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Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical
lattices. I. Balanced case
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The superfluidity and pairing phenomena in ultracold atomic Fermi gases have been of great interest in
recent years, with multiple tunable parameters. Here we study the BCS-BEC crossover behavior of balanced
two-component Fermi gases in a one-dimensional optical lattice, which is distinct from the simple three-
dimensional (3D) continuum and a fully 3D lattice often found in a condensed matter system. We use a pairing
fluctuation theory which includes self-consistent feedback effects at finite temperatures and find widespread
pseudogap phenomena beyond the BCS regime. As a consequence of the lattice periodicity, the superfluid
transition temperature Tc decreases with pairing strength in the BEC regime, where it approaches asymptotically
Tc = πan/2m, with a being the s-wave scattering length, and n (m) the fermion density (mass). In addition,
the quasi-two dimensionality leads to fast-growing (absolute value of the) fermionic chemical potential μ and
pairing gap �, which depends exponentially on the ratio d/a. Importantly, Tc at unitarity increases with the lattice
constant d and hopping integral t . The effect of the van Hove singularity on Tc is identified. The superfluid density
exhibits T 3/2 power laws at low T , away from the extreme BCS limit. These predictions can be tested in future
experiments.
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I. INTRODUCTION

Ultracold atomic Fermi gases loaded in optical lattices
have attracted enormous attention in condensed matter and
atomic, molecular, and optical (AMO) physics [1–3]. With
multiple easily tunable parameters, they become more and
more important as a quantum simulator nowadays [4–6].
Fermions in pure optical lattices are often described by a
Hubbard model [5–7]. Among them, the one-dimensional
(1D) case can be solved exactly via the Bethe ansatz [8].
However, while for a 1D Hubbard model each site has at most
two fermions, the 1D optical lattice is actually rather different;
each site in the lattice direction corresponds to a 2D plane in
the transverse dimensions and thus can accommodate many
fermions. Therefore, a 1D optical lattice is a quasi-2D or 3D
system [9,10], depending on the lattice parameters. Moreover,
the genuine 1D Hubbard model does not possess a long-range
order; hence, it cannot support a superfluid phase. In contrast,
fermions trapped in 1D optical lattices can not only form a
superfluid [11,12], but also exhibit interesting pseudogap phe-
nomena in the normal state [13]. A condensed matter analog
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of the 1D optical lattice is the superlattice of semiconductor
heterostructures such as the AlGaAs/GaAs/InGaAs structure,
except now we are considering pairing phenomena under a
tunable attractive interaction.

Including the Hubbard model, there has been extensive lit-
erature on 3D (and 2D or 1D) lattices in the field of condensed
matter [14,15]. Most of these existing Hubbard-model-based
works address pure lattice cases, since the kinetic energy
term often contains only the lattice site hopping [7,16–20].
The “1D optical lattice” in many theoretical works in the
literature refers to a genuine 1D lattice in the traditional
sense [21]. While both types of lattices can now be realized
experimentally, to avoid possible confusions, we emphasize
that, by 1D optical lattice, here we mean a periodic stack of 2D
planes, and therefore it is a mix of continuum in the transverse
2D xy planes and lattice discreteness in the longitudinal z
direction.

Such 1D optical lattices can be readily realized experimen-
tally. However, theoretical studies on these systems have been
scarce. Devreese et al. studied possible Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) states [22,23] in such a 1D optical lattice
[24]. Like many others in the literature [7], when studying
population imbalance effects, they use the fermion chemical
potential μ and the chemical potential difference h as control
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variables. While this choice makes numerical calculations
simpler, it often restricts the study to the (weak coupling) BCS
and (intermediate coupling) crossover regimes. Indeed, the
superfluid and pairing physics in a 1D optical lattice has not
been adequately studied thus far. Given the various available
tuning parameters, including the pairing interaction strength,
lattice constant and depth, fermion density, population imbal-
ance, as well as mass imbalance in the case of a Fermi-Fermi
mixture, there are certainly many facets of the phase diagram
and associated very rich physics. In particular, one would like
to know if there are exotic new phases emerging, and how to
properly characterize such a 1D optical lattice.

In this paper, we study two-component fermions loaded
in 1D optical lattices using a pairing fluctuation theory,
which has been applied successfully to various BCS–Bose-
Einstein condensation (BEC) crossover phenomena [4,25–
27], including in quasi-two-dimensional (quasi-2D) and 3D
optical lattices [15,17,28]. These systems can be quasi-2D
or 3D, depending on the lattice constant d and hopping
integral t [29], as well as the pairing strength. Due to the
complexity induced by multiple tunable parameters, in this
paper (Part I), we restrict ourselves to population (and mass)
balanced cases only. Here we consider the combined effects of
lattice constant, hopping integral, and interaction strength. We
find that the mixing between continuum and discrete lattice
dimensions leads to exponential behavior of the fermionic
chemical potential μ and the pairing gap � as a function of
d/a in the BEC regime (1/kFa � 1), where kF is the Fermi
momentum and a is the two-body s-wave scattering length,
in contrast to the power laws in the pure 3D continuum or
3D lattice cases. We shall present detailed phase diagrams as
the system undergoes the BCS-BEC crossover with different
lattice constants and hopping integrals, and mainly focus on
the finite temperature effects, especially the pseudogap phe-
nomena [30,31]. These phase diagrams reveal the following:
(i) The pseudogap phenomena widely exist; (ii) at unitarity,
Tc increases with the increase of lattice constant or hopping
integral; (iii) as a consequence of the lattice periodicity, Tc

decreases with pairing strength in the BEC regime and ap-
proaches asymptotically Tc = πan/2m, where n is the atom
number density and m is the atomic mass; (iv) in addition,
the quasi-two dimensionality leads to fast-growing (absolute
value of the) fermionic chemical potential μ and pairing gap
�, which depends exponentially on the ratio d/a; (v) due to
the contribution of finite momentum pairs, the temperature
dependence of the superfluid density ns/m at low T evolves
from exponential in the extreme BCS limit (1/kFa � −1) to
a simple T 3/2 power law in the BEC regime (μ < 0), for both
the in-plane and the out-of-plane (lattice) components.

II. THEORETICAL FORMALISM

A. General theory

While the in-plane (xy directions) motion of the fermions
has a free parabolic dispersion, we use a one-band nearest-
neighbor tight-binding model for the out-of-plane lattice
dimension (z direction), with the single-particle dispersion
given by ξkσ = k2

‖/2m + 2t[1 − cos(kzd )] − μσ ≡ εk − μσ .
Here k‖ ≡ (kx, ky) and t is the hopping integral between

neighboring lattice sites, d the optical lattice constant, and
μσ the fermionic chemical potentials for two (pseudo)spins
σ =↑,↓. In the absence of imbalance, we have μσ = μ and
ξkσ = ξk, and we shall drop the spin indices. We restrict kz to
the first Brillouin zone (BZ) [−π/d, π/d] due to the lattice
periodicity and set the volume V = 1, h̄ = kB = 1. The one-
band approximation is justified when the band gap is tuned
large. The fundamental formalism of the pairing fluctuation
theory for the present work is the same as that given in
Refs. [4,25], except that we need to rederive the equations
with the continuum-lattice mixed dispersion. To keep this
paper self-contained, here we recapitulate the derivation and
main equations.

The (inverse) bare Green’s function is given by G−1
0 (K ) =

iωn − ξk, with the self-energy �(K ) = ∑
Q t (Q)G0(Q − K ).

Following Ref. [25], we use a four-vector notation,
∑

K ≡
T

∑
n

∑
k,

∑
Q ≡ T

∑
l

∑
q, and K ≡ (iωn, k), Q ≡ (i	l , q),

where ωn = (2n + 1)πT , 	l = 2lπT are odd and even Mat-
subara frequencies, respectively [32]. At finite T , the T -
matrix t (Q) contains a contribution from condensed pairs
tsc(Q) and noncondensed pairs tpg(Q), with t (Q) = tsc(Q) +
tpg(Q), where tsc(Q) = −(�2

sc/T )δ(Q) vanishes for T > Tc,
and tpg(Q) = U/[1 + Uχ (Q)], with the short range s-wave
pairing interaction pairing strength U < 0 and the pair sus-
ceptibility χ (Q) = ∑

K G0(Q − K )G(K ). Here G(K ) is the
full Green’s function, with the self-energy given by �(K ) =
�sc(K ) + �pg(K ), where �sc(K ) = ∑

Q tsc(Q)G0(Q − K ) =
−�2

scG0(−K ), and �pg(K ) = ∑
Q tpg(Q)G0(Q − K ). At T �

Tc, the generalized Thouless criterion [33], or equiva-
lently BEC condition for pairs, requires t−1

pg (Q = 0) =
U −1 + χ (0) = 0. This implies that tpg(Q) is dominated by
the vicinity of Q = 0, so that �pg(K ) may be approx-
imated by �pg(K ) ≈ ∑

Q tpg(Q)G0(−K ) ≡ −�2
pgG0(−K ),

where �2
pg ≡ −∑

Q tpg(Q) and we have discarded the inco-
herent background part of the self energy. (The parameter
�pg is referred to as pseudogap, as is widely found in cuprate
superconductors [34].) Then the total self-energy �(K ) takes
the simple BCS-like form, �(K ) = −�2G0(−K ), where
�2 = �2

sc + �2
pg. Finally, the Dyson’s equation G−1(K ) =

G−1
0 (K ) − �(K ) leads immediately to the full Green’s func-

tion

G(K ) = u2
k

iωn − Ek
+ v2

k

iωn + Ek
, (1)

where u2
k = (1 + ξk/Ek )/2, v2

k = (1 − ξk/Ek )/2, and Ek =√
ξ 2

k + �2. From the number constraint n = 2
∑

K G(K ), we
can get the fermion number density

n = 2
∑

k

[
v2

k + f (Ek )
ξk

Ek

]
, (2)

where f (x) = 1/(ex/T + 1) is the Fermi distribution function.
Above Tc, the Thouless criterion should be modified by

U −1 + χ (0) = a0μp, where μp is the effective pair chemical
potential and a0 is the coefficient of the linear 	 term in the
Taylor expansion of the inverse T -matrix (see below) [4]. This
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leads to the extended gap equation

m

4πa
=

∑
k

[
1

2εk
− 1 − 2 f (Ek )

2Ek

]
+ a0μp, (3)

with μp = 0 at T � Tc. Here, the coupling strength U has
been replaced by the s-wave scattering length a via U −1 =
m/4πa − ∑

k 1/2εk. Note that this scattering length is dif-
ferent from that defined in simple 3D free space, since kz is
now restricted to within the first BZ. We caution that it does
not necessarily yield the experimentally measured scattering
length. One can define an effective scattering length via aeff =
a/

√
2mtd , which is more comparable to the physical scatter-

ing length. For details, see Appendices A and B. It should also
be noted that we have implicitly assumed a negative U model
for the lattice direction and the on-site U is same as the in-
plane pairing strength U . In real space, the pairing interaction
is given by U (r, r′) = Uδ(x − x′)δ(y − y′)δi j , where i, j is
the lattice site index in the ẑ direction.

The inverse T -matrix expansion [4], after analytic contin-
uation (i	l → 	 + i0+), is given by

t−1
pg (	, q) ≈ a1	

2 + a0(	 − 	q + μp), (4)

with 	q = B‖q2
‖ + 2tB[1 − cos(qzd )]. Here B‖ = 1/2M‖,

with M‖ being the effective pair mass in the xy plane, and
tB is the effective hopping integral for noncondensed pairs.
The a1 term serves as a small quantitative correction; except
in the weak coupling BCS regime, we have a1Tc � a0. The
coefficients a1, a0, B‖ and tB can be derived from the pair sus-
ceptibility via straightforward Taylor expansion, as given in
Appendix C. Consequently, we have the pseudogap equation

a0�
2
pg =

∑
q

b(	̃q)√
1 + 4

a1

a0
(	q − μp)

, (5)

where b(x) is the Bose distribution function and 	̃q =
{
√

a2
0[1 + 4a1(	q − μp)/a0] − a0}/2a1 is the pair dispersion.

When a1/a0 is small, we have 	̃q = 	q − μp. Then a0�
2
pg

yields the density of finite momentum pairs. Including the
condensate, the total pair density is given by np = a0�

2.
Equations (2)–(5) form a closed set of self-consistent equa-

tions, which can be used to solve for (μ, T ∗) with � = 0, for
(μ, �pg, Tc) with �sc = 0, and for (μ, �, �pg) at T < Tc.
Here the pair formation temperature T ∗ is approximated by
the mean-field Tc, and the order parameter �sc can be derived
from �2

sc = �2 − �2
pg below Tc.

B. Asymptotic behavior in the deep BEC regime

In the deep BEC regime, μ → −∞. The integrals in the
equations can be performed analytically using Taylor expan-
sions. The fermion number equations reduce to

n = − m�2

4πμd
or � =

√
4π |μ|dn

m
. (6)

With the help of Eq. (6), the chemical potential μ can be
uniquely determined by the gap equations. Then μ and the
gap � are given by

μ = −ted/a + 2t + 2πdn

m
, (7)

� = 2

√
πtdn

m
ed/2a

(
1 − πdn

mt
e−d/a

)
. (8)

Note that the exponential behavior of μ and � as a function of
1/kFa is an important feature of the quasi-two dimensionality
of the continuum-lattice mixed system. This should be con-
trasted with the corresponding behaviors in the 3D continuum
and 3D lattices, where power law dependencies are found. In
particular, a 3D continuum has the scaling relation � ∼ |μ|1/4

in the BEC regime and thus �2/μ decreases with 1/kFa. On
the other hand for a 3D lattice, due to the finite volume of
the unit cell, both |μ| and � grow linearly with |U |, with a
ratio of �/|μ| = √

2n − n2/(1 − n) for n < 1 per unit cell.
In contrast, for the present continuum-lattice mixed system,
the ratio �2/μ approaches a constant, independent of pairing
strength. For this reason, the (2nd and 3rd) correction terms
in Eq. (7) are also constants, independent of the interaction
strength. The correction term in Eq. (8) quickly drops as |U |
increases.

To solve for Tc, we first derive the pair dispersion, and find

B‖ = 1

4m
, (9)

tB = t2

2|μ| ≈ t

2
e−d/a. (10)

While the in-plane pair mass in the BEC regime is given
by 2m, as expected, the out-of-plane pair mass becomes
exponentially heavy, as a function of increasing d/a. This can
be easily understood since on a lattice pairs hop mainly via
“virtual ionization” [35] (i.e., virtual pair unbinding) and thus
its mobility is inversely proportional to the pair binding energy
2|μ|. The pseudogap equation now becomes the equation for
pair density np,

a0�
2 ≡ np = n

2
, (11)

and the coefficient a1 is given by

a1�
2 = − n

8μ
, (12)

which becomes exponentially small in the BEC limit. Now
one readily derive the solution for Tc,

Tc = 2πB‖dn

d/a − ln(t/Tc)
≈ πan

2m
= kFa

3π
TF, (13)

where use has been made of the definition of kF = (3π2n)1/3

and EF = TF = k2
F/2m (as in 3D continuum) in the last step,

and we have dropped the small logarithmic correction ln(t/Tc)
in the denominator. An important and interesting aspect of this
result is that the BEC asymptote is essentially independent
of d , and the effect of t only enters through a logarithmic
correction, which can be safely neglected in the asymptote as
well.
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Equation (10) manifests a 3D to 2D crossover; as t de-
creases or d increases, the out-of-plane pair hopping integral
tB decreases rapidly while the in-plane effective pair mass
remains unaffected. At the same time, the underlying fermions
also experience a 3D to 2D crossover as t decreases [29].
In the quasi-2D regime, the kinetic energy of both fermions
and pairs come mainly from in-plane motion. In the extreme
quasi-2D limit, where t is tiny, the logarithmic correction
ln(t/Tc) in Eq. (13) will no longer be small. As a result, Tc

vanishes logarithmically as a function of t . Indeed, the 2D
limit is realized when the connections between different 2D
layers become negligible, and this makes the lattice equivalent
to a single tightly confined 2D plane, which has been actively
studied both experimentally [13,36] and theoretically [37]. In
this case, the Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion [38] may come into play [39]. Note, however, that the
logarithmic dependence of Tc on t requires an exponentially
small t to access the exact 2D limit.

In the extreme quasi-2D cases, one may define a 2D
scattering length a2D via the two-body binding energy εB as
in exact 2D. To keep Eq. (7) valid, for given a2D, 1/kFa has to
diverge logarithmically as a function of t , following Eq. (A4).
See Appendix A for more details.

C. Superfluid density

Given the solution of the self-consistent equations, one can
easily investigate the transport behavior of the system. As an
example, in this subsection, we shall present calculations for
superfluid “density” ns/m, which is important quantity in the
superfluid phase. In superconductors, it is often measured via
the London penetration depth λL, especially at low T , with
the relation ns/m ∝ λ−2

L . The temperature dependence at low
T often serves as a strong indicator for the pairing symmetry
of a superconductor, as it depends strongly on the pairing
symmetry. BCS mean-field calculations show that it exhibits
exponential T dependence for an s-wave superconductor,
and linear T dependence for a nodal d-wave superconductor
[25,34,40–42].

The expression for superfluid density can be derived fol-
lowing Refs. [25,43], using the linear response theory. More
technical details can be found in Ref. [44]. For the present
charge-neutral atomic gases, we only need to assume a ficti-
tious vector potential, which can actually be realized experi-
mentally via synthetic gauge fields.

Without imbalance, the superfluid density is given by

(ns

m

)
i
= 2

∑
k

�2
sc

E2
k

[
1 − 2 f (Ek )

2Ek
+ f ′(Ek )

](
∂ξk

∂ki

)2

, (14)

where i = x, y, z and f ′(x) = − f (x) f (−x)/T is the directive
of the Fermi distribution function.

Following Ref. [44], it can be shown that for the in-plane
motion, (ns/m)‖ = (ns/m)x = (ns/m)y = n/m at T = 0, since
∂2ξk/∂k2

i = 1/m = const for i = x, y. In contrast, in the lat-
tice direction, the inverse band mass (1/m)z = ∂2ξk/∂k2

z =
2td2 cos(kzd ) is kz dependent and scaled by the factor td2. As
a consequence, we expect (ns/m)z ∝ t2d2 and becomes small
for realistic lattices, based on Eq. (14).

-5 0 5 10
1/kFa

0

0.1

0.2

T/
T F

Tc
T*

Pseudogap

Superfluid

Normal

t/EF = 0.05
kFd = 2

FIG. 1. Typical phase diagram in the T – 1/kFa plane, calculated
for t/EF = 0.05 and kFd = 2.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Effect of lattice-continuum mixing on BCS–BEC crossover

In this subsection, we first investigate the effect of lattice-
continuum mixing on the behavior of Tc and phase diagram
throughout the BCS–BEC crossover regimes.

Shown in Fig. 1 is a typical phase diagram of a two-
component balanced Fermi gas in a 1D optical lattice. Here
we take realistic values for t and d , with t/EF = 0.05 and
kFd = 2. Note that in the zero lattice depth limit, the fermion
energy in the lattice dimension should reduce to the simple
parabolic dispersion, with mass m. Therefore, we set td2 <

1/2m as a constraint on the choice of the values of t and
d . Here we have 2mtd2 = 0.2. The (yellow) shaded area is
the superfluid phase, whereas the (blue) dashed curve is the
mean-field solution of Tc. We take this as an estimate of the
pair formation temperature, T ∗. Between the T ∗ and Tc curves,
there exists the pseudogap phase, where incoherent pairs exist
but without phase coherence or Bose condensation. The Tc

curve reaches a maximum in the vicinity of unitarity, where
1/kFa = 0. In the BEC regime, Tc decreases with increasing
pairing strength. Note that the existence of the pseudogap
phase is an inevitable feature of the BCS-BEC crossover.

This phase diagram looks qualitatively similar to that in a
3D or quasi-2D pure lattice [15,28]. However, we note that
it in fact exhibits features of both pure 3D continuum and
pure lattice cases. On the one hand, there is a minimum in
Tc around where the fermionic chemical potential μ changes
sign, a feature of 3D continuum [15,45]. On the other hand,
the decrease of Tc with increasing 1/kFa in the BEC regime is
a feature of pair hopping via virtual pair unbinding-rebinding
processes [15,35] in a lattice. The BEC regime is not acces-
sible at high densities in a 3D or quasi-2D pure lattice. In a
typical 3D lattice, the minimum disappears, leaving only a
kink as a residue of the minimum [28]. In a quasi-2D lattice,
such a minimum may exist only in the low density regime,
where the inter-particle distance becomes much larger than the
lattice constant. Indeed, the present system with an in-plane
continuum space should be comparable to the low density
limit when compared to the quasi-2D lattice case.
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FIG. 2. Comparison between fully numerical and analytical so-
lutions in the BEC regime for (a) Tc and (b) corresponding μ and � at
Tc, as a function of 1/kFa. Shown in (a) are log-log plots of Tc (solid
lines) for t/EF = 0.2 and varying kFd from 0.2 to 2, while the dashed
line represents the analytical solution, Eq. (13). Plotted in (b) are −μ

and � in a semilog scale for t/EF = 0.05 and kFd = 2, where the
analytical solutions (dashed lines) are given by Eqs. (7) and (8).

There are further distinctions between the present lattice-
continuum mix and the pure systems. In Fig. 2, we show
the comparison between the fully numerical and analytical
solutions of (a) Tc and (b) μ as a function of 1/kFa in the
BEC regime. Shown in Fig. 2(a) are the Tc curves in log-log
scales for different values of d , while keeping t fixed at
t = 0.2EF. Also shown is the analytically solution, Eq. (13),
in the BEC regime (magenta dashed line). As is evident, all Tc

curves approach this (t, d )-independent analytical solution in
the deep BEC regime. The larger d case converges faster.

In Fig. 2(b), we present a semilog plot of −μ and � as a
function of 1/kFa for t = 0.05EF and kFd = 2, and compare
the fully numerical solutions (solid lines) with the analytic
expressions (dashed lines) given by Eqs. (7) and (8). As can
be readily seen for the present case, the analytical expressions
become a very good approximation for the fully numerical
solutions for 1/kFa > 3.

From Fig. 2, we demonstrate that Tc scales proportionally
with kFa = (1/kFa)−1 in the BEC regime, following Eq. (13).
This is different from its counterpart relation, Tc ∼ 1/U , in a
pure 3D lattice [15,35]. While the general trend is the same,
however, one does not have 1/kFa ∝ U in the strong coupling
limit.

The parameters t and d are the decisive factors for the
shape of the Fermi surface. This can be seen from that of
the lattice component in Fig. 1 of Ref. [29]. When t is small,
the first BZ of the lattice dimension will be fully occupied.

In this case, a small d means a large phase space ±π/d
in the lattice direction, and therefore, will bring down the
Fermi level as more particles now occupy the small k‖ but
large |kz| states. On the contrary, a large d will compress the
phase space region between ±π/d , and thus will push up
the (in-plane) Fermi level. This can be understood from the
real space perspective as well. As d increases, the spacing
between neighboring planes increases. Therefore, the area
density within each plane has to increase accordingly to keep
the overall average 3D density fixed. In this way, the Fermi
level will be pushed up to μ0 = √

2πn2D, where n2D is the
2D fermion number density per plane. However, for a larger
t , it may be possible that the first BZ in the z direction is
not fully occupied. The Fermi surface in the z direction will
allow a larger dispersion when t increases. Depending on the
size of (t, d ), the Fermi surface may possess a shape of an
ellipsoid, a disk, a cylinder, or something in between. Except
for the ellipsoid, all other types of Fermi surfaces are open.
A van Hove singularity will appear at the Fermi level at the
topological transition point between open and closed Fermi
surfaces.

Now we study the effect of t, d on the behavior of Tc.
First, we focus on the Tc behavior at unitarity as a function
of t and d , since the unitary limit is a special point where the
scattering length diverges, and thus the system may exhibit
some universal behaviors.

Shown in Fig. 3 are log-log plots of Tc as a function of (a)
d and (b) t , respectively. Their linear plots are given in the
corresponding insets. Here we treat t and d as independent
parameters, so that they may enter the experimentally inac-
cessible regime. Panel (a) covers a broad range of the (t, d )
parameter space, from large t = 0.5EF to small t = 0.05EF,
and from tiny kFd = 0.0001 to large kFd = 10. Surprisingly,
Tc exhibits a very good power law across such a big parameter
space, with a scaling Tc ∝ dα , where α is close to 0.655 for
small d and 0.59 for large d . Similarly, panel (b) also covers
from kFd = 1 to 8, and from t/EF = 0.0001 to 1.0, and Tc

scales as Tc ∼ tβ , where β = 0.445 for small t and 0.41 for
large t . Overall, at unitarity, we have

Tc ∼ dαtβ, α = 0.59 ∼ 0.655, β = 0.41 ∼ 0.445. (15)

Next, we show in Fig. 4 the Tc curves throughout the entire
BCS-BEC crossover as a function of 1/kFa for different t and
d . Shown in panels (a) and (b) is Tc for fixed t/EF = 0.2
and 0.01, respectively, but with different values of d . Here
we keep the product td2 < 1/2m. As we can see, for fixed
t , the maximum Tc, T max

c , increases with increasing d . At
the same time, the entire Tc curve is compressed horizontally
toward unitarity, as d increases. This is in accord with the
exponential behavior of μ ∼ −ed/a in the BEC regime. We
plot T max

c versus d in the corresponding insets, which exhibits
a quasilinear behavior. The comparison between Figs. 4(a)
and 4(b) for the same d reveals that Tc increases with t . Indeed,
Tc will be suppressed logarithmically to zero as t approaches
0 [15]. We also note that the peak of maximum Tc moves away
from unitarity toward the BEC side as d decreases. This also
has to do with the exponential behavior of μ ∼ −ed/a.

In Fig. 4(c), we present the Tc curves for fixed 2mtd2 = 0.2
while changing kFd from 0.5 to 10. Since t decreases as d
increases, it is not surprising to see nonmonotonic behavior of
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FIG. 3. Behavior of Tc at unitarity as a function of (a) kFd with
t/EF = 0.05 (black solid lines) and 0.5 (red lines) and of (b) t/EF

with kFd = 1 (black), 2 (red), 4 (green), and 8 (blue solid lines),
respectively, as labeled. Also shown in (a) are simple power laws,
which fit the small (blue dashed) and large (green dotted) d ranges
well, respectively. Similarly, the cyan dashed and magenta dotted
lines in (b) are simple power laws which fit the Tc curves well in
the large and small t regimes, respectively.

T max
c versus d , as shown in the inset. Nonetheless, we still see

an overall increase of T max
c with d while keeping td2 fixed.

This increase is not as dramatic as the fixed t cases, reflecting
the competing effects between increasing d and decreasing t .

It should be pointed out that the increase of Tc in Fig. 4
will disappear if we use the respective Fermi level μ0 in
the noninteracting limit as the energy unit, as μ0 increases
with t and d as well [46]. Nevertheless, this increase does
make sense when one compares Tc with the 3D homogeneous
system of the same fermion density.

With multiple tunable parameters, the complete superfluid
phase diagram is very complex, occupying a hyper volume
in the high-dimensional phase space. We can show only
hypersurfaces corresponding certain fixed parameters. As an
example, presented in Fig. 5 are Tc contours in the kFd –
1/kFa plane with fixed t/EF = 0.1. The range of d is restricted
roughly within 2mtd2 < 1. From this figure, one can see that
the highest Tc � 0.15 is achieved at large d near unitarity. The
higher concentration of curves at large d indicates that the Tc

curve is highly compressed toward unitarity as d increases, as
shown in Fig. 4. On the contrary, when d becomes small (�
1), the Tc curve as a function of 1/kFa will be suppressed down
and expanded along the 1/kFa axis. One can also consider
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FIG. 4. Tc curves as a function of 1/kFa for different values of
kFd at fixed (a) t/EF = 0.2, (b) 0.01, and (c) 2mtd2 = 0.2. The
maximum Tc near unitarity, T max

c , as a function of d , is plotted in
the respective inset.

a vertical cut at fixed 1/kFa in Fig. 5. A cut at 1/kFa = 0
will yield a curve as in the inset of Figs. 4(a) and 4(b). The
peak/dip structure of the Tc contours at positive 1/kFa for
kFd = 0.03 ∼ 0.07 in Fig. 5 is associated with the dip near
μ = 0 in the Tc versus 1/kFa curves, as shown in Fig. 4.
Another feature that is worth mentioning is the small kink
in the contours on the BCS side, especially for the lowest
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FIG. 5. Contour plot of Tc/TF in the kFd – 1/kFa plane for fixed
t/EF = 0.1. The corresponding Tc values are labeled near the curves.
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FIG. 6. Behavior of the gaps and −μp, as labeled, as a function of T/Tc, for (a) 1/kFa = −1, (b) 0, (c) +1, with Tc/TF = 0.07060, 0.13135,
and 0.05156, for the BCS, unitary, and BEC regimes, respectively. Also plotted are (d) 2np/n for 1/kFa = −1, (e) B‖ and Bz as well as 10Bz for
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F/E 2
F and k3

F/E 3
F , respectively.

Tc/TF = 0.0001. As can be seen, for all contours, this kink
happens slightly below kFd = 1. For t/EF = 0.1, the topology
of the Fermi surface changes from open to closed at kFd ≈
0.945. The van Hove singularity associated with this topo-
logical change leads to logarithmic divergence of the density
of states at the Fermi level, and thus significantly enhances
Tc, so that the Tc contour will deform toward weaker pairing
strength, as indeed shown by the low Tc contours in Fig. 5.
This singularity effect is washed out gradually by thermal
broadening as T increases. It becomes barely noticeable for
Tc/TF � 0.01. Note that the van Hove singularity effect on Tc

cannot readily be seen in other types of plot.

B. Gaps in the superfluid phase

In Fig. 6, we present, as an example, the behavior of the
order parameter �sc (red), the pseudogap �pg (black), and the
total gap � (green curves) and a few relevant quantities as a
function of temperature in the superfluid phase. Also plotted is
the solution slightly above Tc, especially for the pair chemical
potential μp. Shown in the figure is for the case of kFd = 2,
t/EF = 0.1 for 1/kFa = −1, 0, and +1, for the BCS, unitary,
and BEC regimes, respectively. There exists a pseudogap in
all cases throughout the BCS–BEC crossover, as in the regular
3D continuum case [43]. The order parameter �sc sets in at Tc

with decreasing T , while the pseudogap �pg starts to decrease.
The total gap increases with decreasing T in the BCS regime,
where �pg is small, but stays roughly constant for the unitary
and BEC cases. Above Tc, the pair chemical potential μp

starts to decrease from 0 with increasing T . As seen in the
figure, −μp increases much faster in the BCS than in the BEC
regimes as a function of T above Tc. This makes our simplified

BCS form of the pseudogap self energy become quickly less
accurate above Tc in the BCS regime. The curves stop roughly
where the approximation becomes inaccurate.

Figure 6(a) suggests that −μp increases linearly with
(T − Tc). Indeed, as one often finds in the weak fluctuation
treatment in the framework of the mean-field BCS theory,
μp ∝ −(T − Tc) above Tc in the BCS limit [47,48]. As the
pairing becomes stronger, μp becomes quadratic in (T − Tc),
as manifested in Fig. 6(b). For the BEC case in Fig. 6(c),
−μp stays small up to very high T � Tc. In this case,
the gaps are large, and essentially all atoms form pairs,
so that the system exhibits behaviors that are close to an
ideal Bose gas.

We show in Fig. 6(d) the pair fraction for the BCS case,
where the pairing is weak and the pair fraction is small. The
temperature dependence of np follows roughly that of �2

via Eq. (5), as a0 is less sensitive to T . The pair density
np increases with 1/kFa and becomes n/2 for 1/kFa = +1,
which has μ/EF ≈ −0.12 < 0 for all T � Tc. For B‖ and Bz,
we show for the unitary case in Fig. 6(e). Their temperature
dependencies are stronger in the BCS regime and weaker in
the BEC regime. In addition, B‖ approaches 1/4m in the BEC
limit. At the same time, Bz becomes exponentially smaller
in the BEC regime, as given by Eq. (10). Finally, the T
dependencies of a0 and a1 are shown in Fig. 6(f) for the
BEC case. Both a0 and a1 become essentially T independent,
as does the total gap. It is also evident that a1Tc � a0 for
this case. The a1 term in the inverse T -matrix expansion is
quantitatively important only in the BCS regime, where we
find a1Tc/a0 ∼ 10 for the case in Fig. 6(a). More detailed
discussions of the influence of the a1 term can be found in
Ref. [44] for the somewhat similar 3D continuum case.
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FIG. 7. Behavior of the in-plane (black curves) and lattice components (red curves) of the superfluid densities, as labeled, as a function of
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(green curves) for clarity. Plotted in (d-f) are the corresponding normal fluid fraction 1 − (ns/n)‖ (black solid curves) in log-log scales, and
simple T 3/2 power laws (red dashed lines) for comparison. The zero T value of (ns/m)‖ is given by 2/3π 2 in our convention of units.

C. Superfluid density

Now we present the result for the superfluid density cal-
culations. Shown in Fig. 7 are the in-plane and lattice com-
ponents of the superfluid density, from top to bottom, for the
BCS, unitary and BEC cases (of Fig. 6), respectively. The left
column presents (ns/m)‖ (black) and (ns/m)z (red), as well
as 10(ns/m)z (green curves). The right column presents the
in-plane normal fluid fraction, 1 − (ns/n)‖, as a function of
T/Tc in log-log scales (black solid lines). For comparison,
we plot simple power laws of (T/Tc)3/2 (red dashed lines),
with different coefficients to fit roughly the corresponding
solid lines. Here the message is clear. In the BCS case, the
linear plot in Fig. 7(a) looks very much like an exponential T
dependence at low T . Only a log-log plot in Fig. 7(d) reveals
that the leading dominant term is actually a T 3/2 power law.
The small coefficient, 0.04, in front of (T/Tc)3/2, is consistent
with the flatness of (ns/m)‖ at low T in Fig. 7(a). Never-
theless, the power-law contributions from finite momentum
pairs always dominate the exponentially activated term from
Bogoliubov quasiparticles. As the pairing strength, or 1/kFa,
increases, the magnitude of the power law term becomes
larger. For the unitary case, even in the linear plot in Fig. 7(b),
(ns/m)‖ deviates strongly from exponential behavior. The
coefficient increases to 0.3, as shown in Fig. 7(e). For the
BEC case in Fig. 7(c), the quasiparticle contributions become
negligible, and (ns/m)‖ becomes almost purely a (T/Tc)3/2

power law. As one can see in Fig. 7(f), the dash line over-
lays with the solid curve essentially for the entire range of

T � Tc. It should be noted, however, that the coefficient is
now 1.25, larger than 1. This reflects the fact that the system
is quasi-2D rather than 3D; a pure (T/Tc)3/2 is only for a
pure 3D case. Indeed, as one can see from Fig. 7(c), (ns/m)‖
becomes more of a straight line for the upper half of T/Tc,
to be compatible with the larger-than-unity coefficient 1.25.
Theoretically, as T becomes higher, more high in-plane mo-
mentum q‖ pairs will be excited, which can feel the quasi-two
dimensionality.

The lattice component of the superfluid density, (ns/m)z,
(red curves) in Figs. 7(a)–7(c) is substantially smaller than
(ns/m)‖, as discussed earlier. Its temperature dependence is
close to that of (ns/m)‖, as can be seen more clearly from
the (green) 10× magnified curves. This is because both
are mainly governed by the prefactor �2

sc = �2 − �2
pg in

Eq. (14), and the second term, �2
pg ∝ T 3/2, yields the T 3/2

power law for both components of (ns/m). For the present
s-wave pairing, the rest of Eq. (14) yields an exponential T
dependence for the normal fluid, e−�/T , and thus becomes
negligible at low T . It is also evident that (ns/m)z decreases
as the pairing becomes stronger toward BEC. This can be
understood since v2

k becomes more widespread in momentum
space as 1/kFa increases, and thus pairs feel more strongly the
effect of lattice momentum cutoff in the z direction, so that
the system becomes effectively more 2D. At the same time
the mobility of the pairs is controlled by tB, which decreases
rapidly with 1/kFa. This determines the magnitude of (ns/m)z

in the BEC regime.
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IV. CONCLUSIONS

In summary, we have studied the ultracold atomic Fermi
gases in a 1D optical lattice with a pairing fluctuation the-
ory, as they undergo a BCS-BEC crossover. We find that
Tc decreases with 1/kFa in the BEC regime and approaches
asymptotically Tc/TF = πan/2m, which is independent of the
lattice parameters t and d . Both |μ| and the gap � grow
exponentially as ed/a and ed/2a, respectively, in the BEC
regime so that the pair hopping integral tB decreases as e−d/a.
Moreover, the (maximum) Tc near unitarity increases with
both t and d , with fractional power-law exponents. On the
BCS side, the effect of van Hove singularity on Tc has been
identified in the Tc contours.

We find generally a pseudogap above and below Tc, away
from the extreme BCS limit. While the total gap � is a smooth
function across Tc, the order parameter sets in at Tc, and the
pseudogap starts to decrease as T decreases below Tc. Our
calculated behavior of the pair chemical potential μp above Tc

are also in good agreement with existing literature. At low
T , �2

pg ∼ T 3/2. This leads to T 3/2 power laws for the low
T dependence of the superfluid density, despite that it looks
visually like exponential in the BCS regime.

While there is not yet a generic simple formula to relate
the parameter a with its 3D continuum counterpart a3D, ex-
perimentally one can use the chemical potential μ as a control
parameter to uniquely locate where the system is, just as has
been done using the binding energy εB for Fermi gases in a
tightly confined 2D trap.

Our findings have not been reported in the literature.
Although precise control and measurements of the gaps
and superfluid density remains challenging experimentally at
present, we believe that our predictions can be tested in future
experiments.
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APPENDIX A: EVOLUTION OF 1/kFa VERSUS t AND ITS
CONNECTION TO THE 2D LIMIT

To regularize the ultraviolet divergence in the integral of
the gap equation caused by the contact potential, we have
introduced a scattering length a, via the Lippmann-Schwinger
relation,

m

4πa
= 1

U
+

∑
k

1

2εk

. (A1)

Due to the restricted momentum space in the lattice direction,
this definition is similar to but different from its counterpart

in isotropic 3D free space. In this definition, the anisotropy
of the (effective) fermion mass was not considered. Needless
to say, this scattering length parameter does not correspond
to the actual scattering length when measured experimentally.
Nonetheless, it can be regarded as an effective parameter for
characterizing the interaction strength, just as in 3D contin-
uum.

In the t → 0 limit, where the system becomes 2D, this
scattering length is rather different from the physical 2D s-
wave scattering length, a2D, which is given by

εB = h̄2

ma2
2D

, (A2)

where εB is the two-body binding energy. In the BEC regime,
εB ≈ −2μ. It should be noted, however, that a2D is always
positive and diverges in the zero pairing strength limit, since
an arbitrarily weak attractive interaction (including those of
a finite range) is enough to form bound state in vacuum.
Meanwhile, besides the ultraviolet divergence, infrared di-
vergence also emerges in the momentum integral in the pair
susceptibility χ (0) in exact 2D, as t → 0. In exact 2D, the
gap equation is regularized in a different way, via [49,50]

1

U
= −

∑
k

1

εB + 2εk

, (A3)

which relates 1/U with a2D. Since there is a logarithmic
energy dependence in the low energy s-wave scattering phase
shift, there is no easy way to define a single scattering length
parameter which evolves continuously from 3D to 2D.

From Eq. (A1), it is clear that the infrared divergence at
t = 0 leads to a logarithmic dependence of 1/a on t . Indeed,
from Eq. (7) in the main text, we obtain in the BEC regime,

1

a
≈ 1

d
ln

|μ|
t

= − 1

d
ln

(
2mta2

2D

)
. (A4)

We have checked Eq. (A4) numerically by solving our set
of equations with fixed μ as a function of t . Shown in Fig. 8
is 1/kFa as a function of t/EF in a semilog scale, calculated
for d = 2 with μ/EF = −10 at low T (Tc to be precise). The
perfect straight line fully verifies the logarithmic dependence

1e-06 0.0001 0.01 1
t/EF

0

2

4

6

8

1/
k F

a

Numerics
ln(|μ|/t)/d

μ/EF = -10
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FIG. 8. Behavior of 1/kFa as functions of t/EF in the BEC
regime at fixed μ/EF = −10 for kFd = 2.
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given in Eq. (A4). Also shown is the analytical expression
of Eq. (A4) (red dashed line), which overlays on top of the
numerical solution except for the slight difference at large t ,
where the correction terms in Eq. (7) in the main text becomes
quantitatively significant.

One should not be misled by Eq. (7) to think that the
term −ted/a vanishes in the BEC limit as t → 0. Instead, for
a given binding energy in the 2D limit, our 1/kFa diverges
logarithmically following Eq. (A4). Moreover, for a fixed
1/kFa, μ approaches its noninteracting 2D value, πdn/m, as
t → 0, as we have verified numerically.

In this quasi-2D regime, the dispersion in the lattice dimen-
sion mainly serves as an infrared cutoff for the momentum
integral in the gap equation. One can essentially neglect the
pairing in this direction and assuming the in-plane pairing
interaction U is the same as that in the absence of the lattice,
U3D. Now one can relate the present scattering length param-
eter a with its 3D counterpart a3D by canceling out the pairing
interaction via the Lippmann-Schwinger equations and obtain

m

4πa
− m

4πa3D
= α − α3D ≡

∑
k

1

2εk

−
∑

k

1

2ε3D
k

, (A5)

where ε3D
k = k2/2m is the free dispersion in 3D. Also note

that the integration of the lattice dimension in α, i.e., the
first integral on the right-hand side (rhs) of the equation, is
restricted to the first BZ while there is no such restriction for
the second integral for α3D. It is obvious that the two terms on
the rhs have ultraviolet divergences logarithmic and linear in
k, respectively, and they do not cancel each other. A concrete
momentum cutoff k0 that is true to the physical system is
necessary, and one cannot take the unphysical contact limit
for the pairing potential. When t is small and d is small,
the integral over kz in α leads to a factor of 1/d , which is
similar to the result for a2D for a tightly confined 2D trap [51].
For fixed k0, α3D becomes negligible when d becomes very
small. For a box cutoff with k0 = 100kF and t/EF = 0.01, the
expression of Eq. (A5) is plotted in Fig. 9, as a function of
kFd , which exhibits a 1/d divergence as a function of d . An
extra logarithmic infrared divergence kicks in as t approaches
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kFd

0

10

20

30

40
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α 
- α

3D

FIG. 9. Behavior of α − α3D as functions of kFd for t/EF = 0.01
and k0/kF = 100.

0. In these cases, 1/a will diverge, in agreement with Eq. (A4),
and thus the use of a2D as defined in Eqs. (A2)–(A4) becomes
more appropriate.

It should be noted, however, that the relationship between
a and a3D in Eq. (A5) may not be valid beyond the quasi-2D
regime. As the cutoff k0 increases to approach the contact
limit, the critical coupling strength Uc for two atoms to form a
bound state will necessarily be renormalized down to zero.
This is obviously incorrect for the lattice dimension, as it
means the pairing interaction in the lattice direction will
vanish.

In fact, the scattering length in cold atoms is tuned via
the Feshbach mechanism, which relies on the two-channel
model, with both open-channel atomic scattering states and
closed-channel molecular bosons [4,52]. The overall effective
interaction comes from contributions of both channels. In
the presence of a lattice potential, the bare propagator of
the closed channel bosons is modified, and hence so is their
contribution to the overall pairing interaction. It remains a
question as to how the pairing interaction behaves when a
lattice potential is turned on.

Despite that one does not have a general simple relation
between a and a3D for arbitrary t and d , one can use the
experimentally measured chemical potential μ as a control
variable to locate where the system is in the phase diagram,
just as one does for a Fermi gas in a single 2D trap, (where μ

is replaced by εB).

APPENDIX B: EFFECTIVE SCATTERING LENGTH aeff

The strong t (and d) dependence of a defined via Eq. (A1)
suggests that the parameter a is not comparable to the physical
scattering length. Here we try to define an effective scattering
length aeff, which more or less reflects the physical scattering
length.

Consider the long wave length limit of dispersion εk,
and rescale kz such that k′

z = √
2mtdkz. Then for small k′ ≡

(kx, ky, k′
z ), we have

εk′ = 1

2m

(
k2

‖ + k′2
z

)
, (B1)

which is isotropic in k′. In this way,
∑

k becomes 1√
2mtd

∑
k′ .

Then the Lippmann-Schwinger equation becomes

m

4πaeff
≡ m

4πa

√
2mtd = 1

U ′ +
∑

k′

1

2εk′
, (B2)

where U ′ = U/
√

2mtd is the rescaled interaction. Comparing
this equation to the Lippmann-Schwinger equation in 3D free
space, we expect the quantity

aeff = a√
2mtd

(B3)

to be comparable to the 3D scattering length a3D used in
experiment. Indeed, as one can see from Fig. 1 of Ref. [53]
that, the horizontal axis scale of the p – 1/kFa phase diagram,
when plotted using 1/kFaeff, closely matches that of a 3D
continuum case in Ref. [54].

053617-10



SUPERFLUIDITY AND PAIRING PHENOMENA IN … PHYSICAL REVIEW A 101, 053617 (2020)

From Eqs. (A4) and (B3), we obtain the relationship be-
tween a2D and aeff as

a2D = 1√
2mt

e−d/2a = 1√
2mt

e−1/2
√

2mtaeff , (B4)

which resembles closely the relationship between a2D and a3D

for a tightly confined quasi-2D atomic gas [51], with 1/
√

2mt
playing the role of oscillator length.

Finally, it should be mentioned that, despite that it can
characterize the interaction strength, a3D is not the actual
physical scattering length, either, since it is defined in the
absence of the optical lattice potential.

APPENDIX C: COEFFICIENTS OF THE
TAYLOR-EXPANDED INVERSE T -MATRIX

In this Appendix, we present concrete expressions for the
coefficients of the Taylor expansion of the inverse T -matrix,
t (	, q), after analytical continuation,

t−1
pg (q,	) = a1	

2 + a0(	 − 	q + μp + i�q,	). (C1)

Here μp = t−1(0, 0)/a0, which vanishes for T � Tc. In the
long wavelength limit,

	q = B‖q2
‖ + Bzq

2
z ≡ q2

‖
2M‖

+ q2
z

2Mz
, (C2)

with Bz = tBd2.
Before expansion, the inverse T matrix is given by

t−1
q,	+i0+ = U −1 +

∑
k

[
1 − f (Ek ) − f (ξk−q)

Ek + ξk−q − 	 − i0+ u2
k

− f (Ek ) − f (ξk−q)

Ek − ξk−q + 	 + i0+ v2
k

]
. (C3)

Then we have

a0 = 1

2�2

∑
k

{
[1 − 2 f (ξk )] − ξk

Ek
[1 − 2 f (Ek )]

}

= 1

2�2

[
n − 2

∑
k

f (ξk )

]
, (C4)

a1 = 1

2�4

∑
k

Ek

{(
1 + ξ 2

k

E2
k

)
[1 − 2 f (Ek )]

−2
ξk

Ek
[1 − 2 f (ξk )]

}
, (C5)

and the imaginary part

�q,	 = π

a0

∑
k

{
[1− f (Ek )− f (ξk−q)]u2

kδ(Ek+ξk−q −	)

+ [ f (Ek )− f (ξk−q)]v2
kδ(Ek−ξk−q+	)

}
. (C6)

We have �q,	 = 0 when −(Ek − ξk−q)min < 	q < (Ek +
ξk−q)min, and in general �q,	 is much smaller than 	q for
small q at T � Tc. For details, see Ref. [44].

The pair dispersion coefficients are given by

Bi = 1

2

∂2	q

∂q2
i

∣∣∣∣
q=0

= − 1

2a0�2

∑
k

[(
2 f ′(ξk ) + Ek

�2

{(
1 + ξ 2

k

E2
k

)
[1−2 f (Ek )]

− 2
ξk

Ek
[1 − 2 f (ξk )]

})(
∂ξk

∂ki

)2

− 1

2

{
[1 − 2 f (ξk )] − ξk

Ek
[1 − 2 f (Ek )]

}
∂2ξk

∂k2
i

]
. (C7)

Given the dispersion ξk = k2
‖

2m
− 2t[1 − cos(kzd )] − μ for

1DOL, we have, for i = x, y,

(
∂ξk

∂ki

)2

= k2
i

m2
,

∂2ξk

∂k2
i

= 1

m
,

and for i = z,
(

∂ξk

∂kz

)2

= (2td )2 sin2(kzd ),
∂2ξk

∂k2
z

= 2td2 cos(kzd ).
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