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The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an ana-
logue of Cooper pairing and superconductivity in an electron system, in particular, the high Tc

superconductors. Owing to the various tunable parameters that have been made accessible experi-
mentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator
of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may
shed light to the mysteries of high Tc superconductivity. One obstacle to the ultimate understand-
ing of high Tc superconductivity, from day one of its discovery, is the anomalous yet widespread
pseudogap phenomena, for which a consensus is yet to be reached within the physics community,
after over 27 years of intensive research efforts. In this article, we shall review the progress in the
study of pseudogap phenomena in atomic Fermi gases in terms of both theoretical understanding
and experimental observations. We show that there is strong, unambiguous evidence for the exis-
tence of a pseudogap in strongly interacting Fermi gases. In this context, we shall present a pairing
fluctuation theory of the pseudogap physics and show that it is indeed a strong candidate theory
for high Tc superconductivity.

Keywords pseudogap, pairing fluctuation theory, atomic Fermi gases, BCS–BEC crossover, high
Tc superconductivity
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1 Introduction

Study of atomic Fermi gases, especially the pairing
and superfluid phenomena, has become a major field

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014
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in physics research over the last decade [1, 2]. Intrin-
sically a many-body system, atomic Fermi gases have
attracted physicists from both condensed matter and
atomic, molecular and optics (AMO) communities, as
well as from other communities, e.g., nuclear and particle
physics and astrophysics. Even superstring theorists have
now found it a play ground for the ingenious idea of the
AdS/CFT correspondence [3–6]. This is primarily due to
the fact that many tunable parameters have been made
accessible experimentally for atomic Fermi gases, includ-
ing temperature, pairing interaction strength, pairing
symmetry, population imbalance, mass imbalance, ge-
ometric aspect ratio of the trap, optical lattices, and di-
mensionality, etc., as well as extra degrees of freedom
such as spin-orbit coupling and synthetic gauge fields,
which make atomic gases a suitable system for quantum
simulation and quantum engineering of existing and pre-
viously unknown systems, and have thus provided a great
opportunity for studying many exotic quantum phenom-
ena.

In terms of superfluidity, atomic Fermi gases can be
thought of as the charge neutral counterpart of supercon-
ductors, which have been an important subject in con-
temporary condensed matter physics. In particular, high
Tc superconductivity has been a great challenge since its
discovery a quarter century ago. With tunable interac-
tions, it is strongly hoped that one may learn about the
notoriously difficult problem of high Tc superconductiv-
ity via studying atomic Fermi gases.

At the heart of the high Tc problem is the widespread
anomalous normal state gap [7] in the single particle exci-
tation spectrum, which has been referred to as the pseu-
dogap, and has emerged since the discovery of high Tc

superconductors. It is essential to understand the pseu-
dogap phenomena in order to reach a consensus on the
mechanism of high Tc superconductivity. Due to the anal-
ogy between superfluidity and superconductivity, it is
expected that study of the pairing and superfluid phe-
nomena in ultracold Fermi gases may eventually shed
light on the pseudogap physics and thus the mechanism
of high Tc superconductivity.

The first and most widely explored parameter in ul-
tracold atomic Fermi gases is the pairing interaction
strength. Using an s-wave Feshbach resonance, one can
tune the effective pairing strength from the weak cou-
pling limit of Bardeen–Cooper–Schrieffer (BCS) super-
fluidity [8] all the way through the strong coupling limit
of Bose–Einstein condensation (BEC) [9–12]. In this way,
the theoretical idea of BCS–BEC crossover, which was
first proposed by Eagles [13] and Leggett [14] at zero
temperature T and then extended to finite T by Nozières
and Schmitt-Rink [15] and many others [16–36], can be

realized and studied systematically in experiment.
There have been a few milestones in experimental

studies of the superfluidity and BCS–BEC crossover
of ultracold Fermi gases. Degenerate Fermi gases was
achieved a few years [37] after the experimental real-
ization of BEC of dilute gases of bosonic alkali atoms
[38–41], such as 23Na, 87Rb, and 7Li. BEC of diatomic
molecules on the BEC side of a Feshbach resonance was
first reported in 2003 in Fermi gases of 40K and of 6Li
[42–44]. Superfluidity in a Fermi gas in the entire BCS–
BEC crossover was achieved and reported in 2004 [45–
48]. A continuous thermodynamic superfluid transition
was not observed until late 2004 [49]. A smoking gun
of superfluidity came from the Ketterle group in 2005
which reported observation of vortex lattices, a macro-
scopic manifestation of quantum phenomena, from the
BCS through BEC regimes [50]. Population (or spin)
imbalance has been the second experimental parameter
which has been explored in ultracold Fermi gases since
2006 [51, 52]. It is expected to lead to new phases such
as phase separation and the exotic Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) states [53–55]. Further parameters
which have been gradually explored experimentally in-
clude geometric aspect ratio and dimensionality, mass
imbalance, pairing symmetry such as p-wave, synthetic
gauge fields and spin-orbit coupling, long range interac-
tions as in dipolar molecules and magnetic atoms, as well
as periodic potential, i.e., optical lattices.

There have been a few reviews on the subject of atomic
Fermi gases. References [1] and [57] are the earliest re-
views on this subject, emphasizing the similarity between
Fermi gases and high Tc superconductivity as well as
BCS–BEC crossover physics. Reference [58] reviewed the
progress on the physics of degenerate Fermi gases from
the theoretical perspective. Strong correlation effects in
terms of many-body physics were only quickly mentioned
as “other theoretical approaches”. The review by Chin et
al. [59] focuses more on Feshbach resonances, with a very
brief touch on the experiments on BCS–BEC crossover.
A few papers in the Varenna proceedings [60], as well as
Ref. [2], also gave an review on the experimental and the-
oretical progress on atomic Fermi gases, without much
emphasis on the pseudogap physics. It is the purpose
of the current paper to give a more or less systematic
review on the study of the pseudogap physics in cold
atomic Fermi gases.

The rest of this paper is arranged as follows. In Section
2, we shall first introduce the concept of pseudogap in
the context of high Tc superconductivity, and then pro-
vide examples of the pseudogap phenomena above and
below Tc, and finally give an overview of the theoreti-
cal debate on the nature of the pseudogap. In Section 3,
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we shall start by a summary of various theories of pair-
ing fluctuations in the context of BCS–BEC crossover,
and then present a particular pairing fluctuation theory
for the pseudogap phenomena for a homogeneous sys-
tem and later extend to Fermi gases in a trap. We shall
end this section by presenting theoretical results on the
thermodynamics and superfluid density. In Section 4, we
shall show key results from the present pairing fluctua-
tion theory on the pseudogap phenomena in both the 3D
homogeneous case (Subsection 4.1) and in a trap (Sub-
section 4.3). In Subsection 4.2, we shall also give a sum-
mary of the applications of the present theory to high
Tc superconductors with a d-wave pairing symmetry. In
Section 5, we will present a series of experiments which
show strong evidence or support of a pseudogap in uni-
tary Fermi gases. While we focus mainly on population
balanced two component Fermi gases, we shall show one
case of population imbalanced Fermi gas experiment. In
Section 6, we shall discuss the effect of particle-hole fluc-
tuations and propose further experiments on pseudogap
physics. Finally, we will conclude in Section 7.

2 What is a pseudogap? – Pseudogap
phenomena in high Tc superconductors

2.1 What is a pseudogap?

We begin by introducing the concept of pseudogap,
which has emerged since day one of high Tc supercon-
ductivity. In BCS theory, when the superconducting or-
der parameter Δ becomes nonzero below the transition
temperature Tc, a gap opens up at the Fermi level in the
single particle excitation spectrum. The density of states
(DOS) becomes zero within the gap. This gap originates

purely from the order parameter and therefore vanishes
at and above Tc. Soon after the high Tc superconduc-
tivity was discovered in cuprates, an excitation gap was
observed already above Tc, below a higher temperature
T ∗ (which is referred to as the pseudogap crossover tem-
perature). Without phase coherence, such a gap does not
lead to complete depletion of the DOS within the gap,
but rather the DOS was only partially depleted. As T ap-
proaches Tc from above, the DOS drops quickly to zero
at the Fermi level once phase coherence sets in as the
system enters the superconducting state. In contrast to
the true gap below Tc, the gap observed experimentally
above Tc has been referred to as a pseudogap. Whether
the pseudogap persists below Tc has been under debate.

The typical behavior of the DOS near the Fermi level
for a pseudogapped superconductor is shown in Fig. 1
for various temperatures from Tc to slightly below Tc.
The curves are calculated theoretically for an s-wave su-
perconductor on a quasi-two dimensional (2D) lattice.
From Fig. 1(a), one can see clearly a partial depletion of
the DOS around the Fermi level (ω = 0). As T lowers
into the broken symmetry state, phase coherence sets in,
and the DOS drops rapidly. At T = 0.7Tc, the depletion
within the gap becomes almost complete so that the DOS
looks like one in a strict BCS mean-field theory, with two
sharp coherent peaks at the gap edges.

2.2 Pseudogap in the normal state above Tc

Above Tc, the pseudogap manifests itself in various phys-
ical quantities, including the dI/dV characteristics in
tunneling spectroscopy [62–65], specific heat [66, 67], dc
resistivity [68–70], nuclear magnetic resonance (NMR)
[71–76], infrared and ac conductivity [77–79], neutron
scattering [80–82], Raman scattering [83–86], Nernst

Fig. 1 Typical evolution of the density of states in the presence of a pseudogap for an s-wave superconductor as a function
of temperature, calculated for an quasi-2D superconductor on a square lattice at quarter filling. Panels (a)–(f) correspond to
various temperatures (as labeled) decreasing from T = Tc. The DOS drops rapidly as the system enters the superconducting
state below Tc. At T/Tc ∼ 0.7, as shown in (f), the DOS is close to a true gap as that of strict BCS theory. The frequency
ω is in units of the 2D half band width. Reproduced from Ref. [56].
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effect [87–90], spin susceptibility, etc., as a function
of temperature. The most direct probe, of course, is
the angle-resolved photoemission spectroscopy (ARPES)
[61, 91, 92], which probes directly the spectral function
A(k, ω). Along the Fermi surface, the quasiparticle co-
herence peak position in the measured spectral function
reveals directly the gap parameter. A review on various
experiments on the pseudogap phenomena can be found
in Ref. [7]. Here we only show a couple of examples to
illustrate the pseudogap phenomena.

High Tc superconductors of the cuprates, such as
YBa2Cu3O7−δ (YBCO), Bi2Sr2CaCu2O8+δ (Bi2212)
and La2−xSrxCuO4 (LSCO), have a layered structure,
with charge carriers moving in the copper-oxide planes.
The electron transport along the c-axis (i.e., the di-
rection perpendicular to the planes) is largely incoher-
ent. This makes the cuprates quasi-2D materials. While
the parent compounds are insulating antiferromagnets,
superconductivity occurs at low T upon hole doping
[93]. Within the superconducting (ab-) planes, it is now
known that the order parameter Δ of the cuprate su-
perconductors has a dx2−y2 symmetry, such that Δ =
Δ0(cos kx−cosky)/2, where we have set the in-plane lat-
tice constant a to unity. Thus the gap has a maximum
in the anti-nodal directions near (π, 0), whereas it closes
in the nodal directions from Γ to (π, π) in the Brillouin
zone (BZ). The order parameter changes sign across the
nodal points along the Fermi surface.

Shown in Fig. 2(a) is a schematic phase diagram for
the cuprate superconductors. The transition tempera-
ture Tc reaches a maximum around doping concentration
x = 0.155. There is a temperature range between Tc and
T ∗ in the underdoped regime where a finite pseudogap
exists. Shown in Fig. 2(b) are the ARPES measurements
of the excitation gap near (π, 0) for Bi2212 at different
doping concentrations. At optimal doping (Tc = 87 K
sample), the gap closes roughly at Tc, similar to that
predicted in BCS theory. However, for the underdoped
samples, it is clear that the gap persists at very high T .
This is the most direct measurement, and hence evidence
of the existence, of a pseudogap above Tc.

In Fig. 3, we present, as an example, typical normal-
insulator-superconductor (SIN) tunneling spectra mea-
sured for an underdoped cuprate superconductor as a
function of temperature, using scanning tunneling mi-
croscopy (STM). Here the dI/dV characteristics can
be regarded as the DOS, but broadened by thermal ef-
fects. In sharp contrast with a BCS mean-field true gap,
the pseudogap does not close even at T ∗. But rather,
the coherence peaks broaden and the DOS fills in with
increasing T . At T ∗, the sign of DOS depletion disap-
pears and so does the pseudogap. The way the pseudogap

Fig. 2 (a) Schematic phase diagram for the cuprate supercon-
ductors (The horizontal axis is the hole doping concentration), and
(b) ARPES measurement of the temperature dependence of the
excitation gap at (π, 0) in a near-optimal Tc = 87 K sample (•),
and underdoped 83 K (�) and 10 K (�) samples. The gap values
were determined via leading edge shift from the Fermi level. The
units for the gap are meV. Panel (b) is reproduced from Ref. [61].

Fig. 3 Typical tunneling spectra for an underdoped cuprate su-
perconductor as a function of temperature. Shown data were mea-
sured on an underdoped Bi2212 sample of Tc = 83 K. The hori-
zontal axis is the bias. The conductance scale corresponds to the
293 K spectrum, the other spectra are offset vertically for clarity.
Reproduced from Ref. [63].
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disappears at high T is a clear distinction from that of a
true gap in a weak coupling BCS superconductor, which
shrinks in magnitude to zero at Tc.

Similar behavior can be found in the ARPES energy
distribution curves (EDC) for underdoped samples as
well [61, 91]. Usually, an ARPES EDC curve consists
of a quasiparticle coherence peak on top of an incoher-
ent background. At T � Tc, the coherence peak is sharp
and pronounced. Once the temperature rises above Tc,
for an underdoped sample, it becomes broadened quickly,
and the spectral weight under the peak decreases with T

rapidly, until it merges with the large incoherent back-
ground. At the same time, the peak location almost does
not move with T . This can be seen in Fig. 4. The EDC
curves in Figs. 4(a) and (b) were taken along the cut in
the Brillouin zone shown in Fig. 4(c), which goes across
the Fermi level. Panels (a) and (b) correspond to low
T � Tc and above Tc cases, respectively, with curves of
the same k lined up together. As the cut goes through
the Fermi surface, the coherence peak reaches the min-
imum quasiparticle excitation energy, as determined by
the excitation gap Δk. It is obvious that the coherence
peak in the pseudogap case is much broader and less
pronounced than its superconducting counterpart.

Fig. 4 Comparison of EDCs between (a) the superconducting
state (T = 17 K) and (b) the pseudogap phase (T = 90 K) for
a Bi2212 film with Tc = 80 K for the cut in the zone shown in
(c). The thick curves in (a) and (b) correspond to where the cut
goes through the Fermi surface. Here SC and PG denote supercon-
ducting and pseudogap state, respectively. Reproduced from Ref.
[92].

2.3 Pseudogap in the superfluid state below Tc

Figures 2–4 and most experimental measurements show
clear evidence of the existence of a pseudogap at and
above Tc. It is a natural question to ask how the pseu-
dogap above Tc and the superconducting gap below Tc

connect to each other at Tc. There have been intensive
debates on this issue over the years. The answer to this
important question depends on the interpretation of the
pseudogap in different theories. Despite the differences
from one theory to another, one can think of two pos-
sibilities in general. One possibility is that the pseudo-
gap becomes the superconducting gap instantly once the
system enters the superconducting state across Tc. The
other is that the order parameter or the superconducting
gap increases gradually from zero at Tc. For the former,
one would see a first order phase transition and a jump in
the order parameter and superfluid density across Tc. For
the latter possibility, the pseudogap necessarily persists
into the superfluid state, in order to keep the total exci-
tation gap smooth across Tc as observed in ARPES data
and other experiments. Given these rather obvious differ-
ences between these two possibilities, superfluid density
(ns/m) or in-plane London penetration depth (λ) mea-
surements seem to have unambiguously ruled out the for-
mer possibility. Indeed, superfluid density ns/m ∝ λ−2

vanishes continuously as T approaches Tc from below in
bulk cuprate superconductors.

At a more concrete level, compatible with the first
possibility may be a school of microscopic theories which
consider the pseudogap above Tc as a signature of a com-
peting hidden order, such as the d-density wave (DDW)
order [94], the staggered orbital current [95–97], loop
current order [98, 99], etc. Given the hidden order as-
sumption, a natural prediction would be that the hidden
ordered phase gives way completely to the superconduct-
ing order across Tc, as in most other phase transitions.
However, if this is true, not only a first order transi-
tion is necessary, but also it would take a miracle for the
total excitation gap to remain so smooth across Tc as
observed experimentally. Then to pass the experimental
test, these hidden order theories may also need to asso-
ciate themselves with the second possibility, namely the
hidden order parameter (and thus the pseudogap) sur-
vives the superconducting phase transition and coexists
with the superconducting order below Tc. Together they
contribute to the total excitation gap.

Among the second possibility, there are different sce-
narios which give rise to different interpretations and
different temperature dependencies of the pseudogap.
These differences are associated with the origins of the
pseudogap in these theories or conjectures. In order to
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fit the specific heat data for underdoped superconduc-
tors, Loram and coworkers [66, 100, 101] contemplated
that the pseudogap below Tc may take its value at (and
above) Tc such that it is relatively temperature indepen-
dent. As a consequence, (the magnitude of) the order pa-
rameter (Δsc) is much smaller than the total excitation
gap (Δ) at all T < Tc for an underdoped cuprate super-
conductor. We note that this was a rather simple recipe
without any theoretical justification. Among microscopic
theories, while the competing hidden order theories may
be associated with the second possibility, a most natural
school of theories in this category would be the precursor
superconductivity, in which the pseudogap is a precursor
to the superconductivity and originates from the same
pairing as that causes the superconducting order at low
T . We will elaborate further on this in the next subsec-
tion.

To probe the pseudogap below Tc, if it does exist, the
best way is arguably to suppress the order parameter.
Luckily, this can be achieved inside a vortex core. Figure
5 shows STM measurements of the dI/dV characteris-
tics of an underdoped Bi2212 sample inside and outside
a vortex core at very low T . Outside the vortex core, the
order parameter is large at low T , and there are sharp
peaks at the gap edges (dashed curve). At the center of
the vortex core, the superconducting order parameter is
suppressed to zero (solid curve). Nevertheless, it is clear
that the dI/dV curve shows a strong depletion of the
DOS within the peaks. The peak locations are roughly
the same as those outside the core. Of course, such a
depletion is absent above the pseudogap crossover tem-
perature T ∗. Therefore, this plot serves as evidence of
pseudogap below Tc in an underdoped cuprate. Indeed,
this can be naturally explained within a pairing fluctua-
tion theory [23]; In addition to noncondensed pairs, the
magnetic field inside the vortex core causes the originally
condensed pairs lose phase coherence and thus contribute
to the pseudogap rather than the order parameter [102].
On the other hand, as one may notice, in order for the

Fig. 5 STM measurements of the dI/dV characteristics of an
underdoped Bi2212 sample inside (solid) and outside (dashed) a
vortex core at low T = 4.2 K. Here Tc = 83 K. dI/dV is propor-
tional to the density of states. Reproduced from Ref. [62].

competing hidden order theories to explain the survival
of the total gap at the center of the vortex core at very
low T , one would have to assume that the superconduct-
ing order is converted into hidden order parameter by
the magnetic field. This, however, is very unnatural.

2.4 Theoretical debate about the nature of the
pseudogap

The pseudogap phenomena is widespread in high Tc su-
perconductivity experiments. However, a consensus of its
origin is yet to be reached. There have been many dif-
ferent theories attempting to explain the nature of the
pseudogap. Most of these theories only provide qualita-
tive pictures, incapable of quantitative calculations.

Early models include the resonating valence bond
(RVB) theory of Anderson [103, 104] and the closely re-
lated spin-charge separation idea [105, 106]. In these the-
ories, the pseudogap originates from the spin gap of the
antiferromagnetic spin pairing (i.e., the spinon pairing).
Despite the well established phenomena of spin-charge
separation in 1D, so far there has been no experimental
support for spin-charge separation in 2D, not to mention
3D.

About the same time, Uemura and coworkers [107,
108] noticed possible connections between the cuprate
superconductivity and BEC via the well-known Uemura
plot of Tc versus superfluid density ns/m∗. This has been
used to suggest that the cuprates have to do with BCS–
BEC crossover. In an attempt to explain the pseudo-
gap phenomena, Lee and coauthors [16, 17] proposed
a boson-fermion model. The pseudogap phenomena was
then explored using the BCS–BEC crossover idea in 3D
continuum [18–22] or the negative-U Hubbard model on
a lattice [26–29], assuming an s-wave pairing symmetry.
These theories belong to the school of precursor super-
conductivity, in which the pseudogap above Tc and the
superconducting gap below Tc originate from the same
pairing interaction, and thus the pseudogap in the nor-
mal state is a precursor to superconductivity below Tc.
A theory of the broken symmetry state and the presence
of the pseudogap below Tc, especially for d-wave pairing,
was not available until the work of Refs. [23–25].

It is worth mentioning that in a very recent work [109],
Mishra and coworkers showed that a pseudogap which is
not associated with pairing would suppress Tc to zero.
Therefore, they concluded that the pseudogap observed
in the cuprates must be due to pairing.

Compatible with but distinct from the precursor su-
perconductivity school are theories based on phase fluc-
tuations such as that of Emery and Kivelson [110] and
the QED3 theory of Tesanovic and coworkers [111]. The
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former addresses mainly spin-wave type of phase fluc-
tuations whereas the latter has an emphasis on vortex
fluctuations. In both theories, the pseudogap originates
from a pairing field without phase coherence; the pair-
ing field emerges at T ∗ but the phase coherence does not
lock in until a lower temperature Tc. The strong Nernst
signals observed above Tc in underdoped cuprates [87–
89] may be regarded as a support for the latter theory.
On the other hand, it should be noted that the Nernst
effect data can be explained within a pairing fluctuation
theory as well [90, 112].

Both the spin gap scenarios as in RVB and spin-charge
separation and charge gap scenarios as in precursor su-
perconductivity and phase fluctuation pictures have to
do with pairing in the particle-particle channel. A big
departure from this common feature are the competing
hidden order ideas, mentioned in Subsection 2.3, which
take the pseudogap as a hidden order parameter. For
example, the DDW order is associated with the particle-
hole channel. The staggered current and loop current or-
der are not related to pairing, either. They rely on the
underlying quasi-2D lattice structure of the cuprates.

The RVB and spin-charge separation ideas can be
traced back to the fact that the parent compounds of the
cuprate superconductors are insulating antiferromagnets
in the Mott state, with an underlying quasi-2D, layered
lattice structure. The DDW, staggered current and loop
current ideas have also to do with the underlying lat-
tice structures, which are apparently not pertinent to
the atomic Fermi gases in a big single trap. Deeper than
but closely related to the pseudogap phenomena is the
mechanism of superconductivity in the cuprates, namely,
what provides the glue for the electrons to pair up.

Luckily, for atomic Fermi gases, the underlying pairing
interaction is known and can be precisely manipulated
experimentally. While one may continue to debate on
the origin of the pseudogap phenomena in the cuprates,
as far as the atomic Fermi gases are concerned, this fact
does make the pairing fluctuation theory the most nat-
ural candidate for the theory of the superfluidity and
pairing.

3 Pairing fluctuation theory for the
pseudogap

3.1 Various pairing fluctuation theories for BCS–BEC
crossover

Pairing fluctuation theories belong to the school of pre-
cursor superfluidity. There are different pairing fluctu-
ation theories. Nevertheless, common to these theories

are strong pairing fluctuations or pairing correlations al-
ready above Tc, which necessarily cause deviation of the
system behavior from those described by the BCS mean-
field theory. The first thing that has been looked into is
the superfluid transition temperature Tc. Not all of these
theories contain a pseudogap in their single particle exci-
tation spectrum, nor are they all self-consistent. As the
pairing strength varies, a pairing fluctuation theory is
often used to address the BCS–BEC crossover problem,
and thus is often referred to as a BCS–BEC crossover
theory as well. Note that from this section on, we will use
the term “superfluidity” in place of “superconductivity”,
in order to be appropriate for both superconductors and
charge neutral superfluids.

The very first work on finite temperature BCS–BEC
crossover, by Noziéres and Schmitt–Rink (NSR) [15] in
1985, can be regarded as the earliest pairing fluctuation
theory. However, in the NSR theory, only bare Green’s
functions are involved so that the pairing fluctuations
induced self energy does not feed back into the Tc equa-
tion. As a consequence, pseudogap does not appear in the
NSR theory. Although one may find features of pseudo-
gap via further calculation of the spectral function with
the self-energy included, this procedure certainly breaks
self-consistency. Indeed, not including the self energy in
the Tc equation itself introduces inconsistency. For ex-
ample, the Tc equation is inconsistent with the condition

∂ΩS

∂Δ
= 0 (1)

as Tc is approached from below, where ΩS is the ther-
modynamic potential in the superfluid state. Sá de Melo
et al. [18] obtained identical equations as NSR, using a
Saddle point approximation plus Gaussian fluctuations.
There have been many studies in the literature using a
similar approximation [19]. Milstein et al. [113] used a
similar treatment but within a two-channel model. In-
deed, it has turned out that the saddle point approxima-
tion with Gaussian fluctuations and the NSR approxima-
tion are equivalent. With a narrow Feshbach resonance in
a two-channel model, Ohashi and Griffin [114] caculated
Tc using the NSR approximation. Strinati and cowork-
ers [115, 116] also followed the NSR calculation found
the same Tc and number equations as NSR. There are
other pairing fluctuation theories on BCS–BEC crossover
based on the NSR approximation. Noticeably, rather
than fixing the inconsistency in the Tc equation, Hu and
Drummond [117] proposed to add an extra term in the
number equation. This necessarily leads to two unphys-
ical results: (i) This extra term does not exist above Tc,
so that it will give rise to a different Tc and chemical po-
tential μ, depending on whether Tc is approached from
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above or below. (ii) In a trap, a uniform global chemical
potential requires that the density jumps across the edge
of the superfluid core. In fact, should the Tc equation is
fixed so that Eq. (1) is satisfied, this extra term would
vanish automatically. More systematic and detailed com-
parison between the NSR-based theories and the pairing
fluctuation theory which we will present soon below can
be found in Ref. [118].

Using a GG scheme for the T -matrix approximation,
which is sometimes referred to as a conserving approx-
imation, Haussmann [32] and Tchernyshyov [33] et al.
developed a different kind of pairing fluctuation theory,
which leads to a substantially lower Tc than others, es-
pecially in the BCS through unitary regimes. This is
primarily because the GG scheme double counts certain
self energy diagrams. This theory is rather similar to the
FLEX approximation of Scalapino and coworkers [119,
120] for the cuprates. Recently, Haussmann et al. [121]
improved upon the NSR theory but found unphysical
non-monotonic first-order-like behavior in the tempera-
ture dependence of entropy, S(T ).

It should be emphasized that none of these above men-
tioned theories contained pseudogap self energy in the Tc

equation. All NSR based theories essentially inherit the
inconsistency of NSR treatment as well.

A pairing fluctuation theory which does contain a
pseudogap was developed by the Levin group. Levin
and coworkers [20–22] did intensive numerical study and
found that a pseudogap opens up as T approaches Tc

from above once the pairing correlation self energy is fed
back into the Tc equation. Chen, Kosztin and coworkers
[23, 25] extended this work into a systematic theory for
the superfluid state, and applied it to d-wave cuprate su-
perconductors. With proper inclusion of low dimension-
ality and lattice effects [24], Chen et al. [23] found an ex-
cellent (semi-quantitative) agreement of their computed
cuprate phase diagram with that observed experimen-
tally. This theory also gives a very natural explanation
of the anomalous quasi-universal behavior of the super-
fluid density as a function of T for different hole doping
concentrations. In contrast to other theories mentioned
above, pseudogap is a natural unavoidable consequence
of strong pairing correlations in this theory.

Now with experimental evidence of a pseudogap in
atomic Fermi gases, more people are finding in their theo-
ries evidence of a pseudogap [122–124]. Various quantum
Monte Carlo simulations are also finding a pseudogap at
unitarity above Tc.

3.2 Pairing fluctuation theory for the pseudogap

In this subsection, we will present a particular pairing

fluctuation theory, in which the pairing correlation self
energy is fed back into the Tc and gap equation in a
self-consistent fashion.

As in all pairing fluctuation theories, the key differ-
ence between this theory and the BCS mean field theory
is that it includes finite center-of-mass momentum pair-
ing. It is the finite momentum pairing that will give rise
to a self energy beyond the strict BCS mean-field treat-
ment.

What makes this theory unique is that finite momen-
tum pairs and single particles are treated on an equal
footing. As a consequence, these finite momentum pairs
will cause a single particle excitation gap without phase
coherence. In fact, the physical picture here is very in-
tuitive. When strong pairing correlations are present, to
excite a single fermion above Tc, one necessarily has to
pay extra energy in order to break the pairing. This
extra energy is associated with the pseudogap. In the
BCS limit, this extra energy is negligible. However, in
the BEC limit, stable two-body bound pairs will form at
high T so that one has to pay at least the binding energy
to break the pairs. In the unitary or crossover regime, the
pairs are meta-stable with a zero two-body binding en-
ergy so that the pseudogap is most pronounced. Needless
to say, very much like the superfluid order parameter, the
pseudogap is a many-body effect. While the pseudogap
persists deep into the BEC regime, where a Fermi sur-
face no longer exists, the big two-body binding energy
may obscure the pseudogap effects. While the low en-
ergy excitations are Bogoliubov quasiparticles and finite
momentum pairs for the BCS and BEC limits, respec-
tively, a mix of both types necessarily takes place in the
crossover regime. This is a requirement of the smoothness
of the crossover.

The derivation of this theory [56] follows the early work
of Kadanoff and Martin [125]. Through the equation of
motion approach with a truncation of the infinite series
of equations at the three-particle level, and decompos-
ing the three particle Green’s function G3 into a sum of
products of single particle Green’s function G and two-
particle Green’s function G2, we rigorously derived our
self-consistent set of equations, with reasonable simplifi-
cations. While our equations may be conveniently cast di-
agrammatically into a T -matrix approximation, we em-
phasize that this theory is not a diagrammatic approach.
For example, the pair susceptibility χ consists of a mix
of bare Green’s function G0 and full Green’s function
G. This mix is not an ad hoc diagrammatic choice, but
rather a natural consequence of the equation of motion
approach. A main and nice feature of this theory is that it
naturally recovers the BCS-Leggett result at zero T and
in the BCS limit. In addition, throughout the superfluid
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phase, our Green’s function and the equations take the
BCS form, except for the extra pseudogap contribution
in the quasiparticle dispersion. Finally, the pseudogap
(squared) is directly proportional to the density of finite
momentum pairs, so that it provides a good measure
of the contributions of finite momentum pairing fluctua-
tions.

Instead of giving a full derivation of the theory, which
can be found elsewhere [56], here we only give a summary
and present the key equations so that we can focus on
the physical picture. In addition, here we only consider
the one-channel model, which is appropriate for high Tc

superconductors as well as atomic Fermi gases with a
wide Feshbach resonance. A two-channel version of this
theory can be found in Refs. [1, 126].

It is known that superfluidity concerns primarily the
particle-particle channel. The main processes are sum-
marized in the Feynman diagrams shown in Fig. 6. Here
the finite momentum T -matrix tpg may be regarded as
(the central part of) a two-particle propagator, and the
dashed line represents non-propagating, zero-momentum
pairs in the condensate. The self-energy Σ of the single
fermions comes from scattering with condensed and non-
condensed pairs. Alternatively, a fermion may decay into
a pair and a hole, which then recombine at a later point
in spacetime, as shown in the second line in the figure.
From the first line, it is not hard to conclude that the
T -matrix can be regarded as a renormalized pairing in-
teraction. Indeed, summing up the ladder diagrams, one
obtain

tpg(Q) =
U

1 + Uχ(Q)
(2)

with the same dimensionality as the interaction, where
we have assumed a separable pairing interaction Vk,k′ =
Uϕkϕk′ , with ϕk = 1 for a short range contact poten-
tial in atomic Fermi gases and ϕk = cos kx − cos ky for
d-wave cuprate superconductors [127]. Here the pair sus-
ceptibility

χ(Q) =
∑

K

G0(Q − K)G(K)ϕ2
k−q/2 (3)

Fig. 6 Feynman diagrams of the particle-particle scattering T -
matrix tpg and the single particle self energy Σ. The self energy
Σ contains two contributions, from the condensate and finite mo-
mentum pairs, respectiveily.

For clarity, a four-vector notation has been used, i.e.,
K = (iωl, k), Q = (iΩn, q),

∑
K ≡ T

∑
l

∑
k, etc., where

Ωn = 2nπT and ωl = (2l + 1)πT are even and odd Mat-
subara frequencies, respectively. Here and throughout we
shall use the natural units � = kB = 1 and set the volume
to unity.

From Fig. 6, it is straightforward to write down the
self-energy Σ and its superconducting component Σsc

and pseudogap component Σpg, as follows:

Σ(K) = Σsc(K) + Σpg(K) (4a)

Σsc(K) = −Δ2
scG0(−K)ϕ2

k =
Δ2

scϕ
2
k

iωl + ξk
(4b)

Σpg(K) =
∑

Q

tpg(Q)G0(Q − K)ϕ2
k−q/2 (4c)

where ξk = εk−μ is the free fermion dispersion measured
with respect to the Fermi level.

At this point, an approximation is needed in order to
simplify the final result. Notice that pairing instability
condition, i.e., the Thouless criterion, t−1

pg (0) = 0, im-
plies that the main contribution in Eq. (4c) comes from
the vicinity of Q = 0. This leads to a good mathematical
simplification over the complicated convolution,

Σpg(K) ≈
⎡

⎣
∑

Q

tpg(Q)

⎤

⎦ G0(−K)ϕ2
k

= −Δ2
pgG0(−K)ϕ2

k (5)

where we have defined the pseudogap Δpg via

Δ2
pg = −

∑

Q

tpg(Q) (6)

Now it is clear that, under approximation Eq. (5), we
have the total self energy in the BCS form,

Σ(K) = −Δ2G0(−K)ϕ2
k (7)

where we have defined a total excitation gap Δ via

Δ2 = Δ2
sc + Δ2

pg (8)

Therefore, one immediately concludes that the full
Green’s function G(K) also takes the BCS form,

G(K) =
u2

k

iωl − Ek
+

v2
k

iωl + Ek
(9)

where Ek =
√

ξ2
k + Δ2ϕ2

k is the dispersion of the Bo-
goliubov quasiparticles, and u2

k, v2
k = 1

2 (1 ± ξk/Ek) are
formally the usual BCS coherence factors.

Upon substituting the expressions for G0 and G into
the Thouless criteria, U−1 + χ(0) = 0, one obtains im-
mediately the gap (or Tc) equation after carrying out the
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Matsubara summation,

1 + U
∑

k

1 − 2f(Ek)
2Ek

ϕ2
k = 0 (10)

where f(x) is the Fermi distribution function. For a short
range contact potential with ϕk = 1, as in atomic Fermi
gases, one may conveniently regularize the ultraviolet di-
vergence via the relation [128]

m

4πa
=

1
U

+
∑

k

ϕ2
k

2εk
(11)

based on the Lippmann–Schwinger equation, so that the
interaction strength U is replaced with (the inverse of)
the low energy s-wave scattering length a, which is a
widely used experimental parameter in the AMO com-
munity. In this way, the gap equation becomes

m

4πa
+

∑

k

[
1 − 2f(Ek)

2Ek
− 1

2εk

]
ϕ2

k = 0 (12)

Note that Eq. (11) defines a critical coupling Uc, which
is more familiar to the condensed matter community; Uc

corresponds to the threshold for two fermions to form
a bound state in vacuum, where the scattering length a

diverges,

Uc = −1
/∑

k

ϕ2
k

2εk
(13)

Obviously, Uc depends on the ultraviolet cutoff momen-
tum in ϕ2

k. It is worth mentioning that in 2D and the
contact limit in 3D, Uc goes to zero for an s-wave pair-
ing interaction [129].

Now it should be emphasized that it is the mixed form
of the pair susceptibility χ in Eq. (3) that gives rise to the
BCS form in the gap equation (10). This is very satisfying
since it is known that BCS theory works well in the weak
coupling regime. Such a feature was already recognized in
the early paper by Kadanoff and Martin [125]. Through-
out the entire BCS–BEC crossover, this BCS form of gap
equation reproduces the BCS–Leggett ground state [14].
This is an important merit of the present pairing fluctu-
ation theory, since, while one may argue that the BCS–
Leggett ground state is not perfect in the BEC regime,
it has nonetheless been a basis for various theoretical
works. It is apparent that the gap equation in other com-
peting T -matrix approximations with a G0G0 or GG in
the pair susceptibility will deviate substantially from the
BCS form.

Given the full Green’s function Eq. (9), it is straight-
forward to write the fermion number constraint,

n = 2
∑

k

[
v2

k +
ξk

Ek
f(Ek)

]
(14)

which is the number equation.
Equations (10), (9) and (6) now forms a closed set of

self-consistent equations, which can be used to solve for
Tc and μ, and Δpg at Tc, or for Δ, μ, and Δpg for T < Tc.
To simplify and facilitate the computation of Eq. (6), we
Taylor-expand the inverse T matrix after analytic con-
tinuation, iΩn → Ω + i0+, as

t−1
pg (Ω , q) = Z

(
Ω − q2

2M∗ + μpair

)
(15)

at the lowest order in Ω and q. A more elaborate treat-
ment which includes higher order terms such as Ω2 as
well as the imaginary part can be found in Ref. [56]. Use
of such higher order expansion is made in cases where it
makes a substantial (quantitative) difference [130, 131].
Here the inverse residue Z, the effective pair mass M∗,
and the effective pair chemical potential μpair can be ob-
tained in the process of the expansion. One can immedi-
ately extract the pair dispersion Ωq = q2/(2M∗)−μpair.
It now follows that

ZΔ2
pg ≈

∑

q

b(Ωq) (16)

where b(x) is the usual Bose distribution function. Evi-
dently, Eq. (16) suggests that Δ2

pg represents the density
of finite momentum pairs (up to a nearly constant coef-
ficient).

Typical behaviors of the T -matrix tpg(Ω , q) and its in-
verse are shown in Fig. 7. The curves are calculated for
a 3D unitary Fermi gas at Tc, with a Lorentzian type
of pairing potential, ϕ2

k = [1 + (k/k0)2]−1 at k0/kF = 4
and q/kF = 0.3. From the lower panel, one can see that
the Taylor expansion of the inverse T -matrix, t−1

pg (Ω , q),
up to the order of Ω2, agrees with the real part of
the full curve very well near the dispersion relation
Ω ≈ Ωq , where the imaginary part, Im t−1

pg (Ω , q), be-
comes very small. This leads to a sharp resonance peak
in Im tpg(Ω , q) at Ω ≈ Ωq. This peak becomes sharper
for smaller q and at lower T , as expected. When the or-
der parameter develops below Tc, for q = 0, there is an
extended range of Ω at which Im t−1

pg (Ω , 0) vanishes. This
is an effect of a finite excitation gap.

From the expansion Eq. (15), it is easy to see that the
Thouless criterion requires

μpair = 0, for T � Tc (17)

which is precisely the BEC condition of the (bosonic)
fermion pairs. Therefore, it is transparent that the
present pairing fluctuation theory unifies BCS theory
and Bose–Einstein condensation using the BCS–BEC
crossover picture; They are two sides of the same coin.
Such a unification has not been made so obvious in other
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Fig. 7 Typical behavior of the T -matrix and its inverse. Shown
are calculated at unitarity U = Uc at Tc, for a 3D continuum
case with a finite range of interaction of the Lorentzian type
ϕ2

k = [1 + (k/k0)2]−1, with k0/kF = 4 and pair momentum
q/kF = 0.3. Here Re and Im denote real and imaginary parts,
respectively. The blue dashed curve is from the expansion of the
inversion T -matrix, which coincides with the full Re t−1

pg curve in
the neighborhood of Ω = Ωq .

competing pairing fluctuation theories. Technically, it is
the Taylor expansion Eq. (15) that has made this uni-
fication transparent; a similar expansion has not been
seen in competing theories.

Indeed, as shown in Fig. 8, for different T � Tc

(solid curves), the real part Re t−1
pg (Ω , q = 0) always

goes through the origin. However, for T > Tc (dashed
curves), this is no longer true. The nonzero intercept
t−1
pg (0, 0) = Zμpair determines the effective pair chemical

potential above Tc.
In fact, there are various situations where we need to

know the approximate value of the pseudogap above Tc.

Fig. 8 Typical behavior of the real part of the inverse T -matrix
t−1
pg (Ω , 0) near Ω = 0 for different T , as labeled, below (solid) and

above Tc (dashed curves). Shown are results calculated at unitarity
U = Uc, for a 3D continuum case with a finite range of interaction
of the Lorentzian type ϕ2

k = [1 + (k/k0)2]−1, with k0/kF = 4.

In such a case, we need to extend the gap equation (10)
or (12) to situations above Tc, as

m

4πa
+

∑

k

[
1 − 2f(Ek)

2Ek
− 1

2εk

]
ϕ2

k = Zμpair (18)

The pseudogap equation is still given by Eq. (16) but
with a nonzero μpair, along with the number equation
(14). Since Δsc = 0 above Tc, it is clear that the three
unknowns are now (Δpg = Δ, μ, μpair), as compared to
(Δpg, μ, Δsc) below Tc.

It should be pointed out that as T increases above Tc,
the T matrix tpg(Q) no longer diverges at Q = 0. There-
fore, Eq. (5) is no longer a good approximation for the
pseudogap self energy Σpg(K). In this sense, the use of
the extended gap equation (18) should be restricted to
a temperature regime not far above Tc, where −μpair is
still very small.

Generalization of the above equations to population
imbalanced as well as mass imbalanced situations is
straightforward, which can be found in Refs. [130–135].

Finally, a few remarks are in order. The pseudogap
self energy given in Eq. (4c) formally contains all contri-
butions at the T -matrix level. However, by Eq. (5), the
pseudogap self energy is approximated by a BCS-like,
off-diagonal, coherent form. When the pseudogap Δpg

vanishes, the pseudogap self energy is gone. Therefore,
the diagonal incoherent contributions are dropped out.
The incoherent contributions, δΣ(K), is dominant in the
weak coupling BCS limit, and becomes less important in
the intermediate through strong coupling BEC regimes.
It mainly causes a chemical potential shift, as well as a
slight fermion mass renormalization. Such contributions
are usually neglected in the study of superconductivity.
Nevertheless, for atomic Fermi gases, as the strong cou-
plings regime becomes accessible, it is known that these
contributions have a substantial quantitative impact on
the so-called beta factor at unitarity [136], which is de-
fined as 1 + β = μ(0)/EF , where μ(0) and EF are the
zero T chemical potential at unitarity and the noninter-
acting Fermi energy, respectively. Without the incoher-
ent contributions, the present theory produces the same
prediction as the BCS mean-field result, β ≈ −0.41,
whereas the experimental values and quantum Monte
Carlo (QMC) simulation results are found between −0.5
and −0.7 [49, 137, 138]. When the incoherent contribu-
tions are included, theoretical calculations of Perali et
al. found β ≈ −0.545, in better agreement with experi-
ment, as expected. Here our attention is focused mainly
on the moderate and strong coupling regimes, where the
pseudogap effect is strong so that the incoherent self en-
ergy contribution is less important and only causes minor

Qijin Chen and Jibiao Wang, Front. Phys., 2014, 9(5) 549



REVIEW ARTICLE

quantitative corrections.
Despite the simple BCS form of the self energy, Eq.

(7), our result does include the contributions of pair-
ing fluctuations, as in Eq. (4c). It is the simplification
via Eq. (5) that encapsulates the fluctuations into a sin-
gle parameter, Δpg, via an integration of the fluctuation
spectrum, as given in Eq. (6).

3.3 Extended to Fermi gases in a trap

When placed in a 3D isotropic harmonic trap, with a

trapping potential V (r) =
1
2
mω2r2, one can resort to

the local density approximation (LDA), by imposing a
local chemical potential μ(r) = μ − V (r) and the total
particle number constraint,

N =
∫

d3r n(r) (19)

where n(r) is the local number density, and μ ≡ μ0 =
μ(0) is the chemical potential at the trap center, often
referred to as the global chemical potential. Note that
here the trap potential does not necessarily have to be
isotropic; it may be anisotropic with a variable aspect
ratio, including the quasi-2D pancake or quasi-1D cigar
shapes as the limit of a large aspect ratio. It may also be
an optical lattice, which we shall not cover in this review.

With LDA, at any given location, the fermions are sub-
ject to pairing. Below Tc, there exists a superfluid core
in the center of the trap. Outside the core, the fermions
may or may not be paired, depending on their concrete
radial position and the strength of the pairing interac-
tion. When the pairing correlation is strong, one expects
to find a pseudogap in the outskirt of the superfluid core.
Inside the superfluid core, the fermions locally satisfy the
gap equation as well as the pseudogap equation, while the
local chemical potential μ(r) determines the local density
n(r). Outside the superfluid core, the fermions are in the
normal state, so that the effective pair chemical poten-
tial μpair becomes nonzero. In this case, we need to use
the extended gap equation (18) in place of equation (10).
As mentioned earlier, the use of the extended gap equa-
tion (18) should be restricted to a temperature regime
not far above Tc. In the trapped case, this translates into
a narrow shell outside the superfluid core. Nevertheless,
as the density gets lower towards the trap edge, the gap
becomes small and the error introduced into the total
number N via the local n(r) is negligible. Thus in our
actual numerical calculations, we apply Eq. (18) for the
entire shell of Fermi gases outside the superfluid core,
and switch to unpaired normal Fermi gas state when the
gap becomes tiny, e.g., when Δ < 10−5.

3.4 Thermodynamics and superfluid density

The pseudogap and finite momentum pair excitations
necessarily affect the thermodynamic behavior and
transport properties, such as the superfluid density.
Away from the BCS regime, both Bogoliubov quasipar-
ticles and finite momentum pairs are present at finite T .
They serve to destroy the superfluid density and con-
tribute to the entropy. Knowing the excitation spectra,
it is straightforward to write down the entropy S, as a
sum of fermionic (Sf ) and bosonic (Sb) contributions. In
a trap, the total entropy involves an integral over the
trap, given by S =

∫
d3r s(r) (and similarly for Sf and

Sb), where

s = sf + sb

sf = −2
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)]

sb = −
∑

q �=0

[bq ln bq − (1 + bq) ln(1 + bq)] (20)

Here fk ≡ f(Ek), and bq ≡ b(Ωq − μpair). The fermion
contribution coincides formally with the standard BCS
result for noninteracting Bogoliubov quasiparticles [al-
though here Δ(Tc) �= 0]. And the bosonic contribution
is given by the expression for non-directly-interacting
bosonic pairs with dispersion Ωq, with an effective mass
M∗ which is not necessarily equal to 2m. When the chem-
ical potential μ becomes negative, the entropy S becomes
dominantly bosonic, since the fermionic part Sf becomes
exponentially suppressed.

One can also write down the energy of the Fermi gas,
which consists of a fermionic and bosonic part in a sim-
ilar fashion. Thus, in a trap, the local energy is given
by

E = μn(r) + Ef + Eb

Ef =
∑

K

(iωn + εk − μ(r))G(K)

=
∑

k

[2Ekfk − (Ek − εk + μ(r))] + Δ2χ(0)

Eb =
∑

q

(Ωq − μpair)bq (21)

where the pair susceptibility χ(0) is given by Eq. (3) at
Q = 0. One obtains the total energy by integrating Eqs.
(21) over the entire trap.

To end this subsection, we present the expression for
the superfluid density, which can be derived using the
linear response theory with a generalized Ward identity
[25, 56, 139]. In a homogeneous case, it is given by
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(ns

m

)
=

2
d

∑

k

Δ2
sc

E2
k

[
1 − 2f(Ek)

2Ek
+ f ′(Ek)

]

×
[(

�∇kξk

)2

ϕ2
k − 1

4
(�∇kξ2

k) · (�∇kϕ2
k)

]

=
Δ2

sc

Δ2

(ns

m

)MF

(22)

where d = 3 is the dimensionality, f ′(x) = df(x)/dx, and
we have kept (ns/m) as a combination since on a lattice
the mass m is not well defined, but the combination is.
The key result here is the last line in Eq. (22), where
(ns/m)MF is the BCS mean-field expression for (ns/m),
which necessarily persists into the normal state when a
pseudogap exists above Tc. It is the prefactor Δ2

sc/Δ2

that guarantees that there be no Meissner effects above
Tc. Indeed, within the present pairing fluctuation theory,
the superfluid density vanishes continuously and nicely
as T approaches Tc from below, following the T depen-
dence of Δ2

sc in the vicinity of Tc. A population imbal-
anced version of Eq. (22) can be found in Ref. [140]. In a
trap, all one needs to do is to integrate the local super-
fluid density ns(r) over the entire trap, Ns =

∫
d3rns(r).

4 Key results of the present pairing
fluctuation theory

In this section, we will present some key results related to
the pseudogap phenomena. We first present the results
for a dilute two-component 3D Fermi gas with a short
range s-wave pairing interaction, which serves to demon-
strate the simple physical picture, and will be a basis of
comparison for other cases. Next we shall present the
main results for the cuprate superconductors, and then
quickly switch to results relevant for atomic Fermi gases,
which is the main subject of this Review.

4.1 Two-component homogeneous Fermi gases in the
3D continuum

Figure 9 summarizes the main results of the present
theory on the behavior of a 3D Fermi gas with a con-
tact potential. Shown are the phase diagram and related
quantities, including Tc, T ∗, μ(Tc), Δ(0), Δ(Tc), as well
as the pair fraction 2np/n and the effective inverse pair
mass m/M∗ at Tc. Here the pair formation temperature
T ∗, as a crossover temperature, is approximated by the
mean field solution of Tc. While the Tc curve is close
to its mean-field counterpart in the weak coupling BCS
regime, a (shaded) pseudogap phase emerges in the in-
termediate (crossover or unitary) through strong pairing
BEC regimes. Along with the BCS–BEC crossover, the

Fig. 9 Calculated phase diagram and Tc, T ∗, μ(Tc), Δ(0), Δ(Tc)
and pair fraction 2np/n and inverse pair mass m/M∗ (at Tc) of a
3D homogeneous Fermi gas with a contact potential as a function
of 1/(kF a). Here np denotes the number density of pairs.

fermionic chemical potential μ decreases from EF in the
noninteracting limit, and approaches a large negative
given by −Eb/2 in the deep BEC regime, where Eb is the
two-body binding energy. At the same time, the excita-
tion gaps Δ(0) and Δ(Tc), at zero T and Tc, respectively,
grow with 1/(kF a). While Δ(Tc) at Tc roughly vanishes
in the BCS regime, it becomes nearly equal to Δ(0) in
the BEC regime. A scrutiny also reveals that the ratio
Δ/|μ| approaches 0 in the BEC limit, implying that in
the deep BEC regime, many-body effects are relatively
unimportant so that pairing is dominated by two-body
physics. Indeed, the curve of 2np/n shows that in the
BEC regime, essentially all fermions form pairs. A cal-
culation of the pair size reveals that it shrinks in real
space with increasing pairing strength [1, 56], leading to
a dilute Bose gas of tightly bound fermion pairs in the
deep BEC regime.

One feature that seems unique to the present theory is
that the Tc curve reaches a maximum near unitarity. At
the same time, there is a minimum where μ changes sign.
In the BEC limit, Tc approaches its ideal BEC asymp-
tote from below, as expected on physical grounds. This
nonmonotonic behavior of Tc can be readily explained.
Starting from the intermediate pairing strength regime,
the formation of pairs quickly depletes the effective den-
sity of fermions, making the effective fermionic density of
state decrease, associated with a shrinking Fermi surface.
This leads to a decrease in Tc. On the other hand, the
bosonic part of the system emerges and grows, as given
by the increasing pair density np. Beyond the μ = 0
point, the Fermi surface completely vanishes, and np

reaches its maximum value n/2, so that Tc is controlled
by the BEC temperature, which increases slowly with
m/M∗.

It should be emphasized that, as shown by the m/M∗
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curve, except in the deep BEC regime, the effective pair
mass differ significantly from 2m. This should be con-
trasted with NSR-based theories, which has M∗ = 2m

in all cases.
As one can see from Fig. 9, in the pseudogap phase,

the pseudogap Δ(Tc) and the pair density np grow hand
in hand.

Figure 10 illustrates the behavior of the gaps as a func-
tion of temperature for a 3D homogeneous Fermi gas at
unitarity. The pseudogap at Tc is close to the zero T gap
Δ(0). For weaker coupling toward the BCS limit, the
pseudogap Δpg/Δ(0) decreases and vanishes eventually.
On the contrary, with increasing pairing strength toward
the BEC regime, the ratio Δ(Tc)/Δ(0) approaches unity
so that the gap becomes essentially temperature inde-
pendent except at very high T . At low T , following Eq.
(16), the pseudogap scales as Δpg(T ) ∝ T 3/4.

In Fig. 11, we present the typical density of states
N(ω) = −2

∑
k Im G(ω+i0, k) for (a) BEC, (b) BCS and

(c) pseudogap regimes for a homogeneous 3D Fermi gas,
at different temperatures from slightly above Tc down to
0.5Tc, half way into the superfluid phase. Note that to
distinguish the incoherent pair contributions from that
of the condensate to the self energy, we have used a more
realistic form of the pseudogap self energy,

Σpg(ω, k) ≈ Δ2
pg

ω + ξk + iγ
(23)

where γ is treated as a phenomenological parameter in-
dependent of temperature [141]. The very low but finite
DOS for ω < 0 in the BEC regime is purely a conse-
quence of particle-hole mixing due to pairing. Except for
the BCS regime, where the gap closes at Tc, a pseudo-
gap is already present at Tc for both the BEC and the
pseudogap regimes.

Fig. 10 Normalized gaps as a function of reduced temperature
T/Tc at unitarity. The gap at Tc is comparable to the gap at T = 0.
The curves are calculated for a homogeneous 3D Fermi gas in con-
tinuum, with pairing symmetry ϕ2

k = 1/[1+(k/k0)2] at k0/kF = 4.

Fig. 11 Fermionic density of states vs energy for the three
regimes at three indicated temperatures from slightly above Tc

down to the superfluid phase. Note the big difference in the scales.
Reproduced from Ref. [126].

From Fig. 11, one can easily conclude that unless one
has a very high resolution in experiment, one can no
longer use the opening of a gap in the DOS as a signature
of superfluid transition in the presence of a pseudogap.
Instead, it is a signature of pairing which in general takes
place before superfluid phase coherence sets in. This is a
very important effect of the pseudogap.

Shown in Fig. 12 is the normalized superfluid density
ns/n in a 3D homogeneous Fermi gas as a function of the
reduced temperature T/Tc, for different pairing strengths
U/Uc = 0.7, 1.0, and 1.5, corresponding to the BCS, uni-
tary, and BEC regimes, respectively. In comparison with
the exponential T dependence of the BCS case (black
solid curve), a clear deviation can be seen in the uni-
tary case (blue dashed curve) already. This is due to the
bosonic pair excitations, which obey the T 3/2 power law
at low T . In the BEC regime (red dot-dashed curve), the

Fig. 12 Normalized superfluid density ns/n of a 3D homoge-
neous Fermi gas as a function of T/Tc for three different regimes.
Here U/Uc = 1 is equivalent to 1/(kF a) = 0, the unitary limit.
The pseudogap or finite momentum pairs contribute a T 3/2 power
law to the low T dependence, which becomes dominant as U/Uc

increases. The calculation was done for an NSR type of potential,
ϕ2

k = 1/[1 + (k/k0)2] with k0/kF = 4.
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low T behavior is dominated by the T 3/2 power law
of the bosonic excitations. Indeed, in the BEC regime,
fermionic quasiparticles are essentially absent below Tc,
due to the large negative chemical potential μ.

Figure 12 confirms that in our theory, due to the gen-
eralized Ward identity [25], Meissner effect is necessarily
absent above Tc. In this way, our superfluid density van-
ishes nicely at Tc, unlike some competing scenarios (see,
e.g., theories based on NSR) which predicts a first or-
der jump or nonmonotonic temperature dependence at
Tc [117, 121, 142, 143].

4.2 Application for the cuprates: Quasi-2D supercon-
ductors on a lattice with a d-wave pairing symmetry

When the pairing fluctuation theory is applied to a
quasi-2D lattice, it turns out that the lattice periodicity
and the low dimensionality bear important consequences.
The periodic lattice imposes an upper cut-off in the mo-
mentum space, and fermion pairs have to move via vir-
tual ionization. As a result, the superfluid transition tem-
perature Tc scales as t2///U at low densities, where t// is
the in-plane nearest neighbor hopping integral, and U is
the on-site attractive (pairing) interaction. At high den-
sities, calculations show that Tc vanishes abruptly at an
intermediate pairing strength so that the BEC regime is
not accessible. For high Tc superconductors, the d-wave
pairing symmetry further restricts the lower bound of the
pair size to that of a unit cell. Along with the non-local
effect [144] of the d-wave pairing, the system is essen-
tially always in the high density regime so that Tc van-
ishes abruptly at an intermediate pairing strength. The
high density strongly suppresses the motion of the (finite
size) pairs so that at certain point, the pairing strength
is so strong that the pairs become localized, with a di-
verging effective mass M∗ → ∞. More details regarding
the lattice, low dimensionality and d-wave effects may be
found in Ref. [24].

Shown in Fig. 13 are the Tc curves for a d-wave su-
perconductor on a quasi-2D square lattice at relatively
high densities relevant to the cuprate superconductors.
For all three densities, Tc/(4t//) shuts off around 2.2.
The chemical potential shown in the inset reveals that
the system is still deep in the fermionic regime when Tc

vanishes abruptly. The Δpg curves show that the pseu-
dogap effect is strong. More details regarding the lattice,
low dimensionality and d-wave effects may be found in
Ref. [24].

In Fig. 14, we present the theoretical cuprate phase
diagram calculated using this theory (lines) and com-
pare with experimental data (symbols) in the left panel.
In our calculations, we take U to be doping independent,

Fig. 13 Superfluid transition temperature Tc as a function of
−U/(4t//) for fermions on a quasi-2D square lattice, with a d-
wave pairing symmetry, at density n = 0.9 (black solid line), 0.85
(red dotted), and 0.7 (blue dashed line). Shown in the inset are
corresponding Δ(Tc) and μ. The system is deep in the fermionic
regime when Tc vanishes, where the chemical potential μ is not
far from its noninteracting value. Here t⊥/t// = 0.01. Reproduced
from Ref. [24].

and incorporate the effect of the Mott transition at half
filling, by introducing a doping concentration x depen-
dence into the in-plane hopping matrix elements t// =
t0x, as would be expected in the limit of strong on-site
Coulomb interactions in a Hubbard model [146]. There-
fore, except the weak logarithmic dependence [24] of Tc

on the anisotropy t⊥/t//, there is only one free parame-
ter, i.e., U/t0. Without further tweaking details such as
next nearest neighbor hopping t′, the agreement between
theory and experiment in terms of low T gap Δ(0), T ∗

and Tc is remarkable. A later collection of pseudogap at
and above Tc are shown in the right panel, which is so
scaled that a direct comparison can be made by overlay-
ing it on top of the left panel. Note that the experimental
Tc data points in both panels fit the same empirical for-
mula Tc = T max

c [1−82.6(0.16−x)2] fairly well [145, 147].
This remarkable (semi-)quantitative agreement be-

tween theory and experiment really distinguishes the
present theory from other rival theories of high Tc su-
perconductivity. Despite the fact many different high Tc

theories have been proposed, one finds it awkward that
it is hard to find a high Tc theory that is capable of
quantitative computations.

4.3 3D Fermi gas in an isotropic trap

When the typical pair size or coherence length is far
smaller than the trap size (more precisely, the size of
the Fermi gas cloud), LDA is a good approximation. In
Fig. 15, we present the solution of Tc under LDA as a
function of 1/(kF a) for a Fermi gas in a 3D isotropic har-
monic trap with a contact potential. With no surprise,
a pseudogap is found to emerge as the pairing strength
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Fig. 14 (a) Cuprate phase diagram, reproduced from Ref. [56], showing Δ(0), Tc, Δ(Tc), and T ∗, calculated for
−U/(4t0) = 0.047, and t⊥/t// = 0.003. Shown as symbols are experimental data. The normal, pseudogap, and supercon-
ducting phases are labeled with “Normal”, “P.G.”, and “S.C.”, respectively. (b) Plot of a recent collection of experimentally
measured pseudogap data (with Epg = 2Δpg , blue symbols), reproduced from Ref. [145]. The right axis shows the temper-
ature scales (for Tc and T ∗). Note that the right panel has been horizontally squeezed so that it can be overlaid on top
of the left panel in the range of x = 0.05–0.27. These experimental pseudogap data in the right panel agree with the blue
dashed curve for Δpg = Δ(Tc) in the left panel very well.

Fig. 15 Behavior of Tc as a function of 1/(kF a) for a Fermi gas
in a 3D isotropic harmonic trap with a short range potential. The
plateau is clearly a residue of the maximum-minimum feature in
the Tc curve of the homogeneous Fermi gas. As 1/(kF a) → +∞,
Tc approaches its BEC asymptote in a trap, 0.518TF , where TF is
the global Fermi temperature in the noninteracting limit. The in-
set shows the behavior of corresponding Δ(Tc). Here “PG” denotes
pseudogap.

grows. The behavior of the pseudogap at Tc is shown in
the inset. Near unitarity, the plateau in the Tc curve is
clearly a residue of the maximum–minimum feature in
the Tc curve of the homogeneous Fermi gas. Meanwhile,
due to the shrunk cloud size and thus increased density
at the trap center in the BEC regime, Tc approaches
a much greater BEC asymptote in a trap, 0.518TF , as
1/(kF a) → +∞, as compared to its homogeneous coun-
terpart, 0.218TF . Note that in a trap the global TF is
defined by the Fermi temperature in the noninteracting
limit. While the Fermi gas locally satisfies the gas equa-
tion as if it were in a homogeneous case, it is easy to con-

clude that from the weak coupling BCS limit through the
deep BEC limit, the central density n(0) is enhanced by
a factor of (0.518/0.218)3/2 = 3.66 by the pairing inter-
action. (Here we have made use of the relation EF ∝ n2/3

for a homogeneous Fermi gas).
Shown in Fig. 16 is the evolution of the spatial density

and gap profiles in the 3D harmonic trap as a function of
the pairing strength. For illustration purpose, it suffices
to focus in the near-BCS through near BEC regimes,
without going to the extreme BCS or BEC limits. In-
deed, it is the crossover or unitary regime, where the
scattering length becomes large, that has been the focus
of most studies. In the weak coupling limit, the scatter-
ing length is proportional to the interaction strength. For
this reason, the unitary regime has often been referred
to (mainly by the AMO community) as “strongly inter-
acting”. As can be seen from the figure, as the pairing
strength increases, the Fermi gas cloud shrinks toward
the trap center (upper panel), where the density neces-
sarily increases as a result. At the same time, the spatial
distribution of the pairing gap (lower panel) also becomes
more focused at the trap center, despite its growing with
the pairing strength.

To distinguish the present theory from competing the-
ories, it is worth mentioning that the density profiles are
smooth spatially, and evolve monotonically with temper-
ature. This should be contrasted with the theory of Stri-
nati and coworkers [116], which predicts non-monotonic
radial dependence and non-monotonic temperature de-
pendence.

It should also mentioned that mean-field calculations
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Fig. 16 (a) Density and (b) gap profile of a Fermi gas in a 3D
harmonic trap for various pairing strengths from (near-) BCS to
BEC, as labeled. All curves are calculated half way below their cor-
responding Tc. Here RTF is the Thomas–Fermi (TF) radius, given
by the zero T radius in the noninteracting limit.

predict as a signature of superfluidity a kink at the edge
of the superfluid core in the density profile [148, 149].
Such a kink is absent in our theory as well as experi-
mental observations. Indeed, it can be easily shown that
[56]

n = 2ZΔ2 + 2
∑

k

f(ξk)

= 2ZΔ2
sc + 2ZΔ2

pg + 2
∑

k

f(ξk)

≡ 2nc + 2np + nf (24)

where nc ≡ ZΔ2
sc is the number density of condensed

Cooper pairs [150], nf ≡ 2
∑

k f(εk−μ(r)) is the density
of fermions as though they were free. In Fig. 17, we show
the density profile n(r) (black curve) and its component
contributions from the condensate 2nc (green), finite mo-
mentum pairs 2np (red) and free fermions nf (blue), for
three representative temperatures T/Tc = 1, 0.75, and
0. The right columns show the (de-)composition of the
density. At T/Tc = 0.75, the density profile is composed
of all three components. It is evident that the contribu-
tion of finite momentum pairs (red area) is essential in
eliminating the kink, which would exist otherwise at the
edge of the superfluid core (green area). It is worth men-
tioning that finite momentum pair density np (red curve)
is nearly flat inside the superfluid core. This is because
μpair = 0 and the effective pair mass is nearly the same

Fig. 17 Decomposition of the density profile n(r) of a Fermi gas
in a trap at unitarity for representative temperatures T/Tc = 1,
0.75, and 0, as labeled. At Tc, there are only finite momentum
pairs (red) and fermions (blue). Below Tc, the condensate (green)
develops, and the finite momentum pair contributions decreases.
The pair density np is nearly uniform inside the superfluid core.
At T = 0, finite momentum pairs disappear and all pairs are con-
densed.

across the core. Then np starts to decrease gradually out-
side the core, when −μpair acquires a finite value and
grows with radius. At Tc, the superfluid core disappears.
On the other hand, at T = 0, the finite momentum pairs
disappear; all pairs are condensed. In the BCS mean-
field theory, where Δpg = 0 and the fermion propaga-
tor contains no self energy feedback, Eq. (24) reduces to
n = 2nc +nf . In fact, this is how the density was decom-
posed in Refs. [148, 149]. Figure 17 shows that without
finite momentum pairs, there would be an unphysical
kink at the edge of the superfluid core.

Interestingly, it is worth mentioning that under this
decomposition, the condensate fraction (green area)
2nc/n is not 100% at T = 0 at unitarity since μ > 0, even
if the superfluid density is. This result is shown in Fig.
18, where the condensate fraction is plotted as a function
of pairing strength for the entire BCS–BEC crossover for
a short range potential in both the trapped (black solid)
and homogeneous (red dashed line) cases. As one can
imagine from Eq. (24), the figure shows that the conden-
sate fraction does not rise to 100% until the BEC regime
is reached, where μ changes sign and becomes negative.
To understand the small condensate fraction in the BCS
regime, one notices that, based on Eq. (24), at zero T this
fraction covers the rest part that is not accounted for by
the nf term. Therefore, it is a measure of the extent to
which a fermion lives a life as a component of a Cooper
pair rather than an individual fermion. At unitarity, the
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Fig. 18 Condensate fraction at T = 0 as a function of 1/kF a in a
trapped (solid line) and homogeneous (red dashed line) Fermi gas
with a short-range potential, based on the decomposition given by
Eq. (24) and Fig. 17.

condensate fraction is about 0.55 in the homogeneous
case, and 0.53 in the trap, respectively. These numbers
are close to that from quantum Monte Carlo simulations
[151], 0.57 for a total particle number N = 66.

The effects of a pseudogap or finite momentum pair
contributions on thermodynamics is summarized by Fig.
19, where the entropy per particle is shown for a series of
pairing strengths from BCS through BEC for a Fermi gas
in a trap [152]. The black curve for 1/(kF a) = −2 is close
to a noninteracting Fermi gas, exhibiting a linear T de-
pendence at low T . In the opposite strong coupling BEC
regime, the 1/(kF a) = 3 curve is close to the ideal Bose
gas curve, above the BEC asymptote for Tc/TF , 0.518.
At high T (but � T ∗), it is easy to guesstimate from the
figure that the entropy in the deep BEC regime is given
roughly by half that for a free Fermi gas. The existence
of finite momentum pairs allows a continuous evolution
from the Fermi gas limit through the Bose gas limit,
as the pairing strength increases. The presence of the
trap inhomogeneity inevitably makes the situation more
complicated that its homogeneous counterpart, leading
to a power law T dependence at low T for all pairing
strengths.

At unitarity, the distributions of the fermionic and
bosonic components of the entropy are shown in the in-
set. At low T in the broken symmetry, superfluid phase,
the bosonic contribution sb(r) (blue curve) is nearly flat
inside the superfluid core, and decays outside the core.
On the other hand, the fermionic part, sf (r), comes
mainly from the edge of the Fermi gas cloud, where the
pairing gap becomes very small. The sum s(r) has a peak
at the trap edge as well. Considering the phase space fac-
tor r2 in the trap integral, the behavior of the entropy S

at unitarity is dominated by the fermionic component at
the trap edge. As the system evolves deep into the BEC
regime, the fermionic part becomes negligible so that the

Fig. 19 Entropy per atom as a function of T for different pairing
strengths from weak coupling BCS through strong coupling BEC
in a harmonic trap. The dotted lines show an isentropic magnetic
field sweep between 1/(kF a) = 1 and unitarity. For comparison,
the dashed line represents the ideal Bose gas. The inset plots the
spatial profile of total entropy s(r) (black curve) and its fermionic
(sf , red) and bosonic (sb, blue) component contributions at uni-
tarity for T = Tc/4. Here Tc = 0.27TF . Reproduced from Ref.
[153].

bosonic part eventually dominates.
The above thermodynamics behavior has an immedi-

ate consequence. It can be used as a thermometry. It
is well known that the temperature measurement in a
Fermi gas is notoriously difficult. It is essentially impos-
sible to measure the temperature at an arbitrary inter-
action strength. Measurement of the temperature in a
Fermi gas without a population imbalance has been done
successfully only in the BCS limit, deep BEC limit and
at unitarity. In practice, it is convenient to connect the
actual temperature at a given 1/(kF a) with the temper-
ature in the non-interacting limit, using an adiabatic,
isentropic magnetic field sweep. In other words, one can
use the entropy in place of the temperature. As an ex-
ample, the dotted lines in Fig. 19 show how to connect
the temperatures at 1/(kF a) and at unitarity.

As an application of the above pseudogap related ther-
mometry, in Fig. 20 we plot the theoretically calculated
phase diagram of 40K in a trap with an effective tem-
perature (T/TF )0 measured adiabatically in the non-
interacting limit, and compare with the experimental
phase diagram from Jin’s group [45, 154]. The black and
red curves are Tc and the Ns/N = 0.01 contour line, re-
spectively. The experimental data show the contour plot
of the condensate fraction. Given the large error bar in
the data, we note that the overall trend of the experi-
mental contour of N0/N = 0.01 and the theoretical line
for Ns/N = 0.01 are in good agreement [155]. One may
also compare the Tc curve with that shown in Fig. 15 to
see directly the difference between Tc/TF and (Tc/TF )0

as an effect of the adiabatic isentropic sweep.
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Fig. 20 Phase diagram of 40K. A contour plot of the measured
condensate fraction N0/N as a function of 1/(k0

F a) and effective
temperature (T/TF )0 in the noninteracting limit is compared with
theoretically calculated contour lines at Ns/N = 0 (at Tc, black
curve) and 0.01 (red curve). Despite the large uncertainty in ex-
perimental data, the overall trend of the experimental contour of
N0/N = 0.01 and the theoretical line for Ns/N = 0.01 are in
good agreement. The dashed line represents the naive BCS result

Tc/T 0
F ≈ 0.615eπ/(2k0

F a). Here k0
F ≡ kF and T 0

F ≡ TF are the
global Fermi momentum and Fermi temperature, respectively. Re-
produced from Ref. [154].

5 Experimental evidence of the pseudogap in
atomic Fermi gases

The concept of pseudogap was first introduced into
atomic Fermi gases in Ref. [126]. It was not accepted and
well understood by the AMO community, until more and
more indirect and direct experimental probes provided
evidence for its existence. In this section, we shall present
evidence of the pseudogap in atomic Fermi gases from
various experiments, especially in the unitary regime.

Due to the extreme low T and extreme small size
as well as charge neutrality, the choice of experimental
probes to ascertain the existence of the pseudogap is very
limited for trapped Fermi gases. Typical condensed mat-
ter probes such as resistivity measurement, optical con-
ductivity, penetration depth measurement, and angle-
resolved photoemission spectroscopy (in the conventional
sense) are not available. Therefore, one often has to re-
sort to indirect measurements.

5.1 Thermodynamics and density profiles

Shown in Fig. 21 is the energy per atom for a unitary
6Li Fermi gas. The lines are calculations of the present
pairing fluctuation theory, while the symbols are exper-
imental data from the Thomas group [49] at Duke Uni-
versity. The result for noninteracting Fermi gases serves
as a calibration of the experimental measurement, where
the Thomas–Fermi (TF) approximation works well. It is
evident that the theory and experiment agree very well.
It is worth mentioning that, in both the noninteracting

and unitary cases, a finite trap depth as given by the ex-
periment was used in order to arrive at the good agree-
ment at high T . One of the most important messages one
can read off the figure is that the unitary energy curve
does not rise to that of the noninteracting curve until
T ∗ ≈ 0.6TF 
 Tc ≈ 0.29TF from the theory. This is a
manifestation of the existence of a pseudogap above Tc

at unitarity, which helps to lower the energy.
If the energy curve E(T ) provides a signature of the

pseudogap above Tc at unitarity, the spatial density
profile below Tc may serve as indirect evidence of the
pseudogap below Tc. In Fig. 22 we present a comparison
of the one-dimensional density profile n̄(x) =

∫
dzdy n(r)

of a unitary Fermi gas between theory and experiment,
at a temperature substantially below Tc. The agreement
is good. There is no sign of the kink behavior at the edge
of the superfluid core in the data [157]. We stress that

Fig. 21 Comparison between theoretical calculations (lines) and
experimental measurements of the energy per atom as a function
of T/TF for noninteracting and unitary 6Li gases. Here the tem-
perature for the unitary case involves a temperature calibration
[49]. The unitary and the noninteracting energy data do not merge
until about T ∗ ≈ 0.6TF . Reproduced from Ref. [49].

Fig. 22 Comparison between theoretical calculations (black solid
line) and experimental measurements (red circles) of the one-
dimensional density profile of a unitary 6Li gas at T = 0.19TF ≈
0.7Tc, in the superfluid phase. Reproduced from Ref. [156].
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such a good agreement is not expected for a mean-field
theory [148, 149] or a theory that exhibits non-monotonic
dependence in radius or temperature [116]. As shown in
Fig. 17, the pseudogap or finite momentum pair contri-
butions are essential in arriving at such a smooth density
profile.

5.2 Momentum distribution

The presence of a pseudogap necessarily has an impor-
tant consequence on the momentum distribution Nk of
the Fermi gases. Without a pseudogap, Nk would behave
very much like a noninteracting Fermi gas at a given tem-
perature. In contrast, it will be spread to a larger range
in the momentum space, according to

N2D(k) =
∫

dkz

2π
Nk =

∫
dkz

2π
d3r nk(r)

nk(r) = 1 − ξk

Ek
+ 2

ξk

Ek
f(Ek) (25)

In Fig. 23, we present the 2D momentum distribu-
tion N2D(k) at a series of temperatures from below to
far above Tc for different pairing strengths from BCS
through (near-)BEC regimes. The left and right columns

Fig. 23 Temperature evolution of the 2D momentum distribu-
tion N2D(k) of a 40K gas in a trap with different pairing strengths
from noninteracting through near-BEC cases. The effective tem-
perature in the noninteracting limit, (T/TF )0, is labeled. Repro-
duced from Ref. [158].

are from experiment and theory, respectively. The com-
parison reveals a good agreement between them. The
most important message here is that the N2D(k) curves
differs significantly for different pairing strengths at
(T/TF )0 = 0.3 and 0.5, above Tc, and they do not merge
until (T/TF )0 > 0.7 where the (pseudo-) excitation gap
disappears. Like the (T/TF )0 = 0.11 case, the differ-
ence between the curves for different pairing strengths is
caused by the presence of the (pseudo-)gap.

5.3 (Momentum integrated) radio frequency
spectroscopy

Among various experimental techniques, radio-frequency
(RF) spectroscopy [47, 160, 161] is arguably the most di-
rect probe for the existence of an excitation gap. The ba-
sic physics of a RF process is shown in Fig. 24. Atoms in
hyperfine levels 1 and 2 are subject to the pairing inter-
action, whereas atoms in level 3 are free of such pairing.
Therefore, by exciting an atom from level 2 to an un-
occupied level 3, one can tell how much extra energy is
needed in addition to the hyperfine level splitting. This
extra energy, referred to as detuning, provides a measure
of the “binding energy” of the level 2 atoms due to in-
teractions. To the lowest order, the RF current is given
by

I(ν) = − 1
2π

∑

k

A(k, ω)f(ω)
∣∣∣∣
ω=ξk−ν

(26)

Fig. 24 Energy levels in a RF transition. ΩL is the RF frequency
for exciting a free atom from hyperfine level 2 (maroon dashed
curve) to level 3 (green solid curve). Ω ′

L is the same energy but
measured relative to the respective chemical potentials. The black
and red solid curves are the dispersion of the condensed and ther-
mally excited quasiparticle branches of a paired atom in level 2,
with energy level given by ∓Ek +μ, respectively. Reproduced from
Ref. [159].
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where ν is the detuning, A(k, ω) is the spectral function
for level 2 atoms, and we have set the RF matrix ele-
ment to unity. As is well known, when level 2 atoms are
paired with level 1 atoms, the spectral function A(k, ω)
consists of two branches, the condensed and thermally
excited quasiparticle branches, represented in Fig. 24 by
the black and red solid curves, respectively. The thermal
branch corresponds to negative detuning, and will not be
observable for either very low or very high T . The former
case will be suppressed by the Fermi function f(ω), while
the high temperature will destroy the pairing in the later
case. When interactions exist between level 3 atoms and
level 1 atoms, then we have a final state effect, which
will also affects the RF spectrum [162–167].

Shown in Fig. 25 is the earliest report on the RF
spectroscopy measurement of a unitary 6Li gas at differ-
ent temperatures. The fractional loss is proportional to
A(k, ω) and the RF offset is the detuning ν. The effective
temperature T ′/TF , measured in the BEC limit after an
isentropic sweep, has been converted to the real temper-
ature T/Tc, using the calculated entropy data shown in
Fig. 19. The important feature of this figure is the double
peak structure, with one narrow sharp peak at zero de-
tuning, and a broad peak with a positive detuning. The
narrow peak can be easily attributed to the transition

Fig. 25 RF spectra of a unitary 6Li gas for different tempera-
tures. The solid lines are fits to guide the eye. The vertical dot-
ted line marks the atomic transition, and the arrows indicate the
peak location of the pairing signal. The original effective tempera-
ture T ′/TF has been converted isentropically to the real (reduced)
temperature T/Tc using the entropy data shown in Fig. 19. Repro-
duced from Ref. [47].

from the free level 2 atoms, found at the edge of the trap.
On the other hand, the broad peak has been associated
with paired level 2 atoms. The trap inhomogeneity neces-
sarily leads to a distribution in the pairing gap, and thus
the broadness of the RF signal. The phase space factor
r2 in the trap integral determines that the pairing signal
will be peaked at an intermediate radius. At unitarity,
for a given gap Δ, the detuning would be a momentum
average of

ν = Ek + ξk �
√

μ2 + Δ2 − μ < Δ (27)

with the spectral weight given by the integrand of Eq.
(26), namely, the momentum dependent RF current.
While quantitatively, the location of the broad pairing
peak does not give directly the pairing gap, qualita-
tively, its presence is a signature of pairing. As revealed
by Fig. 25, the broad peak can already be seen above
Tc at T/Tc = 1.2. The total spectral weight under the
broad peak as well as the detuning for this peak increases
as T decreases further. Deep in the superfluid phase at
T/Tc < 0.4, the free atom peak is essentially gone; all
level 2 atoms are paired, and the pairing peak detuning
reaches its maximum.

Recent experiment [168] and QMC results [169–171]
suggest that for 6Li at unitarity, the transition temper-
ature Tc/TF ≈ 0.17, substantially lower than 0.29 pre-
dicted in the present theory. This further substantiates
the existence of a pseudogap above Tc.

The experimental result of Ref. [47] was interpreted
successfully [172, 173] using the present pairing fluctu-
ation theory soon after its publication. In Fig. 26, we
present a comparison of calculated RF spectra (solid
curve, Tc ≈ 0.29TF ) with experiment (symbols) in a har-
monic trap calculated for 6Li at 822 G (on the BEC side
of the Feshbach resonance at 834 G) for the two lower
experimental temperatures. The overall agreement is sat-
isfactory, which can be further improved by including the
final state effect [159]. While our focus remains on qual-
itative evidence of the pseudogap, we shall not go into
details about the final state effect. Interested readers may
find further information in Refs. [159, 162, 164–167].

5.4 Momentum resolved radio frequency spectroscopy

Despite the very intuitive picture about the double peak
structure in the RF spectra, the momentum integration
has caused some disputes regarding the origin of the
double peak structure [160, 174], and thus the physical
interpretation about the RF spectroscopy measurements.
This has a lot to do with the final state effect, first no-
ticed by Müller and coworkers [166]. The lack of simple
relation between the pairing gap size and the pairing
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Fig. 26 Comparison of calculated RF spectra (solid curves,
Tc ≈ 0.29TF ) with experiment (symbols) in a harmonic trap calcu-
lated at 822 G for the two lower temperatures. The temperatures
were chosen based on Ref. [47]. The dashed lines are a guide to the
eye. Reproduced from Ref. [173].

peak location in the RF spectra has made it difficult to
extract the gap from the data quantitatively.

A great step forward was made by Jin and coworkers
[175], who performed momentum resolved RF (MRRF)
spectroscopy measurement for the first time, in a 40K
gas. The RF current is given by the integrand of Eq.
(26). It turns out that the MRRF spectroscopy is equiv-
alent to the ARPES [61, 91], which is a very impor-
tant and useful tool in condensed matter physics. Fur-
ther simplification comes from the fact that there is no
final state effect in a 40K gas. This makes the interpre-
tation of the MRRF spectra relatively simple and unam-
biguous. In Fig. 27, we present the contour plot of the
occupied spectral intensity in the ω–k plane, for a homo-
geneous 3D Fermi gas at unitarity at T/TF = 0.5. The
two branches corresponding to the condensed and ther-
mally excited quasiparticles shown in Fig. 24 are clearly
visible. For comparison, the white curve shows the dis-
persion of a free atom, with the same chemical potential.
The particle–hole mixing as a pairing effect is evident, as
manifested by the avoided crossing and back-bending of
both the lower and upper branches. This back-bending
takes place at k =

√
2mμ < kF . To see the upper branch

clearly, one needs to have relatively high temperature
which is comparable with Δ.

Ideally, one would like to have a homogeneous system.
Unfortunately, a trap potential is necessary in order to
hold the Fermi gas together. This complicates the other-
wise very simple interpretation of the RF spectra.

In Fig. 28, we present a comparison of the key result
on the spectral intensity map between experiment (left)

Fig. 27 Contour plots of the occupied spectral intensity at uni-
tarity in a homogeneous Fermi gas for T/Tc ≈ 1.9. The population
of the two branches are determined self-consistently. The white
curve represents the dispersion of unpaired atom. Reproduced from
Ref. [176].

and theory (right) for a unitary Fermi gas above Tc at
T/Tc = 1.1. The similarity between the two panels is
obvious. As can be seen, a large fraction of the spec-
tral weight has been shifted from the free atom branch
to the paired atom branch. Indeed, at high T where
pairing effect is negligible, the spectral weight concen-
trates on the free particle dispersion (not shown). As the
temperature decreases, a second (downward dispersing)
branch emerges. This lower branch is associated with the
breaking of a pair and necessarily contains trap averag-
ing effects. With decreasing temperature, the intensity
map first bifurcates and eventually at very low T be-
comes dominated by the lower branch, when essentially
all atoms are paired.

From Fig. 28, such bifurcation and downward dis-
persion already take place above Tc, indicating unam-
biguously that a pseudogap exists in the unitary Fermi
gas. To extract this downward dispersion, the energy
distribution curves (EDCs) have been fitted to a sin-
gle Gaussian function experimentally. This leads to the
white dashed curve in the right panel. The white solid
dispersion curve is obtained theoretically following the
same procedure. A BCS-like fit to this dispersion can be
used to determine the pairing gap, as has been done in
Ref. [175], as Es = μ − √

ξ2
k + Δ2. The best fit to the

experimental dispersion yields Δ = 9.5 kHz, comparable
to EF . The agreement between experiment and theory
is reasonably good, despite the trap inhomogeneity. The
white dashed experimental curve back bends at k > kF ,
in contradiction to what is expected on physical ground
at unitarity. This is mainly caused by the low experimen-
tal resolution and the incorrect single-Gaussian function
fitting procedure. Our theory predicts double peaks in
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Fig. 28 Comparison between experiment (left) and theory
(right) of the contour plots of the occupied spectral intensity in a
unitary Fermi gas in a trap at T/Tc ≈ 1.1. The red curve represents
the free atom dispersion. A large amount of spectral weight has
been shifted from a free atom peak to a paired atom peak (down-
ward dispersing curve). Here the intensity increases from dark blue
for 0 to dark red for the maximum, and the solid and dashed white
lines indicate the loci of the peaks in the energy distribution curves
from theory and experiment, respectively. The single particle en-
ergy Es is equivalent to ω +μ, the energy measured relative to the
bottom of the band. Reproduced from Refs. [175, 176].

the EDC curves for k � kF , and this has been confirmed
by careful inspection of the experimental data [176]. Fur-
ther improved experimental data [177] have led to a dis-
persion much closer to the theoretical result. The obser-
vation of a pseudogap has also been confirmed by Ref.
[178, 179].

It should be mentioned that via the simple approx-
imation Eq. (5), the present pairing fluctuation theory
has demonstrated in a simple, analytic way that a pseu-
dogap necessarily exists when the pairing interaction is
strong. For NSR-based theories, due to the inconsistency
between the gap equation, which contains no pairing
fluctuation contributions, and the number equation, one
would have to extract the pseudogap from the renormal-
ized spectral function in a cumbersome way. In this sense,
the numerical route of Strinati et al. [180, 181] can be
viewed simply as a confirmation of our analytically re-
sult.

5.5 Population imbalanced Fermi gases

In this subsection, we provide evidence for the existence
of a pseudogap in population imbalanced Fermi gases.
For extension of the present pairing fluctuation theory
to the case of population imbalance, we refer the readers
to Refs. [132–134].

Shown in Fig. 29 is the calculated phase diagram of a
population imbalanced Fermi gas in a trap at unitarity.
The overall polarization, p = (N↑ − N↓)/N , is differ-
ent from its local counterpart. At low T , phase separa-
tion (PS) takes place, where a BCS superfluid core of an
equal spin mixture at the trap center is surrounded by
polarized Fermi gases. Above the PS phase, there exist
intermediate temperature superfluids, which is referred

Fig. 29 Calculated phase diagram of a population imbalanced
Fermi gas in a trap at unitarity. Here “PS” stands for phase sepa-
ration, “Sarma” for polarized Sarma superfluid, “PG” for pseudo-
gapped normal state, “N” for unpaired normal state, and “TCP”
for tricritical point. Reproduced from Ref. [133].

to as Sarma superfluid, for which the local spin polariza-
tion penetrates all the way into the trap center. Above
the Sarma phase, there is a pseudogap phase (PG) where
pseudogap exists without superfluidity, before the system
becomes unpaired normal state (N) at high T .

The behavior of the polarization at the trap center,
(n↑−n↓)/n↑(T = 0), in a temperature sweep at p = 0.5,
is shown in the upper panel of Fig. 30. An important
feature here is that its evolution across Tc is smooth,
without a clear signature of the superfluid transition. A
downturn is predicted at the crossover temperature T ∗,
where the pseudogap becomes negligible. We emphasize
that this smooth evolution across Tc is a consequence
of the fact that the total excitation gap is continuous
across Tc. This feature has been verified by experimen-
tal data from the Ketterle group [182], as shown in the
lower panel. Note that the experimental trap depth is
proportional to the temperature. The agreement between
experiment and theory is remarkable. Therefore, we con-
clude that the experimental data have provided strong
support for the existence of a pseudogap above Tc.

5.6 Dispute against the existence of a pseudogap

Despite the definitive evidence of the pseudogap from
various experiments, especially the MRRF spectroscopy
measurements, there have still been some disputes
against the existence of the pseudogap from thermody-
namics measurement [183, 184]. Especially, in Ref. [183],
Salomon and coworkers reported “a T 2 dependence of
the pressure with temperature”, and thus claimed that
“This behavior is reminiscent of a Fermi liquid, and in-
dicates that pseudogap effects expected for strongly in-
teracting Fermi superfluids do not show up at the ther-
modynamic level within our experimental precision.”
However, this cannot be used as evidence against the
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Fig. 30 (a) Relative density difference at the trap center at low
T as a function of T/TF at p = 0.5, i.e., along the vertical green
line in Fig. 29. The three arrows indicate the PS/Sarma boundary,
the Sarma superfluid/PG transition Tc, and the PG/N crossover
temperature T ∗, respectively. (b) Experimental data from MIT,
showing the density difference (black solid circles, left axis) at the
trap center of a unitary Fermi gas at p = 0.5, along with the con-
densate fraction (red triangles, right axis), as a function of trap
depth, which is proportional to T . The solid and empty arrows
indicate the PS/Sarma transition temperature and superfluid Tc,
respectively. Reproduced from Refs. [133, 182].

existence of a pseudogap, because the macroscopic quan-
tity pressure used in their equation of state (EOS) in-
volves a trap and momentum integration over all mi-
croscopic states. There are many possible microscopic
states which can produce the same macroscopic thermo-
dynamic quantities after integration. This is a many-to-
one mapping. For example, within the BCS mean-field
theory, the relation between pressure and energy of a
Fermi gas with a contact potential at unitarity is given
by p/E = 2/3, exactly the same as that for a noninter-
acting Fermi gas (which exhibits an ideal Fermi liquid be-
havior). In fact, their key experimental data were taken
at (T/μ)2 > 0.1, or equivalently, T/μ > 0.3. This is far
from being a low T regime, where one can talk about
power law dependence. At such a high temperature, it
is not particularly useful to extract its power law depen-
dence on T . The pressure calculated with a pseudogap
would follow a similar T dependence in this temperature
regime, just like that of the energy (per particle), E(T ).

6 Where to look further for the pseudogap

6.1 Effects of particle–hole fluctuations

As in most other theories of BCS–BEC crossover, e.g.,

the NSR-based theories, the particle–hole channel has
been dropped in the treatment of the present pairing
fluctuation theory. This is justified in the context of su-
perconductivity, where the particle–hole channel mainly
contributes to a change in the chemical potential, which
can be taken from experiment. In addition, superfluid-
ity and pairing concerns primarily the particle–particle
channel. In many cases, the pairing interaction strength
is not precisely known, and thus may be treated as a
fitting parameter. Nevertheless, when the pairing inter-
action strength is indeed known precisely, one may need
to consider the effect of particle–hole fluctuations.

In the weak coupling limit, the contribution of particle-
hole fluctuations was first considered by Gor’kov and
Melik-Barkhudarov (GMB) [185] to the leading order.
They found that both Tc and zero temperature gap
are suppressed by a big factor of (4e)1/3 ≈ 2.22. A
few others have recently considered particle–hole fluctu-
ations within the context of Fermi gases and BCS–BEC
crossover [186–189]. In Ref. [190], the present pairing
fluctuation theory is extended to include the particle–
hole channel in such a fashion that the T -matrices of
both the particle–particle channel and the particle–hole
channel intertwine with each other and are treated self-
consistently. The main result is that in the BCS through
unitary regime where the chemical potential μ > 0,
particle–hole fluctuations cause an effective reduction of
the pairing strength. In particular, the unitary limit is
shifted towards the BEC regime, to 1/(kF a) ≈ 0.35. The
original maximum Tc at unitarity (see Fig. 9) has now
occurred at the new location. This seems to be in good
agreement with the QMC result from Ref. [170], which
reported a maximum Tc/EF ≈ 0.25 around 1/(kF a) =
0.47. Depending how the interaction parameter is deter-
mined, this seems to suggest that one may need to con-
sider looking for the pseudogap around the new unitary
limit in future experiments. Further details of the effect
of particle–hole fluctuations may be found in Ref. [190].

6.2 Widespread pseudogap phenomena

There are widespread pseudogap related phenomena in
ultracold Fermi gases. In this section, we shall only name
a few examples, instead of giving a full search.

For a wide Feshbach resonance such as the widely stud-
ied resonances in 6Li and 40K, the closed channel fraction
has turned out to be closely related to the pseudogap. In
Fig. 31, we show the closed-channel fraction as a func-
tion of T for a unitary Fermi gas, calculated using a two-
channel version of the present pairing fluctuation theory
[191]. Here the black (Nb0) and red (Nb) curves stand
for the condensed and thermal part of the closed-channel
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Fig. 31 Closed-channel fraction as a function of T/Tc at unitar-
ity for TF = 0.4 µK for 6Li in a harmonic trap. The black, red, and
blue curves are the condensed (2Nb0/N), noncondensed (2Nb/N)
and total (2Ntot

b /N) fractions, respectively. Here Tc = 0.273TF .
Reproduced from Ref. [191].

molecules, while the blue curve (N tot
b ) stands for the

sum. They are proportional to Δ2
sc, Δ2

pg, and Δ2, re-
spectively. At low T , the calculated fraction 2N tot

b /N

as a function of pairing strength is in good quantitative
agreement with experiment [191, 192]. It is known that
at unitarity, pairing can exist only due to many-body
effect. Above Tc, should there be no pairing (or equiv-
alently, pseudogap), the closed-channel fraction would
drop to zero due to the inter-channel coupling. There-
fore, detection of the closed-channel fraction above Tc

should provide a direct measurement of the pseudogap.
The pseudogap phenomena can be found not only in

equal mass two component Fermi gases, but also in a
Fermi–Fermi mixture, with a strong mass imbalance. In
Fig. 32, we present a phase diagram for a 6Li–40K mix-
ture in a harmonic trap (a) at unitarity and (b) in the
near-BEC regime 1/(kF a) = 0.5, with ω↑ = ω↓. Here ωσ

is the angular frequency of the spin dependent trapping
potential. The convention is such that p > 0 when the
heavy species is the majority. The “PS”, “Sarma” and
“PG” phase in Fig. 32(a) at unitarity is similar to that in
Fig. 29. As usual, at the highest temperature, the system
behaves like a mix of uncorrelated normal Fermi gases.
Otherwise, the dominant part of the phase diagram at
unitarity is a sandwiched three-layer shell structure, for
which the inner and outer shells are normal Fermi gases,
while the mid-shell is either a BCS, Sarma superfluid or
a PG normal state, for a temperature from low through
high. In the near BEC case in Fig. 32(b), the PS phase
for p < 0 is no longer stable and the PG and Sarma
regions expands substantially. For p > 0, the outer shell
of a majority Fermi gas has disappeared so that the sys-
tem becomes an “inverted” two-shell structure, with a
majority Fermi gas at the trap center, surrounded by a

Fig. 32 T–p phase diagram of a 6Li–40K mixture in a harmonic
trap at (a) unitarity and (b) 1/(kF a) = 0.5, with ω↑ = ω↓. The
solid lines separate different phases, and the (red) dashed line is
approximated by mean field calculations. We choose the popula-
tion imbalance p > 0 when 40K is the majority. Here “PG” and
“PS” indicate pseudogapped normal state and phase separation,
respectively, and “SF” stands for superfluid. The PS-PG and PS-
SF phase has an “inverted” two-shell structure, with a normal gas
of the majority heavy atoms at the trap center, surrounded by a
superfluid or pseudogapped paired Fermi–Fermi mixture. Repro-
duced from Ref. [135].

superfluid or pseudogapped paired Fermi–Fermi mixture
in the outer shell. Such two-shell or three-shell structures
and the local density profiles may be probed using the
in situ phase-contrast imaging and 3D image reconstruc-
tion technique as in Ref. [182]. One may also use vortex
lattices [50] to detect the (sandwiched) PS and Sarma
state, so as to distinguish the superfluid and pseudo-
gapped phases. The paired state may also be detected
using a Bragg spectroscopy technique [193, 194], which
may also be able to distinguish condensed versus non-
condensed pairs.

It should be emphasized that the sandwiched PG and
the PS-PG phases are both very unusual and very inter-
esting. The associated phase separation involves pseudo-
gapped normal state rather than a superfluid state. Such
phase separations have never been predicted or reported
before in the literature.

There are many other experiments and physical quan-
tities which exhibit pseudogap phenomena. For example,
atomic Fermi gases on optical lattices will be another
realm to search for the pseudogap in the future, de-
spite that experiment on optical lattices falls far behind
theory. Another realm is 2D Fermi gases, since low di-
mensionality intrinsically enhances fluctuations, includ-
ing the pseudogap related pairing fluctuations. It is ex-
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pected that more support for the existence of a pseudo-
gap will come up as new experiments become available.

7 Summary

In summary, we have given a review of the study of
the pseudogap physics in atomic Fermi gases, and pre-
sented a series of experimental evidence of the existence
of a pseudogap in Fermi gases, especially in the unitary
regime. In this context, we have introduced a pairing
fluctuation theory, and have shown that it thus far has
addressed successfully multiple atomic Fermi gas ex-
periments. In particular, the momentum resolved radio
frequency spectroscopy measurement has provided the
most direct probe and the most convincing evidence of
the pseudogap. Since the existence of a pseudogap is
a natural consequence of the present theory, and most
competing theories do not have a pseudogap in their
fermion self energy in a self-consistent fashion, the ex-
perimental evidence of a pseudogap can be viewed as
a strong support for this theory. Given the analogy be-
tween superfluidity in Fermi gases and superconductivity
in high Tc superconductivity, we argue that the present
pairing fluctuation theory for the pseudogap is also a
strong candidate for high Tc superconductivity.
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