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Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical
lattices. II. Effects of population imbalance
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In this paper, we study the effect of population imbalance and its interplay with pairing strength and lattice
effect in atomic Fermi gases in a one-dimensional optical lattice. We compute various phase diagrams as the
system undergoes BCS-BEC crossover, using the same pairing fluctuation theory as in Part I of this work
[Phys. Rev. A 101, 053617 (2020)]. We find widespread pseudogap phenomena beyond the BCS regime and
intermediate temperature superfluid states for relatively low population imbalances. The Fermi surface topology
plays an important role in the behavior of Tc. For large d and/or small t , which yield an open Fermi surface,
superfluidity can be readily destroyed by a small amount of population imbalance p. The superfluid phase,
especially in the BEC regime, can exist only for a highly restricted volume of the parameter space. An open Fermi
surface often leads to destruction of the superfluid ground state in the BEC regime. Due to the continuum-lattice
mixing, population imbalance gives rise to a new mechanism for pair hopping, as assisted by excessive majority
fermions, which may lead to significant enhancement of Tc on the BEC side of the Feshbach resonance, and also
render Tc approaching a constant asymptote in the BEC limit, when it exists. Furthermore, we find that not all
minority fermions will be paired up in BEC limit, unlike the 3D continuum case. These predictions can be tested
in future experiments.
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I. INTRODUCTION

With multiple experimentally tunable parameters, ultracold
atomic Fermi gases and optical lattices have attracted enor-
mous attention [1–3]. Fermions in optical lattices are often
described by a Hubbard model [2–4]. Among them, the one-
dimensional (1D) optical lattices have been realized experi-
mentally for a long time [5–7]. However, a proper treatment
of fermions in 1D optical lattices is not yet available, since
most theoretical in this regard addresses pure lattice cases
[8–13]. Theoretical studies on such a true 1D optical lattice
in the experimental sense have been scarce. Devreese et al.
studied possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
states [14,15] in such a 1D optical lattice [16–18], but mostly
restricted to the BCS and crossover regimes. Indeed, the su-
perfluid and pairing physics in a 1D optical lattice has not been
adequately studied thus far. In Part I of the present work [19],
we have systematically studied the behavior of BCS–BEC
crossover of atomic Fermi gases in a 1D optical lattice in the
absence of a population (and mass) imbalance. In particular,
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we have found widespread pseudogap phenomena, which bear
strong signatures in single particle excitation spectrum and the
superfluid density.

In this paper, we continue from Part I of this work [19]
and study the effects of population imbalance and its inter-
play with lattice constant d and lattice hopping parameter t ,
besides the interaction strength and temperature, within the
framework of the same pairing fluctuation theory. We find that
the exponential behaviors of the fermionic chemical potential
μ and the pairing gap � as a function of pairing strength in
the BEC regime remain the same as in the balanced case.
The behavior of the superfluid transition temperature Tc is
largely governed by the Fermi surface topology. For large d
and/or small t , which lead to an open Fermi surface, a small
amount of population imbalance p may readily destroy su-
perfluidity. Furthermore, the mixing between continuum and
discrete lattice dimensions has more profound consequences
than in the balanced case; the excessive majority fermions can
assist pair hopping, providing a new pair hopping mechanism,
which dominates the hopping via virtual pair unbinding [20]
in the BEC regime. Together with the quasi-two dimension-
ality, which yields a constant ratio �2/μ in the BEC limit,
this new mechanism leads to a constant asymptote for Tc
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for a BEC superfluid (when a BEC solution exists) in the
presence of population imbalance. We shall present detailed
T −p (temperature versus polarization) phase diagrams as
the system undergoes the BCS-BEC crossover with different
lattice constants and hopping integrals, and focus on the finite
temperature and population imbalance effects, especially the
pseudogap phenomena [21,22]. We shall also present Tc ver-
sus interaction strength 1/kFa with varying lattice constants
d , population imbalances p and hopping integrals t . As these
phase diagrams reveal the following: (i) The superfluid phase
exists only in a very restricted volume of the multidimen-
sional parameter space; (ii) the pseudogap phenomena widely
exist; (iii) intermediate temperature superfluidity is also a
widespread phenomenon in the presence of population imbal-
ance, similar to the homogeneous case [23–25], irrespective of
the lattice constraint; (iv) a small population imbalance may
greatly enhance the superfluidity by raising Tc on the BEC side
of the Feshbach resonance; (v) a BEC superfluid exists only
for a limited small volume in the parameter space of (t, d, p);
(vi) while there is no superfluid ground state in the BCS and
unitary regime, where it exists in the BEC regime is largely
controlled by the Fermi surface topology (an open Fermi
surface only leads to destruction of the zero T superfluid);
and (vii) not all minority fermions will be paired when a BEC
superfluid does exist.

II. THEORETICAL FORMALISM

In this section, we present briefly the theory, adapted for
the population imbalanced case, with spin dependent chemical
potential μσ and Green’s functions G0σ (K ) and Gσ (K ), with
the (pseudo)spins σ =↑,↓. We keep the same notations as in
Part I of this work [19].

We will present a set of equations which can be self-
consistently solved for various quantities in different situa-
tions. In particular, we will show the relationship between the
pseudogap and pairing fluctuations. In this process, we will
show how the important pair dispersion is extracted in a self-
consistent manner. In addition, we will discuss the stability
of the solutions, which is always stable for the balanced case,
and present the formula for the superfluid density. As in Part I
of this work [19], we will also present our analytical result of
the behavior of the system in the BEC regime.

A. Pairing fluctuation theory with a population imbalance

In this subsection, we shall recapitulate the pairing fluctu-
ation theory and focus on the difference from Part I of this
work [19], caused by the population imbalance. In particular,
we shall present the set of self-consistent equations and how
the pair dispersion is extracted.

The single particle dispersion is given by ξkσ =
k2

‖/2m + 2t[1 − cos(kzd )] − μσ ≡ εk − μσ . The bare
Green’s function is given by G−1

0σ (K ) = iωn − ξk,σ ,
with the self-energy �σ (K ) = ∑

Q t (Q)G0σ̄ (Q − K ),
where σ̄ = −σ . The T -matrix t (Q) = tsc(Q) + tpg(Q),
where tsc(Q) = −(�2

sc/T )δ(Q) vanishes for T > Tc, and
tpg(Q) = U/[1 + Uχ (Q)], with the pair susceptibility
χ (Q) = ∑

K,σ G0σ (Q − K )Gσ̄ (K )/2. The self-energy is
given by �σ (K ) = �sc,σ (K ) + �pg,σ (K ), where �sc,σ (K ) =

−�2
scG0σ̄ (−K ), and �pg,σ (K ) = ∑

Q tpg(Q)G0σ̄ (Q − K ).
At T � Tc, the BEC condition remains t−1

pg (Q = 0) =
U −1 + χ (0) = 0, and �pg,σ (K ) ≈ −�2

pgG0σ̄ (−K ),
with �2

pg ≡ −∑
Q tpg(Q). Then the total self-energy

�σ (K ) ≈ −�2G0σ̄ (−K ), where �2 = �2
sc + �2

pg. Finally,
the full Green’s function becomes more complex due to
population imbalance,

Gσ (K ) = u2
k

iωn − Ekσ

+ v2
k

iωn + Ekσ̄

, (1)

where u2
k = (1 + ξk/Ek )/2, v2

k = (1 − ξk/Ek )/2, Ek↑ =
Ek − h, Ek↓ = Ek + h, and Ek =

√
ξ 2

k + �2, ξk = εk − μ,
μ = (μ↑ + μ↓)/2, h = (μ↑ − μ↓)/2. From the number
constraint nσ = ∑

K Gσ (K ), we can get the total fermion
number density n = n↑ + n↓ and the density difference
δn = n↑ − n↓ ≡ pn,

n =
∑

k

[(
1 − ξk

Ek

)
+ 2 f̄ (Ek )

ξk

Ek

]
, (2)

pn =
∑

k

[ f (Ek↑) − f (Ek↓)], (3)

where f̄ (x) = [ f (x + h) + f (x − h)]/2. Similar to the p = 0
case, the extended gap equation is given by

m

4πa
=

∑
k

[
1

2εk
− 1 − 2 f̄ (Ek )

2Ek

]
+ a0μp, (4)

with μp = 0 at T � Tc.
The inverse T -matrix expansion [1] remains formally the

same as in the p = 0 case, i.e., t−1
pg (�, q) ≈ a1�

2 + a0(� −
�q + μp), where �q = B‖q2

‖ + 2tB[1 − cos(qzd )] with B‖ =
1/2M‖, and all the coefficients a1, a0, B‖, and tB are deter-
mined automatically in the expansion process. Their concrete
expressions are given by Eqs. (A4), (A5), and (A7) in the
Appendix of Part I of this work [19] with the Fermi distri-
bution functions f (x) and f ′(x) replaced by f̄ (x) and f̄ ′(x),
respectively. The pseudogap equation is the same,

a0�
2
pg =

∑
q

b(�̃q)√
1 + 4 a1

a0
(�q − μp)

, (5)

with the pair dispersion

�̃q =
√

a2
0 + 4a1a0(�q − μp) − a0

2a1
.

The pair density is given by np = a0�
2.

Equations (2)–(5) form a closed set of self-consistent equa-
tions, which can be used to solve for (μ↑, μ↓, T ∗) with � = 0,
for (μ↑, μ↓, �pg, Tc) with �sc = 0, and for (μ↑, μ↓, �,
�pg) at T < Tc. Here the pair formation temperature T ∗ is
approximated by the mean-field Tc, and the order parameter
�sc is derived from �2

sc = �2 − �2
pg.

B. Stability analysis

From our previous work, it is known that, in the presence
of population imbalance, not all solutions of Eqs. (2)–(5)
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are stable. Therefore, in this subsection, we shall present a
stability analysis of our solutions.

The stability analysis can be done following Ref. [26], as
we summarize here. Consider the thermodynamic potential
�S, which consists of the fermionic (�F) and bosonic (�B)
contributions,

�S = �F + �B,

�F = −�2

U
+

∑
k

(ξk − Ek ) − T
∑
k,σ

ln (1 + e−Ekσ /T ), (6)

�B = a0μp�
2
pg + T

∑
q

ln(1 − e−�̃q/T ).

The stability condition of population imbalanced Sarma phase
[27] against phase separation (PS) can be simply expressed as

∂2�S

∂�2
= 2

∑
k

�2

E2
k

[
1 − 2 f̄ (Ek )

2Ek
+ f̄ ′(Ek )

]
> 0, (7)

where f̄ ′(x) = d f̄ (x)/dx. This condition is equivalent to the
positive definiteness of the particle number susceptibility ma-
trix {∂nσ /∂μσ ′ } [26,28], which represents a form of general-
ized compressibility.

C. Superfluid density

Superfluid density, as a representative transport property,
is an important quantity for the superfluid Fermi gas. The
temperature dependence of the superfluid density depends
crucially on the pairing symmetry and thus has been used to
pinpoint the symmetry of the order parameter in the com-
munity of superconductivity. In the presence of population
imbalanced, the superfluid density may become negative,
signaling an instability of the superfluid solution [23,25,26].
Hence, the positive definiteness of the superfluid density is
another, albeit weaker, stability condition [26].

Similar to the p = 0 case, the superfluid “density” (ns/m),
can also be derived using the linear response theory, following
earlier works [23,26,29,30]. For the present contact potential,
the superfluid density is given by

(ns

m

)
i
= 2

∑
k

�2
sc

E2
k

[
1 − f̄ (Ek )

2Ek
+ f̄ ′(Ek )

](
∂ξk

∂ki

)2

, (8)

where i = x, y, z and f̄ ′(x) = d f̄ (x)/dx.
As we will see below, the behavior of the superfluid density

can becomes very usual for p 	= 0. Nevertheless, we expect
the T dependence of both (ns/m)‖ and (ns/m)z are close to
each other.

D. Asymptotic behavior in the deep BEC regime

Analytical solutions can often be obtained in the weak
and strong pairing limits, so that the physics can be made
more transparent without resorting to complicated numer-
ics. Following our practice in Part I of this work [19], in
this subsection, we shall present the asymptotic behavior
of population imbalanced atomic Fermi gases in 1DOL in
the BEC regime. We find, both μ and � can be obtained
analytically, while μ↑ and Tc can be solved numerically using
much simplified equations. Most importantly, we find that

population imbalance leads to extra terms in the coefficients
of the expansion of the inverse T matrix, which become
independent of the interaction strength and thus lead to a
constant BEC asymptote for Tc.

Unlike the p = 0 case [19], in the presence of a population
imbalance p 	= 0, the BEC limit is more complicated, as one
can no longer obtain a complete analytical solution without
resorting to numerics. However, one can still greatly reduce
the complexity of the equations, as follows.

For p = (n↑ − n↓)/n, we consider p > 0, without loss of
generality. The excessive majority fermions require μ↑ > 0
throughout the BCS-BEC crossover, whereas μ to leading
order is roughly given by its balanced counterpart in the BEC
limit, where the two-body physics dominates. Then μ↓ is
given by μ↓ = 2μ − μ↑. The size of μ↑ > 0 is determined
by p, and μ↓ ≈ 2μ → −∞, so that f (E↓

k ) = f (ξ↓
k ) = 0. The

Fermi function f (E↑
k ) no longer vanishes exponentially, and

will lead to corrections to the equations above. Nevertheless,
this Fermi function places a small finite energy and momen-
tum cutoff, so that we have Ek ≈ |μ| to the leading order
in many occasions. Thus, to leading-order corrections, the
equation for total number density now becomes

(1 − p)n = − m�2

4πμd
− np�2

2μ2
, (9)

� =
√

4π |μ|d (1 − p)n

m

(
1 − πdnp

μm

)
. (10)

Interestingly, the leading correction to �2 is independent of
1/kFa, given by 8(πdn/m)2(1 − p)p, which vanishes when
p = 0. So is the correction term in Eq. (9).

Expanding E↑
k , we have

E↑
k = Ek − h ≈ ξ

↑
k − �2

k

2μ
≈ ξ

↑
k + 4πdn↓

m
. (11)

Note that the second term is again a constant for given
p, independent of 1/kFa, precisely because �2/μ → const.
For this reason, the difference E↑

k − ξ
↑
k = 4πdn↓/m will not

approach 0 in the BEC limit, unlike the case in 3D continuum.
The equation of number difference is given by

pn =
∑

k

f (E↑
k ) =

∑
k

f

(
ξ

↑
k + 4πdn↓

m

)
≡ mt

π2d
I1. (12)

Here the dimensionless integral I1 depends on μ↑ and T .
In comparison with the p = 0 case, the gap equation now

also contains an extra term which is of the same order as the
leading term in the BEC limit, namely,

∑
k

f (E↑
k )

2Ek
≈ 1

2|μ|
∑

k

f (E↑
k ) = pn

2|μ| , (13)

Thus, without this term, the leading-order chemical potential
is given by μ0 = −ted/a, the same as in the p = 0 case, since
the two-body physics dominates the deep BEC regime. The
gap equation can now be simplified in a fashion similar to the
p = 0 case, and we obtain

μ = μ0 + 2t + 2πdn↑
m

, (14)
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formally identical to the expression for p = 0. Plugging
Eq. (14) into Eq. (10), we can obtain the gap �. Note that
for given (t, d, p) in the deep BEC regime, Eqs. (14) and (10)
completely determines μ and � as a function of 1/kFa.

The relation between μ and d/a suggests that one can
use μ as a tuning variable in experiment, while a simple
general formula relating a and its 3D counterpart a3D is not
yet available. This is similar to the use of the binding energy
εB as a tuning parameter for a 2D Fermi gas [31]. For detailed
analysis, see Appendices A and B in Part I of this work [19].

As discussed in Part I of this work [19], the exponential
behavior of μ and � as a function of 1/kFa is an important
feature of the quasi-two dimensionality of the present system;
the ratio �2/μ approaches a constant, independent of pairing
strength. As we shall see below, this has important conse-
quences. The (second and third) correction terms in Eq. (14)
are also constants.

Finally, to solve for Tc (and μ↑), we need to simplify the ex-
pressions for the dispersion of the pairs. Defining

∑
k f (ξ↑

k ) ≡
mt
π2d I2, then the coefficient a0 is given by

np = a0�
2 = n

2
− 1

2

∑
k

f (E↑
k ) + 1

2

∑
k

[ f (E↑
k ) − f (ξ↑

k )]

= n↓ − mt

2π2d
(I2 − I1). (15)

Note here both the integrals I1 and I2 depend only on μ↑
and T , which are independent of the pairing strength in the
BEC limit. Both will vanish when p = 0. However, in the
presence of population imbalance, I2 − I1 will not vanish in
the BEC limit due to Eq. (11). Therefore, the pair density,
np, will approach a constant BEC asymptote, which is smaller
than n↓ for p > 0. Namely, not all minority fermions will be
paired up.

The coefficient a1 is now given by

a1�
2 = m2t

8π3d2n↓
(I2 − I1) + 1

4|μ|
(

n↓ + m2t2

π3d2n↓
I3

)
, (16)

where the integral I3 = π2d
2mt2

∑
k εk[ f (ξ↑

k ) − f (E↑
k )]. Again,

for p = 0, all the I’s vanish, so that Eq. (16) recovers the
p = 0 result, a1�

2 = n/8|μ|. It is a dramatic difference that a
finite population imbalance contributes a finite, constant, first
term on the right-hand side of Eq. (16).

After some lengthy but straightforward derivation,
we obtain

B‖ = 1

4m
+ 1

4np

[
t

2π2d
(3I2 + I1) − mt2

2π3d2n↓
I4

]
, (17)

where I4 = π2d
2m2t2

∑
k[ f (ξ↑

k ) − f (E↑
k )]k2

‖ . The first term is the
p = 0 result, while the rest is the contribution of population
imbalance. Here we have kept only the leading-order terms
and dropped terms of order 1/μ or higher. The pair density np

is to be replaced with Eq. (15).

The pair hopping integral tB is given by

tB = t2

np

{
m

2π2d

(
I5 − I6 + I7 − mt

πdn↓
I8

)

+ n↓
2|μ|

(
1 − 8

π
I5 − 4t2m2

π3d2n2
↓

I9

)}
, (18)

where

I5 = π2d

mt

∑
k

f (E↑
k ) cos(kzd ),

I6 = π2d

mt

∑
k

f (ξ↑
k ) cos(kzd ),

I7 = −4π2d

m

∑
k

f ′(ξ↑
k ) sin2(kzd ),

I8 = π2d

mt

∑
k

[ f (ξ↑
k ) − f (E↑

k )] sin2(kzd ),

I9 = π2d

2mt2

∑
k

εk[ f (ξ↑
k ) − f (E↑

k )] sin2(kzd ).

For p = 0, all integral I’s vanish so that Eq. (18) reduces to
the p = 0 result, tB = t2/2|μ|. As in Eq. (17), here np is to
be replaced with Eq. (15). Once again, population imbalance
leads to the first term in the brackets in Eq. (18), which
is a constant of interaction strength and thus becomes the
dominant term. This will dramatically change the behavior of
the Tc solution.

Equation (14) completely determines μ, and then Eq. (10)
is used to fully fix the gap �, for given 1/kFa in the deep
BEC regime. Since the quantities np, a1, B‖, and tB rely only
on μ↑ and T (with corrections of order O(1/μ)), then μ↑ and
Tc can be obtained via solving the pseudogap Eq. (5) along
with the number difference Eq. (12), with �pg = �. Note that
Eq. (5) depends only on the product a0�

2 and the ratio a0/a1

but not on the value of �. The fact that the leading terms of
a0�

2, a1�
2, a0/a1, B‖, and tB are all independent of μ or �

in the presence of a population imbalance implies that μ↑ and
Tc, along with these quantities, all approach their respective
interaction-independent BEC asymptotes, which depend only
on (t, d, p).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this subsection, we present our results in the pres-
ence of a population imbalance, while the parameters
(t, d, 1/kFa) vary.

For our numerical calculations, we define Fermi momen-
tum kF = (3π2n)1/3 and Fermi energy EF ≡ kBTF = h̄2k2

F/2m,
as given by a homogeneous, balanced, noninteracting Fermi
gas with the same total number density n in 3D.

A. Effect of population imbalance on BCS-BEC crossover

1. An unphysical nearly isotropic case: t/EF = 1 and kFd = 1

First, we consider the case t/EF = 1 and kFd = 1, which is
not physically accessible but provides a nearly spherical Fermi
surface in the noninteracting limit [32] and thus may serve to
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FIG. 1. Evolution of the phase diagram in the T −p plane with
(t/EF, kFd ) = (1, 1), for (a) 1/kFa = −0.5, (b) 0, and (c) 0.5, cor-
responding to near-BCS, unitary, and near-BEC cases, respectively.
Here “PG” and “SF” indicate the pseudogapped normal state and
superfluid, respectively. The stability condition of Eq. (7) is violated
in the “Unstable” region.

make contact with the 3D homogeneous case [26]. Indeed, the
result is fairly closed to the 3D homogeneous case, except now
there is a weak lattice effect. Nevertheless, it can already be
seen that Tc for p 	= 0 stops decreasing with pairing strength
in the deep BEC regime and thus may become higher than its
p = 0 counterpart value.

Shown in Fig. 1 is the evolution of the phase diagram
in the T −p plane for three representative pairing strengths
in the (a) near-BCS, (b) unitary, and (c) near-BEC regimes,
respectively. This black dashed line, T ∗, was obtained, as
an approximation, by solving the mean-field equations with
� = 0. The phase diagram in each case consists of a small
intermediate temperature, Sarma (i.e., polarized) superfluid
phase (yellow shaded, labeled “SF”), a large pseudogapped
normal phase (“PG”), an unpaired normal Fermi gas phase
(“Normal”), as well as an unstable phase (“Unstable”), which
often gives way to phase separation. (Note that it is a crossover
rather than a true phase transition from the normal to the pseu-
dogapped phases). Solution of possible FFLO states [14,15]
have also been contemplated in the “Unstable” region of
the phase diagram [25,33–35]. However, the FFLO states
are known to be mostly unstable [36], which we shall not
consider in the current work. Considering the different vertical

FIG. 2. Tc−1/kFa phase diagram for different p, as labeled, at
fixed kFd = 1 and t/EF = 1. The Tc solutions inside the shaded
region are unstable.

scales, the superfluid phase has roughly comparable phase
space volumes for the three cases, more or less similar to its
homogeneous counterpart in 3D free space, as shown in Figs.
6 and 7 in Ref. [26]. Here the (in)stability condition (green
line, separating the Unstable from the PG and the SF phases)
is given by Eq. (7). Indeed, For kFd = 1, we have π/d � kF,
so that the confinement in kz has only a minor impact on
the momentum distribution. In addition, similar to the 3D
homogeneous situation, the unitary case has the highest Tc at
p = 0 among all three cases, and there exists no stable Sarma
superfluid at T = 0 when p 	= 0 for the cases considered
(1/kFa � 0.5). It is worth pointing out that, as shown in
Figs. 1(a) and 1(b), approaching p = 0+ along the (red) Tc

curve does not end up with a superfluid solution at T = 0.
This is not an artifact but rather reflects the fact that at T = 0,
the p = 0 and p 	= 0 cases are not continuously connected in
the BCS and unitary regimes. A zero T polarized superfluid
solution exists only in the deep BEC regime [23,26]. At
the same time, the (red) Tc curve intersects with the (green)
instability boundary for the near-BEC case. And in the deep
BEC regime, the instability line intersects with the p axis
at a finite value, indicating the existence of a stable zero T
polarized Sarma superfluid.

Now we turn to the effect of population imbalance on the
behavior of Tc throughout the BCS-BEC crossover. Keeping
Tc as the function, there are still four independent control
variables, p, 1/kFa, t and d , which can yield many different
facets of the very rich phase space. In this section, we shall
only present a few very informative phase diagrams.

Shown in Fig. 2 is the calculated Tc−1/kFa phase diagram
for different p from 0.01 to 0.99 at fixed kFd = 1 and t/EF =
1. For comparison, we also plot the p = 0 curve (black
dashed). This figure bears a lot of similarity with that for the
simple 3D homogeneous case, shown in Ref. [23]. For both
cases, there exist intermediate temperature superfluids from
the BCS to the near-BEC regime. This unusual phase has a
higher and a lower Tc for a given 1/kFa. At the same time,
for intermediate levels of p (0.1 and 0.13 shown here), the Tc
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curve splits into two branches, and the left branch shrinks to
zero and disappears as p further increases. The Tc solutions
inside the yellow shaded region do not satisfy the stability
condition of Eq. (7), and hence are unstable. The difference
comes mainly on the BEC side. As 1/kFa increases into the
BEC regime, for our present case, Tc decreases, which is
qualitatively consistent with the p = 0 cases shown in Figs. 1
and 2 in Part I of this work [19], reflecting the lattice effect on
pair hopping.

The most surprising feature in Fig. 2 is that Tc for p = 0
decreases faster, and thus intersects with the p 	= 0 curves.
This means that we can get a higher Tc by allowing a small
population imbalance on the BEC side of the Feshbach res-
onance. Indeed, as we have shown analytically in Eq. (18),
due to population imbalance, an additional mechanism for
pair hopping kicks in; a pair can hop to its neighboring
site via exchanging only the majority fermion component
of a pair with an excessive majority fermion that is already
present on the neighboring site, leaving the previous majority
fermion component behind. In this way, the minority fermion
component glides through the sites whereas the majority
fermions do not necessarily have to hop. Note here that a
“site” in the lattice dimension corresponds actually to a 2D
plane, which guarantees that, in the thermodynamic limit,
there are always excessive majority fermions available on
the neighboring “site,” when p 	= 0. This is a consequence
of lattice-continuum dimensional mixing. The presence of a
transverse continuum dimension is crucial for this to happen.
Due to this new pair hopping mechanism, tB approaches a
constant in the BEC limit, and so does Tc. Indeed, as one can
see, the Tc curves already flatten out toward BEC.

2. Realistic cases with smaller 2mtd2 < 1

Now we consider more realistic cases which are accessible
experimentally, as constrained by the condition 2mtd2 < 1.
We show that the superfluid solution may be readily destroyed
when t is small. Further varying d may change the topology
of the Fermi surface, and thus leads to different behaviors
of Tc, especially for the lower branch as to whether a zero
temperature superfluid exists at all. When the BEC superfluid
exists, the enhancement of Tc due to population imbalance
becomes even more pronounced.

Shown in Fig. 3 are the T −p phase diagrams with
(t/EF, kFd ) = (0.05, 2), for the same values of 1/kFa as in
Fig. 1. In comparison, we observe that the reduced (t, d )
or td2 has led to significant reduction on Tc and the phase
space volumes of the superfluid (“SF”) and paired (“PG” and
“Unstable”) phases. This reduction reveals that the small td2

and relatively large d are detrimental to both superfluidity and
pairing. The most dramatic effect is the rapid shrink of the
SF phase as 1/kFa increases toward the BEC regime. Further-
more, the Tc curve no longer intersects with the instability line.
This suggests that for finite p > 0, there is no superfluidity at
T = 0 even in the deep BEC regime, for the present choice
of (t, d ). At the same time, the superfluid solution for p = 0
always exists [19]; in that case, the area of the SF phase does
not completely vanish even though it may become very small.
Here one may also notice that the unitary case no longer has
the highest Tc. This is because the maximum Tc for kFd = 2

FIG. 3. Evolution of the T −p phase diagram with t/EF = 0.05
and kFd = 2 for different pairing strengths. Other parameters are the
same as described in the caption of Fig. 1.

has shifted away from unitarity toward the BEC side in the 1D
optical lattice [19]. As one can expect, the smaller t and larger
d make the system quasi-2D, giving rise to stronger pairing
fluctuations and thus reduced Tc.

In analogy to Fig. 2, we show in Fig. 4 a realistic case
with t/EF = 0.1 and kFd = 0.5. With this reduced t and d , the
Fermi surface is an elongated ellipsoid in the noninteracting
limit, as shown in the inset. Plotted here is Tc as a function
of 1/kFa for different p from 0 to 0.132, as labeled next to
the color coded curves. Also labeled on the top axis is the
effective parameter 1/kFaeff = √

2mtd/kFa, as defined in Part
I of this work [19] and Ref. [37]. This parameter is certainly
closer to the 1/kFa parameter of the 3D homogeneous case
[23]. Similar to that in Fig. 2, the superfluid Tc solution within
the small yellow shaded area is unstable. In addition, the lower
branch Tc vanishes somewhere close to but on the BEC side
of unitarity. In comparison with Fig. 2, however, the overall
Tc is strongly suppressed by a factor of 4. This reduced Tc

is mainly caused by the small t and small d , which brings
the noninteracting chemical potential down dramatically to
μ ≈ 0.276EF ≈ EF/4. The other main difference is that the
population imbalance p cannot go to a high value as it does in
Fig. 2, before Tc disappears completely. While the Tc curve
can still persists into the BEC limit for p � 0.1, it bends
back for p = 0.115 and forms a superfluid dome in the near-
BEC regime. The superfluid phase quickly shrinks when p
increases further, and then disappears for p � 0.132.
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FIG. 4. Tc−1/kFa phase diagram for different p from 0 to 0.132
(as labeled) at fixed kFd = 0.5 and t/EF = 0.1, showing dramatic
effect of t and d , when compared with Fig. 2. The Tc solution within
the yellow shaded area is unstable. Also labeled on the top axis is the
effective parameter 1/kFaeff. Shown in the inset is a 3D plot of the
Fermi ellipsoid.

To understand the difference between Figs. 2 and 4, we
note that the elliptical Fermi surface in Fig. 4 can be rescaled
more or less into a sphere; this allows for some similarities
in the Tc curves. However, as pairing strength increases and
the pairing gap becomes large, the pair occupation number
v2

k (and hence the fermion momentum distribution) will soon
feel the confinement of the limited momentum space in the

lattice direction. As a consequence, the excessive majority
fermions will no longer be evenly distributed in all directions
(after the rescaling). This causes pairing more difficult in the
BEC regime and thus leads to a dome shape of the superfluid
phase. It also explains why p cannot become large before
superfluidity disappears.

Next, we keep t/EF = 0.1 but increase the lattice spacing d
to kFd = 1.5 so that the pairs feel more strongly the restriction
of |kz| � π/d . Shown in Fig. 5 are the behaviors of (a, e) Tc,
the coefficients (b) B‖ and (c) Bz, and (d, f) the pair fraction
np/n↓ (all at Tc) as a function of 1/kFa for a series of p from 0
to 0.1. The Fermi surface now has open ends at kz = ±π/d , as
shown in the inset of Fig. 5(b). It can no longer become nearly
spherical by momentum rescaling. This inevitably shall lead
to a bigger difference from Fig. 2. The curves in Figs. 5(a)–
5(d) are plotted in a semilog scale, making the exponential
dependence of Tc on 1/kFa for p = 0 in the BCS regime
self-evident as a straight line (orange dashed). It turns out
that the coefficients B‖, Bz and pair density np all bear similar
exponential dependencies. Figures 5(e) and 5(f) are plotted
in linear scales. In the presence of a finite imbalance p, as
the interaction strength decreases, Tc follows the p = 0 curve
until it hits the lower threshold, at which it curves back into
a lower branch of Tc. Similar behaviors happen to B‖, Bz,
and np as well. At the same time, on the BEC side of the
Feshbach resonance, Bz approaches a constant for p 	= 0, (and
B‖ differs substantially from its p = 0 value). Accordingly,
Tc approaches a constant BEC asymptote, and so does np.
All superfluid solutions in Fig. 5 are stable. Figures 5(d) and
5(f) reveal that the pair density np is higher along the lower
branch of Tc than the upper branch, as expected. We note
that np/n↓ < 1, indicating that not all minority fermions form

FIG. 5. Behavior of (a, e) Tc/TF, (b) B‖, (c) Bz (in units of 1/2m) and (d, f) np/n↓ as a function of 1/kFa for different p from 0 to 0.1 at
fixed kFd = 1.5 and t/EF = 0.1. The arrows point to the direction of increasing imbalance p. All panels share the same legend, except (e)
and (f) contain an extra p = 0.003 line. The lines for p � 0.02 in panel (f) are barely visible. The inset of panel (b) shows the shape of the
Fermi surface.
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pairs even in the deepest BEC limit, in contrast to the 3D
continuum case. The BEC asymptotic behaviors are governed
by Eqs. (15)–(18).

Similar to Fig. 2, in both Figs. 4 and 5 the p = 0 curve for
Tc quickly drops with increasing 1/kFa and intersects with the
p 	= 0 curves. Namely, in these physically accessible cases,
our earlier finding about the enhancement of Tc by population
imbalance remains valid, and the enhancement becomes even
more pronounced.

In comparison with Fig. 2, a big qualitative difference is
that there is no moderate level of p in Fig. 5 such that the Tc

curve splits into a left and a right branch. In addition, due
to the big difference between Fermi surfaces of these two
cases, the lower Tc here does not vanish in the neighborhood of
unitarity, but rather either extends all the way to the BEC limit
(for small p � 0.002) or curls up and joins the upper Tc before
it enters the deep BEC regime (for p � 0.003). The Tc curve
for p = 0.003 can extends into the BEC regime up to 1/kFa =
2.854 or 1/kFaeff = 1.354. Furthermore, here we do not find
the counterpart Tc curve that is similar to the t/EF = 0.115
case in Fig. 4. Therefore, while one may find a BEC superfluid
for large p up to nearly unity in Fig. 2, it is not possible for
the quasi-2D case in Fig. 5. Indeed, the superfluid solution will
disappear from the entire phase space when p > 0.124 for the
present parameters (t/EF, kFd ) = (0.1, 1.5). In other words,
superfluidity now exists only in a small portion of the phase
space; for small t and relatively not so small d , the superfluid
phase can be easily destroyed by a small amount of population
imbalance. In addition, a deep BEC superfluid exists only for
very low p as well. Reducing t and/or increasing d further
may destroy completely the superfluid phase even in the
deepest BEC limit. Therefore, one needs to reduce d and/or
increase t to have a superfluid with a relatively large p, as will
be shown soon below.

We notice that the enhancement of Tc or superfluidity
by population imbalance occurs mainly on the BEC side of
unitarity. To show this more explicitly, we plot in Fig. 6
the behavior of Tc as a function of p at a series of pairing
strengths for fixed (t/EF, kFd ) = (0.2, 2). While one may
find a maximum allowable range of p around 1/kFa = −0.7,
and a maximum Tc at unitarity, these two cases do not see
the enhancement effect, since for both cases, Tc reaches its
maximum at p = 0. In contrast, for 1/kFa = 1, 1.5, and 2,
as p increases from 0, Tc experiences an initial rapid jump
from its p = 0 value to a much higher value at p > 0, and
then slowly drops down and bends back toward p = 0. There
exists a significant range of p in which Tc is larger than its
p = 0 counterpart. The back-bending behavior of Tc versus p
is consistent with the intermediate temperature superfluidity
with an upper and lower Tc. The much reduced maximum p
for these cases demonstrates that a superfluid solution exists
only for small p on the BEC side of unitarity for the current
(t, d ) combination.

B. Influence of t and d on the superfluid phase diagrams

The complete phase diagram is multidimensional due to
the multiple tuning parameters. In this subsection, we study
the effects of the lattice hopping t and lattice constant d , which
control the band width and dispersion of the lattice dimension
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1.5
1
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1
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FIG. 6. Tc as a function of p with kFd = 2 for different 1/kFa
from −0.7 to 2 at fixed t/EF = 0.2. The intermediate temperature
superfluid phase is enclosed within the Tc curve and the vertical
axis (shaded for 1/kFa = 2). The open circle at p = 0 indicates the
balanced Tc solution for 1/kFa = 2.

as well as the shape and topology of the Fermi surface. We
will first present the Tc solutions as a function of p and 1/kFa
with different t and d , and then show the continuous evolution
of Tc as a function of t and d at fixed p and 1/kFa. In this way,
we sample the phase space in different directions.

1. T−p and T−1/kFa phase diagrams for different t and d

In this subsubsection, we show that the superfluid phase
shrinks rapidly as t decreases, and the Tc curve will move
toward lower T . In addition, superfluidity in the BEC regime
may be destroyed completely for small t . Similarly, for large
d , the superfluid phase exists only in the unitary regime.

The effect of increasing t/EF on the T −p phase diagram is
shown in Fig. 7, where Tc versus p at unitarity is plotted for
a series of t at kFd = 2. The maximum Tc at p = 0 increases

FIG. 7. Tc versus p with kFd = 2 for different values of t/EF

from 0.005 to 0.3 (as labeled) at unitarity.
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FIG. 8. Behavior of Tc as a function of 1/kFa at fixed kFd = 2
and p = 0.01, but for different values of t/EF, as labeled. It becomes
more 3D-like as t increases.

with t , but the maximum reachable p seems to saturate for
t/EF > 0.1 for the present choice of kFd = 2.

The evolution of superfluid phase from Figs. 2 to 7 tells
that in the presence of a population imbalance, the superfluid
phase volume decreases quickly and then disappears com-
pletely as the system evolves into the quasi-2D regime.

If we allow ourselves to use somewhat larger range of
t , then we will obtain the Tc curves shown in Fig. 8 as a
function of 1/kFa. Here we fix p = 0.01 and kFd = 2, but vary
t/EF from 0.0001 up to 0.5, as labeled. For small t/EF � 0.1,
we have a simple closed loop. Both Tc and the size of the
loop increases as t grows. For t/EF = 0.15 (red) and 0.205
(green curve), the Tc loop extends into the BEC regime, but
still cannot reach the deep BEC limit; the Tc curve turns
back somewhere on the BEC side of unitarity, and form a
closed cycle. As t increases further, for t/EF � 0.21, the Tc

curves successfully extend all the way into the BEC limit.
For t/EF = 0.21 (orange curve), both the upper and lower
Tc branches extend to 1/kFa = +∞. However, for t/EF �
0.25 (black and pink curves), the lower Tc branch bends
downward around unitarity and vanishes at an intermediate
pairing strength, somewhere on the BEC side of unitarity.
In such a case, there exists a stable homogeneous polarized
superfluid in the BEC regime at T = 0, similar to the case for
a simple 3D continuum. For kFd = 2, our calculation reveals
that the Fermi surface has two open ends at kz = ±π/d for
t/EF � 0.21, whereas it becomes a closed ellipsoid again for
the large t/EF � 0.25 cases. The corresponding Tc behavior
for the latter cases is similar to that found in Fig. 2.

So far, we have restricted ourselves to fairly small d , with
d � 2. In Fig. 9, we show the behavior of Tc for a large range
of d , from kFd = 0.1 to 8, with a fixed p = 0.01 and t/EF =
0.05. For kFd � 4, we have the range |kz| < π/d < kF, which
makes the lattice effect much stronger. Note that for t/EF =
0.05, the kFd = 6 and 8 cases are physically inaccessible.
Nonetheless, these curves show a clear trend, namely, with
increasing d , the maximum Tc increases and the Tc loop
becomes narrower in terms of 1/kFa, more concentrated near
unitarity. In contrast, for small kFd , π/d becomes very large.

FIG. 9. Tc−1/kFa phase diagram for different kFd from 0.1 to 8
(as labeled) at fixed p = 0.01 and t/EF = 0.05. The inset shows the
small d cases, which shares the same axis labels as the main figure.
Increasing d destroys the superfluid in the deep BEC regime.

With a small t (shown in the inset), the lattice band will be
fully occupied, giving rise to an elongated open-end Fermi
cylinder (for kFd � 0.5) in the momentum space. Due to this
small d , except for the kFd = 0.1 case (which has a closed
ellipsoid Fermi surface), other Tc curves in the figure cannot
access the deep BEC limit. Starting from a small d , this set
of curves reveal that increasing d leads to the formation of a
closed curve of Tc so that the superfluid phase in the deep BEC
regime is destroyed.

From Figs. 2 to 9, we find that the behavior Tc has a close
connection to the topology of the Fermi surface. For a closed
Fermi surface, it can be brought into a nearly spherical shape
by momentum rescaling. For small p, the situation for pairing
is very much like in the 3D homogeneous case. Therefore,
the Tc curve for low p is similar to its 3D homogeneous
counterpart; the lower Tc vanishes in the near BEC regime, and
there exists a superfluid ground state in the BEC regime. For
open Fermi surfaces, pairing and superfluidity become more
difficult, making a ground state superfluid impossible. Note
that for a simple tight-binding band in the lattice dimension
with nearest-neighbor approximation, the Fermi surface topol-
ogy changes from closed below half filling to open above half
filling. Above half filling, the fermion motion on the Fermi
surface becomes more holelike in the kz direction. While the
in-plane motion is always particlelike, this change of character
may have detrimental effect on pairing and superfluidity.

2. Continuous evolution of the superfluid phase with t and d

In this subsubsection, we will sample the multidimensional
phase diagram along the t and d directions at fixed p and
1/kFa. We find that on the BEC side of unitarity, the lower Tc

branch will disappear for large t , so that a BEC superfluid may
be found in the ground state. The evolution of the superfluid
phase with t and d exhibits strong nonmonotonicity. The Tc

curve may split into two disconnected parts as a function of t
for moderate d in the BEC regime.
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FIG. 10. Tc−d phase diagram for different t/EF from 0.001 to
0.5, as labeled, at fixed p = 0.01 and 1/kFa = 1. Tc and the superfluid
region both increase as t increases.

Now, we first present how Tc evolves continuously with
lattice spacing d . Plotted in Fig. 10 are a series of Tc curves
as a function of kFd , for fixed p = 0.01 and 1/kFa = 1 but
different t/EF from 0.001 to 0.5. Except for the large t/EF

(� 0.3) cases, which are unphysical or hard to realize exper-
imentally, Tc curves form a series of loops. This agrees with
the existence of two branches at this interaction strength. The
superfluid phase space area shrinks with decreasing t . This
means that, for small t at the particular 1/kFa = 1, a large
d will not be able to maintain the superfluid phase. At this
pairing strength, the largest reachable value of kFd is highly
nonmonotonic as a function of t , with a minimum of 1.13
for t/EF = 0.05. This also confirms that the ground state at
1/kFa = 1 is not a superfluid for t/EF � 0.2 and p = 0.01.
For larger t , the interaction parameter 1/kFa at which the
lower Tc would vanish becomes smaller than 1, as can be
seen from Fig. 8. This explains why for t/EF = 0.3 and 0.5
in Fig. 10, there is no longer a lower Tc solution for kFd � 2.2
and 4.1, respectively.

The evolution of Tc with continuously varying t is pre-
sented in Fig. 11, for a series of interaction parameter 1/kFa
from 0 at unitarity to 7.0 in the BEC regime. Here p = 0.01
and kFd = 1 are fixed. Logarithmic and linear scales are
used for the horizontal axis in the main figure and the inset,
respectively. The log scale serves to magnify the small t
regime. For 1/kFa � 1.1, the curves have an upper and a lower
branch, which joins at the small t end. Indeed, from Figs. 1– 8,
we find that no matter whether the Fermi surface is closed or
open, there are always two Tc branches in the unitary and BCS
regimes. For 1/kFa � 1.2, we find that the Tc curves pinch
together and then split into two parts around t/EF = 0.04.
The left part forms a loop, which shrinks quickly as 1/kFa
moves toward BEC. This left loop is the same superfluid phase
as the left loop in Fig. 4; they are just different cuts of the
superfluid region in the multidimensional phase diagram. For
stronger interactions in the BEC regime, either a large t or a
very tiny t is needed to maintain a superfluid phase. While
the former case allows a closed Fermi surface and thus a
superfluid solution in the BEC regime, the latter case will

FIG. 11. Behavior of Tc as a function of t/EF at p = 0.01 and
kFd = 1, but for different values of 1/kFa, as labeled. The inset
and the main figure share the same color coding but with different
scales for the horizontal axis. The Tc curve splits into two parts when
1/kFa � 1.2.

allow two branches of Tc which persist into the BEC regime.
One can also tell from this figure that, for small t/EF < 0.12,
either there is no Tc at all or there is a lower Tc > 0, so that the
ground state (with p = 0.01 and kFd = 1) is not a superfluid
for 1/kFa � 7.

Due to the high complexity of the multidimensional phase
diagram, the counterpart of the above figures would look
somewhat different when (t, d, p, 1/kFa) changes.

C. Gaps in the superfluid phase

In this subsection, we will present the behavior of various
gaps in the superfluid phase. The temperature dependence of
the order parameter and the pseudogap can be very nontrivial
and different from the balanced case. For the latter case, both
are monotonic: the order parameters decreases whereas the
pseudogap increases with T at T � Tc. For an intermediate
temperature superfluid, the order parameter �sc necessarily
vanishes at both the lower and the upper Tc, and thus both �sc

and the pseudogap �pg are nonmonotonic in T .
In Fig. 12, we present, as an example for intermediate

temperature superfluidity, the behavior of the order parameter
�sc, the pseudogap �pg and the total gap � and a few relevant
quantities as a function of temperature in the superfluid phase.
Also plotted is the solution above the upper Tc, especially for
the pair chemical potential μp. Shown in the figure is for the
case of kFd = 2, t/EF = 0.2 and p = 0.01 at unitarity. It is
close to the case of t/EF = 0.205 in Fig. 8. Near the upper
Tc, the behavior of the gaps look similar to regular superfluid
Fermi gases in the pseudogap regime; The order parameter
�sc turns on with decreasing T , while the pseudogap �pg

starts to decrease, leaving the total gap roughly constant or
slightly increasing. Above the upper Tc, the pair chemical
potential μp starts to decrease from 0 with increasing T . The
vanishing of �sc at the upper Tc is the same as in BEC of ideal
Bose gases. As the temperature decreases toward the lower
Tc,L, �pg increases again, which suppresses �sc quickly down
to zero. This can be understood from the highly decreased
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FIG. 12. Behavior of (a) the gaps and μp, (b) μσ , (c) B‖ and Bz,
and (d) a0 and a1, as a function of T/Tc, for t/EF = 0.2, kFd = 2 and
p = 0.01 at unitarity. Here Tc/TF = 0.1736 is the upper Tc, and the
lower Tc is Tc,L/TF = 0.05656. Gaps and chemical potentials are in
units of EF. The coefficients B’s are in units of 1/2m, a0 and a1 in
units of k3

F/E 2
F and k3

F/E 3
F , respectively.

value of Bz = tBd2 at Tc,L in panel (c); As Bz decreases,
pairs become heavy in the lattice direction, leading to reduced
energy cost for exciting finite momentum pairs and hence an
rapid increase in �pg, which then exhausts the order parameter
via �2

sc = �2 − �2
pg. We note that there are no other sharp

changes in B‖, a0, and a1. Further lowering T below Tc,L

would enter again a normal state. However, the trend of Bz at
Tc,L suggests that this normal state may soon become unstable
against pair density wave (or stripe order) formation in the
lattice direction (with a negative Bz at lower T ). Other possible
solutions in this low T normal state include phase separation
and possible FFLO-like solutions with a wavevector along the
ẑ direction. In fact, the pair density wave solution is similar
to an FFLO state, except that it may not exhibit superfluidity.
One would need to include the q4

z order in the inverse T matrix
expansion to obtain a meaningful solution below Tc,L, which
is beyond the scope of current work.

It is interesting to note that while � is roughly a constant in
T , μ↑, and μ↓ becomes far apart at low T . This large separa-
tion, with h = 0.346EF, is comparable to the Clogston limit
for pair breaking [38], �/

√
2 = 0.388EF, where �/EF =

0.549 at Tc,L. In other words, the disappearance of superflu-
idity at the lower Tc,L is compatible with the Clogston picture
as well. The small difference between h and �/

√
2 may be

attributable to the deviation of the Fermi surface from an
isotropic 3D sphere [39]. In addition, here the gap is large
(beyond the BCS regime) so that self-consistent calculations
are important. However, at the upper Tc, h is much smaller
than �/

√
2, implying that the vanishing of the superfluid

order at the upper Tc is not associated with the Clogston
picture but rather driven by pairing fluctuations.

D. Superfluid density

In this section, we show the behavior of the superfluid
density. Here we choose to show only cases of intermediate

FIG. 13. Behavior of the in-plane (black) and lattice compo-
nents (red dashed) of the superfluid density (ns/m) as a function
of T/Tc, for kFd = 2, p = 0.01, and (a) (1/kFa, t/EF) = (−1, 0.2),
(b) (0, 0.2), (c) (1, 0.2), and (d) (0, 0.1), with (Tc/TF, Tc,L/TF) =
(0.0923, 0.0210), (0.1736, 0.0566), (0.1362, 0.0684), and (0.1310,
0.0416), respectively. All panels share the same legends.

temperature superfluidity, with both an upper Tc and a lower
Tc,L, as in Sec. III C. Cases without a lower Tc (for large t) are
more qualitatively similar to their balanced counterpart shown
in Part I of this work [19].

Plotted in Fig. 13 are the temperature dependence of
both the in-plane (black curves) and lattice components (red
curves) of (ns/m) for kFd = 2 with p = 0.01. Panels (a–c)
are for the BCS, unitary and BEC cases, respectively, for
t/EF = 0.2. The corresponding curve of Tc versus 1/kFa is
close to the green one for t/EF = 0.205 in Fig. 8. These results
suggest that both components decreases as 1/kFa increases.
The suppression of the lattice component, (ns/m)z, can be
attributed more to the effect that the system becomes more 2D
and tB decreases with increasing pairing strength. However,
the reduction of the in-plane (ns/m)‖ is likely due to the
increase of the pseudogap �pg with decreasing T toward Tc,L,
leading to premature shut-off of the superfluid density before
it fully reaches its maximum possible value (normally) at
T = 0.

Shown for comparison in Fig. 13(d) is the case of
t/EF = 0.1 at unitarity, with other parameters the same as
in Fig. 13(b). As can be seen, the in-plane curves are very
close to each other for these two cases. However, the lat-
tice component is drastically suppressed by the smaller t in
Fig. 13(d). This can be understood qualitatively from the
increased fermion band mass and hence the pair mass in the ẑ
direction.

For all panels in Fig. 13, the temperature dependencies of
both components are close to each other, despite their rather
different magnitudes. This is because the main T dependence
comes from the common prefactor �2

sc in Eq. (8).

E. BEC asymptotic behavior with p �= 0

Finally, in this subsection, we verify numerically our
derivations about the asymptotic behavior in the BEC regime
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FIG. 14. Behavior of (a) 1 − μ and �, (b) Bz, and (c) Tc as a
function of 1/kFa, and comparison with the asymptotic solutions in
the BEC regime. The solid lines are full numerical solution, and
the dashed lines are the asymptotic solution, and the (cyan) dot-
dashed lines are the BEC asymptote. Here p = 0.01, t/EF = 0.25,
and kFd = 2.

in Sec. II D. This will confirm our analytical understanding of
the physics. It will show that, despite the complicated, and
highly unusual behavior of the superfluid phase, it can be
largely understood analytically.

Show in Fig. 14 is the asymptotic behavior of μ, �, Bz,
and Tc in the BEC limit. Plotted in Fig. 14 are 1 − μ and �

in units of EF versus 1/kFa in a semilog scale. The straight
lines confirm their exponential dependence on 1/kFa. The
dashed lines are analytical asymptotic solution, in perfect
agreement with full numerical solutions (solid lines). The red
dashed lines in Figs. 14(b) and 14(c) present the solution
obtained using the asymptotic expansions, while the cyan dot-
dashed lines represent the deepest BEC asymptotes. Clearly,
the asymptotic expansions and the BEC asymptotes are all in
quantitative agreement with the full numerical solutions. This
provides direct support of our analytical derivations in the
BEC regime. These plots demonstrate that in the deep BEC
limit, Bz and Tc approach a constant asymptote, as also shown
in Fig. 5. Similar constant asymptotic behaviors are found for
B‖, a0�

2, and a1�
2 as well, a plot of which can be seen in

Ref. [37].
Given these BEC asymptotic behaviors, we can investigate

the phase diagrams in the BEC limit as a function of t , d
and p. Shown in Fig. 15(a) is the BEC asymptote of Tc with
t/EF = 0.1 as a function of p with different kFd = 0.25, 0.5,

FIG. 15. Behavior of the BEC asymptote of Tc, as a function
(a) of p for fixed t/EF = 0.1 with different kFd from 0.25 to 0.95,
(b) of t/EF for fixed p = 0.01 with varying kFd from 0.25 to 4, (c,
d) of kFd for (c) fixed t/EF = 0.1 with varying p from 0.005 to 0.6
and for, (d) fixed p = 0.01 with varying t/EF from 0.05 to 0.5. The
parameters are labeled on the curves.

0.75, and 0.95. The Fermi surface topology at p = 0 changes
from closed to open, as the lattice spacing increases across
kFd = 0.942. Therefore, nearly all cases shown here have a
closed Fermi surface. It can be readily seen that for kFd =
0.95, the maximum p is only about 0.01; there is no BEC
superfluid solution for larger p. The maximum p increases as
d decreases. For smaller kFd = 0.25, p survives up to about
0.475. This may largely have to do with the fact that a smaller
d places less restrictive confinement for pair motion in the kz

direction, and thus the system is closer to the 3D case, so that
it can accommodate a larger population imbalance.

Plotted in Fig. 15(b) are Tc curves with p = 0.01 as a
function of t/EF with different kFd = 4, 2, 1, 0.5, and down to
0.25. These curves demonstrate that the lowest threshold of t
for having a BEC superfluid solution increases with d . For
kFd = 4, we need t/EF � 0.42. For kFd = 2, the threshold
drops to about 0.21, in agreement with Fig. 8. For kFd = 0.25,
the threshold becomes t/EF ≈ 0.03. In particular, for kFd =
1, the threshold is about 0.105 (>0.1). This explains why there
is no kFd = 1 curve in panel (a), calculated for t/EF = 0.1. As
d increases, the overall Tc also increases, since the 2D planar
density n2D increases and so does the noninteracting chemical
potential. In reality, t is normally small. This requires a small
d to have a BEC superfluid, as one can see from Fig. 9 as
an example, where only the kFd = 0.1 curve persists into
the BEC limit for small t/EF = 0.05. Our calculations show
that these thresholds roughly correspond to half filling of the
lattice band, where the Fermi surface topology changes.

Presented in Fig. 15(c) is the BEC asymptote of Tc cal-
culated for t/EF = 0.1, as a function of kFd with different
population imbalances from p = 0.005 to 0.6. The maximum
allowed kFd decreases quickly with increasing p. For p =
0.005, kFd goes up to 1.2. For p = 0.01, kFd is allowed up
to about 0.96. For p = 0.6, one needs a small kFd < 0.22 to
have a BEC superfluid. Figure 15(c) also reveals that for a
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given d , there is a maximum allowed p, beyond which the
BEC superfluid solution no longer exists, in agreement with
Fig. 15(a).

Shown in Fig. 15(d) is the BEC asymptote of Tc calculated
for p = 0.01, as a function of kFd with different tunneling
t/EF from 0.05 to 0.5. As is shown, the maximum possible
d increases with t . While for t/EF = 0.5 this maximum is
about 4.8, it decreases down to about 0.49 for t/EF = 0.05.
If one wants to have a larger d for the same small t , then one
will need to use a smaller p, as indicated by Fig. 15(c). The
lower end t/EF = 0.05 is more realistic. It means that for a
typical kFd ∼ 1, a small amount of population imbalance will
be sufficient to destroy the superfluid solutions in the BEC
regime [40].

We point out that in all four panels of Fig. 15, there exists
a narrow range of the parameters where the Tc curve bends
back and thus is double-valued, which correspond to the two
branches such as the low p curves shown in Fig. 5(e), with
an open Fermi surface. For the rest part of the curves, there is
only one (upper) Tc, corresponding to, e.g., the low p curves
in Fig. 4, with a closed Fermi surface.

F. Further discussions

From the numerical results presented above, we see that
the behavior of Tc and the phase diagrams are very complex,
in the presence of a population imbalance. In the physically
accessible scope of the parameters, e.g., constrained by the
condition 2mtd2 < 1, the superfluid phase occupies only a
very restricted small volume in the multidimensional phase
space. Superfluidity can be easily destroyed by small amount
of population imbalance when the lattice constant d becomes
large and/or the tunneling matrix element t becomes small.
To understand this destruction of superfluidity, we notice that
large d and small t put the system in the quasi-2D regime,
such that the lattice band is essentially fully occupied, and
in-plane chemical potential (in the noninteracting limit) is
much higher than the lattice band width 2t , leaving almost
no dispersion on the Fermi surface along the lattice direction.
Excessive fermions will necessarily have to occupy high
in-plane momentum states and thus cost a lot of excitation
energy. In this case, a small population imbalance will create a
substantial mismatch h in chemical potentials that is sufficient
to destroy pairing.

In contrast, we find that smaller d is more benign in the
behavior of Tc, e.g., the kFd = 0.1 case in Fig. 9. For small
d , the momentum space constraint |kz| < π/d in the lattice
direction becomes less restrictive so that the Fermi surface
becomes an ellipsoid, which can be mapped back into a sphere
via momentum rescaling. Whether closed or open, the Fermi
surface topology in the noninteracting limit plays an important
role in classifying the behavior of the Tc curves. With a closed
Fermi surface, the superfluid solution in the BEC regime (if
it exists) has only one (upper) Tc. In contrast, with an open
Fermi surface, the superfluid has both an upper and a lower
Tc, so that ground state superfluidity is not allowed. Further
careful analysis may involve different Fermi surfaces for the
two spin components and how their influence evolves with p.

More surprisingly, when the superfluid solution exists in
the BEC regime or on the BEC side of unitarity, Tc can

be substantially enhanced by a small amount of population
imbalance with respect to the balanced case. Via analytical
analysis in the BEC regime, we show that this enhancement
is associated with contributions to tB from excessive unpaired
majority atoms. These contributions lead to a constant BEC
asymptote for tB and a few other relevant quantities, and
hence a constant BEC asymptote for Tc via the pseudogap
equation. These contributions to tB constitute a new pair
hopping mechanism assisted by excessive majority atoms. For
this mechanism to work, it is important that there is at least
one transverse continuum dimension. In the present case of 1D
optical lattice, there are two transverse continuum dimensions,
i.e., the 2D xy plane. This guarantees that there are always
excessive majority atoms available on a neighboring lattice
“site.” Therefore, lattice-continuum mixing is crucial for this
unusual behavior.

Another important difference between 1D optical lattices
and the 3D continuum case is the pair fraction in the BEC
limit. For the latter case, all minority atoms will form pairs,
namely, np/n↓ = 1 in the BEC limit. In contrast, for the
present case, we always have np/n↓ < 1 for nonzero p, as
can be seen from Eq. (15). The difference can be attributed to
the quasi-two dimensionality (quasi-2D) in the present case,
which leads to a constant ratio of �2/|μ| in the BEC limit, in
contrast to vanishing as 1/

√|μ| in 3D continuum.
As one can see, the most unusual behaviors, in comparison

with their 3D continuum counterpart, are observed in the BEC
regime. Since they are mostly connected to the topology of the
Fermi surface, and the general feature of lattice-continuum
mixing (the latter leads to topologically different geometry
from the 3D continuum space), we believe that these results
are qualitatively stable. Different approximations shall only
lead to minor quantitative corrections.

Our calculations are based on the assumption that the 2D
planes are homogeneous. In real experiments, they are always
finite and confined in a shallow trapping potential. At the
same time, the lattice direction is confined by a trapping
potential as well. The finite size and trap effects are beyond
the scope of the current work and will be left for future
investigations. We note that recent progress in implementing
uniform box trapping potential [41–43] can greatly reduce
the complexity.

One interesting question is to ask when the 1DOL lattice
will be reduced to a 2D system such as a tightly confined
single pancakelike 2D trap. One may be tempted to think
that the latter corresponds the small d limit. However, since
the lattice potential is unlike a hard-wall box trap, a small d
often means easy tunneling between neighboring lattice sites,
and also a large first BZ, which makes the system more 3D
like. Therefore, to reach the 2D limit, it is crucial to keep
the tunnel matrix element t small. This will keep the lattice
dimension fully occupied and nearly dispersionless. Note that
the phase space density in the lattice dimension is always 1,
as d (2π/d )/(2π ) = 1, which can be thought of as the single
energy level in the normal direction for the tightly confined
2D trap. Therefore, for given d , the 2D limit is approached
when t is so small that the dispersion in the lattice direction
is negligible. Behaviors of population imbalanced Fermi gases
in 2D have also been under active investigation experimentally
[31,44] and theoretically [45–50].
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IV. CONCLUSIONS

In summary, we have studied the ultracold atomic Fermi
gases in a 1D optical lattice in the presence of population
imbalance with a pairing fluctuation theory, as they undergo
a BCS-BEC crossover. We find that superfluidity exists only
for a very restricted range of parameters, while it can be
readily destroyed by a small amount of imbalance p at large
d and small t . When the superfluid solution does exist on
the BEC side of the Feshbach resonance, Tc can be enhanced
substantially by even a tiny amount of population imbalance,
via the new pair hopping mechanism assisted by excessive
majority atoms. In general, when t is small, the Tc curve
bends back on the BEC side and the superfluidity disappears
in the deep BEC regime. Meanwhile, the superfluid phase
shrinks as p increases. For fixed d and p, the superfluid
region in the T −1/kFa plane shrinks as t decreases, while
for fixed p and t , the Tc curve forms a closed loop in the
T −1/kFa plane and becomes narrower near unitarity as d
increases. In general, whether there is only one (upper) Tc or
there are both an upper and a lower Tc in the BEC regime
depends largely on the Fermi surface topology. The former
occurs with a closed ellipsoidal Fermi surface, while the latter
happens when the Fermi surface has two open ends at the
Brillouin zone boundaries. Furthermore, due to the quasi-two
dimensionality, only part of the minority atoms will be paired
even if superfluidity exists in the BEC limit.

Before a general formula relating the scattering length
a with its 3D continuum counterpart a3D is available, one

can use the chemical potential μ as a control variable in
experiment.

Our results demonstrate that experimentally one needs to
be careful to maintain a good population balance to stay in the
superfluid phase. However, a perfect balance may not always
be desirable. A small amount of imbalance may be good for
enhancing Tc, making the superfluid phase easier to access. It
may take some trial and error to find the optimal parameters
in experiment.

These predicted behaviors of fermions on a 1D optical
lattice are very different from pure 3D continuum or 3D
lattices, and have not been reported in the literature. Since
optical lattices have been realized experimentally for a long
time, these predictions should be tested in future experiments.
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