tation energy, relative to the non-interacting gas. In addition there is a change in the phase space
weighting factor. In combination, these two effects importantly yield a smaller fraction of non-con-
densed bosons (or a larger condensate fraction).

3. As a consequence, if one plots the condensate fraction obtained from generic mean field theory as a
function of T, one sees that it tends towards T0

BEC by overshooting and then bending back towards
T0

BEC at the highest temperatures below the transition. This double valued behavior is then associ-
ated with a first order transition.

Fig. 5 shows the condensate fraction (solid line) as a function of temperature as obtained from the
Popov approximation. The bend-over which indicates a first order transition can be seen clearly. As a
comparison, the condensate fraction of a non-interacting gas of bosons is also presented (dashed
curve). Here one sees a smooth second order phase transition.

We can take these ideas over to the BCS-Leggett approach to BCS–BEC crossover (which is the only
case where a first order transition is not seen). It is rather straightforward to see the analogies with the
Bose gas through the gap equation: D2 ¼ D2

sc þ D2
pg in conjunction with Eq. (35) (and in some situations

also with Eq. (37)). Here, too, following the interacting Bose gas logic we will also end up with an
unphysical first order transition which means that the smooth crossover at finite T is interrupted
for some range of temperatures below and near Tc.

Appendix D. Ward identity analysis of the number equation

The Ward identity is given by
Fig. 5.
obtaine
Q � kðK;KþÞ ¼ G�1
0 ðKÞ � G�1

0 ðKþÞ;

Q �KðK;KþÞ ¼ G�1ðKÞ � G�1ðKþÞ: ð108Þ
Here GK ¼ ½G�1
0 ðKÞ � RðKÞ��1 is the full fermion Green’s function. The full vertex is obtained by choos-

ing a set of diagramms consistent with gauge invariance. These are shown in Fig. 6 and specified in the
0 0.5 1

T/T 
0
BEC

0

0.5

1

n
0
 / 

n

Condensate fraction n0=n as a function of the reduced temperature T=T0
BEC . Solid and dashed lines correspond to results

d from the Popov approximation and the theory of non-interacting bosons, respectively.



Fig. 6. Diagrams which appear in the full vertex. The first contribution on the right hand side is the bare vertex, the second is
the ‘‘MT” diagram, and the last is the ‘‘AL” diagram. Hollow and solid dots denote full and bare vertices. Solid lines and wavy
lines correspond to propagator of non-interacting fermions and t-matrix, respectively.
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caption. Now we would like to show that this set of diagrams satisfy the Ward identity and does not
contribute to the Meissner effect if the correct form of number equation is used.

The expressions of those diagrams in Fig. 6 are
kðK;KþÞ ¼ ð2kþ q;1Þ; ð109Þ

MTðK;KþÞ ¼
X

P

tðPÞG0ðP � KþÞkðP � Kþ; P � KÞG0ðP � KÞ;

ALðK;KþÞ ¼ �2
X
L;P

tðPÞtðPþÞG0ðP � KÞG0ðP � LÞG0ðLÞkðL; LþÞG0ðLþÞ:
The factor 2 in the AL diagram comes from the fact that the vertex can be inserted in one of the two
particle propagators in the T-matrix. By taking inner produc with Q they becomes
Q �MTðK;KþÞ ¼
X

P

tðPÞG0ðP � KþÞ½G�1
0 ðP � KþÞ � G�1

0 ðP � KÞ�G0ðP � KÞ;

¼ �½RðKþÞ � RðKÞ�: ð110Þ

Q � ALðK;KþÞ ¼ �2
X
L;P

tðPÞtðPþÞG0ðP � KÞG0ðP � LÞG0ðLÞ½G�1
0 ðLÞ � G�1

0 ðLþÞ�G0ðLþÞ;

¼ �2
X

P

tðPÞtðPþÞG0ðP � KÞ½vðPþÞ � vðPÞ�;¼ 2½RðKþÞ � RðKÞ�: ð111Þ
In deriving these results, Eq. (109) and the identity vðPþÞ � vðPÞ ¼ t�1ðPþÞ � t�1ðPÞ are useful. There-
fore Q � ðMT þ ALÞ ¼ RðKþÞ � RðKÞ. It is straighforward to show that the approximated vertex
K ¼ kþMT þ AL satisfies the Ward identity. Since these diagrams are normal state diagrams, one
can take the limit Q ! 0 and obtain
½MTðK;KÞ þ ALðK;KÞ�l ¼
@RðKÞ
@Kl

: ð112Þ
This is an important identity in the derivation of the absence of Meissner effect in the normal state.
The Meissner effect occurs if the static response kernel does not vanish, which is equivalent to the

existence of a superfluid density. To show that the approximation for the full vertex does not contrib-
ute to the Meissner effect, it suffices to show that in the normal state
n
m

� �
xx
� Pxxð0Þ ¼ 0: ð113Þ
Here the density is calculated as ða; b ¼ x; y; zÞ
n
m

� �
ab
¼ 2

X
K

@2nk

@KaKb
GðKÞ ¼ �2

X
K

@nk

@Ka

@GðKÞ
@Kb

¼ �2
X

K

@nk

@Ka
G2ðKÞ @nk

@Kb
þ @RðKÞ

@Kb

� �
: ð114Þ
We assume that surface terms can be neglected. The current–current correlation function at Q ¼ 0 is
Pabð0Þ ¼ �2
X

K

G2ðKÞ½kðK;KÞ þMTðK;KÞ þ ALðK;KÞ�bkðK;KÞa

¼ �2
X

K

G2ðKÞ @nk

@Ka

@nk

@Kb
þ @RðKÞ

@Kb

� �
; ð115Þ
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where we used kðK;KÞa ¼
@nk
@Ka

.
Thus the two contributions cancel each other and there is no Meissner effect in the normal state.
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