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In a trapped atomic Fermi gas, one can tune continuously via a Feshbach resonance the effective pairing
interaction between fermionic atoms from very weak to very strong. As a consequence, the low temper-
ature superfluidity evolves continuously from the BCS type in the weak interaction limit to that of Bose-
Einstein condensation in the strong pairing limit, exhibiting a BCS-BEC crossover. In this paper, we
review recent experimental progress in atomic Fermi gases which elucidates the nature of the superfluid
phase as the interaction is continuously tuned. Of particular interest is the intermediate or crossover
regime where the s-wave scattering length diverges. We will present an intuitive pairing fluctuation the-
ory, and show that this theory is in quantitative agreement with existing experiments in cold atomic
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1. Introduction

Ultracold atomic Fermi gases have been a very exciting, rapidly
developing field, which has emerged within the past several years,
bridging condensed matter and atomic, molecular and optical
physics [1]. Using a Feshbach resonance in a magnetic field, one
can tune the effective pairing interaction strength between fermi-
onic atoms from very weak to very strong [2]. As the interaction
strength varies, the nature of the low temperature superfluidity
of these Fermi gases evolves continuously from the BCS type in
the weak coupling limit to Bose-Einstein condensation (BEC) in
the strong pairing limit, exhibiting a BCS-BEC crossover, which
has been of great theoretical interest since 1960s [3-5,1]. Of partic-
ular interest is the unitary regime, where the s-wave scattering
length a diverges. This is a strongly correlated regime where no
small parameter is available for perturbative expansions. It has
been expected that this regime provides a prototype for studying
both high T, superconductors and strongly interacting Fermi gases
which are also of interest to nuclear and astro-physicists.

In this paper, we first review experimental progress in atomic
Fermi gases, with an emphasis on recent radio frequency spectros-
copy measurements. Then we will present a pairing fluctuation
theory and compare with experiment. We show that this theory
successfully explains experimental measurements.
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2. Experimental progress

The first theoretical study of BCS-BEC crossover dates back to
1960s, although it did not get much attention until the seminal
work of Leggett in 1980 on BCS-BEC crossover at zero temperature
[4]. The discovery of high T, superconductivity in 1986 gave a
strong boost to the interest in BCS-BEC crossover [6-10,1]. It was
suggested that the unusual pseudogap phenomena in the cuprate
superconductors might have to do with BCS-BEC crossover. Exper-
imental efforts in this area fell far behind, because it had been dif-
ficult to find a system where the attractive pairing interaction is
tunable. Thanks to the laser cooling and trapping technique in
1990s, one is able to create “artificial” many-body systems of fer-
mionic atoms in a laboratory. The existence of a Feshbach reso-
nance in these Fermi gases makes it possible to tune the
interaction strength.

For ease of control, the Feshbach resonances for the two widely
studied species, 5Li and “°K, are both very wide. The interactions in
both cases are of the short-range, s-wave type. They are often taken
to be a contact potential in theoretical treatments.

The first experimental realization of BCS-BEC crossover was
achieved in 2004 by Jin and coworkers [11,12] and at almost the
same time by the Grimm group [13] and the Ketterle group [14].
Due to the difficulty in tuning temperature T, the Fermi gases were
either in the superfluid or normal state at given interaction strength
(or the magnetic detuning). Continuous variation of the system as a
function of temperature was first realized by the Thomas group
[15] at unitarity. In collaboration with the theory group at Chicago
[16], Thomas and co-workers [17] observed for the first time con-
tinuous phase transition from the normal to superfluid state in a
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unitary °Li gas. One could argue, of course, that the vortex measure-
ment of the Ketterle group provided the most definitive smoking
gun for a superfluid state [18].

Besides the interaction strength, another great tunability is pop-
ulation imbalance between the two fermionic species to be paired
[19]. It adds a whole new dimension to the phase diagram and
makes the physics much richer. It also generates interest [20] in
possible observation of the Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state [21]. Experimental work in population imbalanced
Fermi gases was pioneered by the Hulet group [22] and the Ketter-
le group [23]. Experiment in the extreme population imbalanced
limit by the Ketterle group manifested [24] the importance of Har-
tree-like correlation effects besides BCS-type of pairing.

Unlike an electron system, it has been difficult to measure the
excitation gap in the Fermi gas superfluid. Among all experimental
techniques, radio frequency (RF) spectroscopy [13] is arguably the
most direct probe. Using a tunable RF field to excite one of the two
pairing atoms from a lower hyperfine state (level 2) to a higher
hyperfine level 3 which does not participate in pairing, a higher fre-
quency will be needed if the atoms in level 2 are paired. Such a fre-
quency shift (detuning) provides a good measure of the excitation
gap. Previous measurement by Grimm and coworkers [13], and later
repeated by the Ketterle group [24], was done in a momentum inte-
grated fashion. At low T, the RF spectra displayed a double-peak
structure, with a sharp peak at zero detuning and a broad peak at po-
sitive detuning. This double-peak feature was nicely interpreted
[25,26] as transitions from unpaired atoms the trap edge (corre-
sponding to the sharp peak) and from a distribution of paired atoms
in the inner part of the trap (broad peak). However, doubt was cast
about the origin of the two peaks as to whether they reflect pairing
or bound state effects [24] or simply a result of trap inhomogeneity
[27]. Recently, attention was also drawn to final state effects both
theoretically [28,29] and experimentally [24].

A big step in the RF technique was the recent momentum-re-
solved RF spectroscopy experiment in “°K by the Jin group [30]. With
momentum resolution, RF spectroscopy is equivalent to the angle-
resolved photoemission spectroscopy (ARPES) for an electron
system. In fact, it is cleaner than ARPES in that ARPES is only a
two-dimensional probe, which is often plagued by the existence of
surface states, surface contaminations, work function, and the com-
plication of energy dispersion in the third dimension. In comparison,
of course, the signal-to-noise ratio in a Fermi gas experiment is much
lower, as limited by the (low) total number of atoms in the gas.
Although the trap inhomogeneity adds complication to the interpre-
tation of the spectrum, like ARPES, momentum-resolved RF spec-
troscopy measures the fermion spectral function, A(k, w), which is
of central importance in characterizing the system.

3. Theoretical formalism

In this section, we now present a simple pairing fluctuation the-
ory, which was first developed [10] to explain the pseudogap phe-
nomena in high T, superconductors. Fermi gases in the presence of
a Feshbach resonance can be effectively described by a two-chan-
nel model [2]. It has now been known that the closed-channel frac-
tion [31,32] is very small for both ®Li and “°K, throughout the BCS-
BEC crossover. Therefore, for these systems, a one-channel model is
often used as a good approximation, given by the grand canonical
Hamiltonian
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Fig. 1. Schematic diagrams for the fermionic self-energy X(K). The dotted and (red)
double lines represent the condensate and finite momentum pairs, respectively.
(For interpretation of the references to colour in this figure, the reader is referred to
the web version of this paper.)

where €, = i /2m is the free atom dispersion. The difference be-
tween Eq. (1) and its BCS counterpart is that BCS keeps only the
q = 0 term in the interactions. The inclusion of finite q terms allows
incoherent, finite momentum pairing. For clarity of presentation,
we will take a contact potential, U(k,K') = 1, and use a 4-momen-
tum notation, K= (K, iwn),Q = (q,i),> r =T> >,, and set
h = 1. Population imbalance can be described by u,7u, . However,
here we will only present the equations for the case of equal spin
mixture. Generalization to population imbalance can be found in
Ref. [33].

We assume that (i) the fermionic self energy 2 has a pairing ori-
gin, (ii) pairs can be either condensed with Q = 0 or fluctuating with
a finite momentum and (iii) condensed and noncondensed pairs do
not mix at the level of T-matrix approximation. Fig. 1 shows dia-
grammatically the contributions to the self-energy, where the dou-
ble (red) lines indicate finite momentum pairs and the dotted line
indicates the condensate. The subscripts “sc” and “pg” stand for
superfluid condensate and pseudogap contributions, respectively.

To tackle this problem, we use a Green’s function method. We
derive the equations of motion for one- and two-particle Green’s
functions G and G,, which will involve higher order, three particle
Green’s functions Gs:iG = [H,G| ~ G,G,,iG; = [H,G3] ~ G, G, Gs.
We then truncate the equations of motion at the level of G3, factor-
ize G; into a sum of products of G and G,, and treat G and G, on an
equal footing. For G,, we focus on the particle-particle channel,
neglecting the particle-hole channel which normally only provides
a chemical potential shift. We emphasize that it is the particle-par-
ticle channel that gives rise to superfluidity. After some lengthy but
straightforward derivation, we obtain the self energy:

2(K) = Zsc(K) 4 Zpg(K),

Zoe(K) = —A2Go(—K),

Zpe(K) = tpe(Q)Go(Q — K),
Q
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is the (pseudogap) T-matrix, and x(Q) = >"xGo(Q — K)G(K) is the
pair susceptibility. Here Gy is the bare Green’s function. A detailed
derivation of this result can be found in Ref. [34]. Note that the T-
matrix is effectively a renormalized pairing interaction. It shares ex-
actly the same pole structure as the two-particle Green’s function,
G,. Through a Taylor expansion of its denominator, one can extract
the pair dispersion:

thg (Q) = Z(iQ — Qq + Mpgir)- (6)

The superfluid instability is given by 1+ Uy(0) = 0 o [y
which is the BEC condition for pairs. Note that y(Q) involves a
mix of bare and full Green’s functions. We emphasize that this is
a natural consequence of the equation of motion technique since it in-
volves the operator 651. It is this GoG form of y that leads back to the
BCS-form of gap equation in the absence of finite momentum pairs.

We focus on the superfluid phase where t,,(Q) diverges at
Q = 0. Defining
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== Z tpe(Q), (7)

Q#0

we have
Zp(K) = [Z tpe(Q } —K) + 0% = —42,Go(—K) + 6. (8)

Neglecting the residue term 6%, 2, takes the same form as Z.. Thus
we have immediately the BCS form of total self energy,
3(K) = —4*Go(—K), with 4* = 4% + A2, This then leads to the BCS
form of gap equation,

~2f(E)

1+UZ oE, =0, 9)

where Ey = /(€ — it)? + 47 is the quasiparticle dispersion. Different

from the BCS mean-field theory, we emphasize that here A* contains
contributions from both condensed and noncondensed pairs so that it
in general does not vanish at T.. Note that the finite q pairs are dif-
ferent from the order parameter collective modes; the latter repre-
sent a coherent motion of the condensate. Here 42 and Aﬁg are
loosely proportional to the density of condensed and noncondensed
pairs, respectively.
Egs. (9) and (7), along with the number equation

n=2) G(K), (10)
K

form a closed set of equations for the homogeneous case, which
can be used to solve for u, T, and the gaps at T < T..T. is deter-
mined by setting 4. = 0. Typical behaviors of the gaps are shown
in Fig. 2a.

To address Fermi gases in a trap, we use the local density
approximation, by replacing pt — @ — Vigp(r). Then the number
equation becomes N = fd3r n(r). In Fig. 2b we show the BCS-
BEC crossover behavior of T, in a trap. Here 1/kra parametrizes
the interaction strength.

The RF response can be derived using the linear response the-
ory. The RF interaction is described by

Hy — e / dx Yy + he. (11)
and the response Kernel by

D(iQ) = ZGZ> K)G® (K +Q). (12)

We assume hyperfine level 3 was initially empty. In the ab-
sence of final state interactions, as in “°K, we obtain [35] the RF
current

I(k,v) = 71 Im D*(v + p— u3) =

Ak w)f (@) - (13)
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Fig. 2. Typical behavior of (a) the temperature dependence of the gaps in a
pseudogapped superfluid and of (b) T, as a function of 1/kra in a trap, where k is
the noninteracting Fermi momentum, and a is the s-wave scattering length.
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Fig. 3. Comparison of (a) density profile and (b) energy E/E; for a unitary °Li gas
between theory (curves) and experiment (symbols). Also shown in (b) is compar-
ison for the noninteracting energy. Here Er = kgTr is the noninteracting Fermi
energy.

In order to address A(k, w) = —2 Im G(k, @ + i0") properly, we
need to include the lifetime effects of finite momentum pairs and
add an incoherent term iZ, in (and only in) Z,,, reflecting the res-
idue term 62 which we drop in solving the set of equations, i.e.,

2
pg

Zpg(kv O)) = W+ €x —

TR i2o. (14)

While above T, the spectral function with a pseudogap consti-
tutes a double peak structure with suppressed spectral weight at
the Fermi level, below T, there is a zero at w = —(€x — ). As Ay
increases with decreasing T below T, the spectral peaks sharpen
rapidly. This is a phase coherence effect. The parameters y and
2o can be estimated from experimental RF spectra.

4. Comparison between theory and experiment

In Fig. 3, we compare between theory (curves) and experiment
(symbols) (a) the density profile [36] and (b) system energy [17]
for SLi in the unitary limit. Both experimental and theoretical den-
sity profiles are very smooth, in good agreement with each other.
Alternative theories predict either a kink at the edge of the super-
fluid core or nonmonotonic radial and temperature dependences.
The energy comparison also reveals a quantitative agreement.
The fact that the unitary and noninteracting curves merge at
T ~ 0.6Tr > T. manifests the presence of a pseudogap. It should
be noted that there is no fitting parameter in our theoretical
calculations.

Shown in Fig. 4 is a comparison of the spectral intensity map as
a function of k and single-particle energy w + p between
experiment [30] and theory [35] for a unitary “°K gas at a temper-
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Fig. 4. Comparison of spectral intensity map I(k, v)k*/(272) between experiment
(left) from Ref. [30] and theory (right). The white dashed curve is an experimentally
extracted quasiparticle dispersion, and the white solid line is obtained theoretically
following the same experimental data analysis procedure. Here the blue and red
colors correspond to zero and maximum intensities, respectively. (For interpreta-
tion of the references to colour in this figure, the reader is referred to the web
version of this paper.)
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ature slightly above T.. The white dashed curve is the experimen-
tally extracted quasiparticle dispersion, whereas the solid curve is
obtained theoretically following the experimental procedure. It is
evident that theoretical and experimental results are rather close
to each other. Indeed, as T decreases from above to below T, the
spectral intensity map evolves [35] from an upward dispersing
branch at high T to a bifurcation around T, and finally to a down-
ward dispersing branch at T <« T.. This result establishes the actual
single particle dispersions which contribute to the RF current,
revealing that the broad peak in previous momentum-integrated
RF spectra [13] indeed has a pairing origin. Furthermore, it also
shows that, despite the trap inhomogeneity, momentum resolved
RF spectroscopy can still provide a quantitative measure of the
spectral function and single particle dispersion. It also lends sup-
port for the present GoG scheme since alternative NSR-based theo-
ries do not [37] seem to generate the two-branch-like feature
observed in Ref. [30]. The downward dispersion around (and
above) T, provides direct evidence for the existence of a pseudogap
above T, at unitarity. Our theory serves as a basis for momentum-
resolved RF spectroscopy analysis.

In summary, we have presented a pairing fluctuation theory
where finite momentum pairing plays a progressively more impor-
tant role as the pairing strength increases, leading to a pseudogap
in the single particle excitation spectrum. This theory has been
successfully applied to multiple experiments in atomic Fermi
gases.
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