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Reentrant superfluidity and pair density wave in single-component dipolar Fermi gases
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We study the superfluidity of single-component dipolar Fermi gases in three dimensions using a pairing
fluctuation theory, within the context of BCS-BEC crossover. The transition temperature Tc for the dominant pz

wave superfluidity exhibits a remarkable reentrant behavior as a function of the pairing strength induced by the
dipole-dipole interaction (DDI), which leads to an anisotropic pair dispersion. The anisotropy and the long-range
nature of the DDI cause Tc to vanish for a narrow range of intermediate interaction strengths, where a pair density
wave emerges as the ground state. The superfluid density and thermodynamics below Tc, along with the density
profiles in a harmonic trap, are investigated as well. Implications for experiments are discussed.
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I. INTRODUCTION

The recent experimental realization of quantum degenerate
Fermi gases of magnetic atoms [1–3] and the rapid progress
toward creating degenerate polar molecules [4–6] have opened
a new frontier for exploring novel phases of quantum gases,
where dipole-dipole interaction (DDI) plays a central role.
A lot of attention has been paid to unconventional p-wave
superfluids [7–11] in three dimensions (3D) and topological
superfluids [12] in two dimensions (2D). The latter has been
associated with Majorana fermions and can be used for
topological quantum computation [13]. Such exotic superfluid
phases emerge from the long-range DDI with a strong
anisotropy, which differs from the widely studied contact
potential in dilute atomic gases. Moreover, the relative DDI
strength can be tuned by changing the fermion number density
n (or Fermi wave vector kF ) and, in the case of polar molecules
[14], by varying an external electric field strength.

Of particular interest is the intermediate pairing strength
regime, where complex physics beyond the weak-coupling
BCS theory arises and the superfluid transition temperature
Tc is relatively high, making it more practical to access
the superfluid phase experimentally. For a contact potential,
the entire BCS–Bose-Einstein condensation (BEC) crossover
from weak- to strong-coupling regimes has been studied
intensively in two-component Fermi gases of 6Li or 40K. In
contrast, such a crossover in dipolar Fermi gases, where richer
physics may arise, is yet to be explored. Existing theoretical
studies in this aspect mostly focus on the ground state, based
on mean-field treatments [7,8,15,16], which are inadequate
in addressing moderate and strong-coupling regimes at finite
temperature.

In this paper, we address the superfluidity and pairing
phenomena of single-component dipolar Fermi gases in 3D,
with an emphasis on the finite temperature and interaction
effects. Built on previous work [17,18] that has been applied
successfully to address various BCS-BEC crossover phenom-
ena in two-component Fermi gases with a contact interaction
[18,19], here we construct a similar pairing fluctuation theory
for the superfluidity of fully polarized one-component dipolar
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fermions (in the ẑ direction), in which thermally excited pairs
naturally give rise to a pseudogap in the fermion excitation
spectrum. We find that (i) the DDI leads dominantly to a
pz-wave superfluid, and the superfluid Tc curve exhibits a
reentrant behavior as a function of the DDI strength; in the
intermediate regime of the BCS-BEC crossover, Tc vanishes
and the ground state becomes a pair density wave (PDW),
similar to the PDW state studied in underdoped high-Tc

superconductors [20,21]. (ii) In the fermionic regime, the
temperature dependence of superfluid density and low T

thermodynamic quantities exhibit power laws, as expected but
in stark contrast to the contact interaction case [22]. (iii) Within
a local density approximation (LDA), the density profile
in an isotropic harmonic trap exhibits a similar qualitative
behavior to its s-wave counterpart, despite the different pairing
symmetry and the anisotropic pair mass.

The emergence of the PDW state originates from the long-
range nature of the DDI, which essentially put the system in the
high density regime. The pz-wave symmetry leads further to
a nonlocal effect [23] and hence a diverging coherence length
in the nodal xy plane, which makes it difficult for the pairs to
move in the ẑ direction, without heavily colliding with each
other. At certain intermediate pairing strengths, the interaction
energy between pairs may dominate the kinetic energy, in favor
of forming a Wigner-like crystal in the ẑ direction. This PDW
state may exhibit behaviors of a Bose metal [24,25], with a
Bose “surface” for pair excitations at a finite pair momentum
qz (with qx = qy = 0). The two dimensionality of the pair
dispersion in the remaining xy plane destroys possible long-
range superfluid order, leading to a metallic ground state with
a density wave of Cooper pairs in the ẑ direction.

II. THEORETICAL FORMALISM

We consider an ultracold gas of one-component dipolar
fermions of mass m in unit volume, with dipole moment
d = d ẑ, fully polarized in the ẑ direction. We follow the
pairing fluctuation theory as described in Ref. [17], with
fermion energy ξk = k2/(2m) − μ measured with respect to
the chemical potential μ (we take � = kB = 1, as usual).
We shall write the pairing interaction Vk,k′ into an effective
separable form [26], i.e., Vk,k′ = gϕkϕ

∗
k′ , where g is the pairing
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FIG. 1. Feynman diagrams for the pairing fluctuation self-energy
�pg and T matrix t . The thin solid, thick solid, and dashed lines
represent the bare propagator G0, dressed propagator G, and DDI,
respectively.

strength, and ϕk is the symmetry factor with an odd parity and
will be determined by the DDI.

Following previous work [17,27,28], the fermion self-
energy comes from particle-particle scattering, which leads
to both an order parameter (below Tc) and a pseudogap.
Noncondensed pairs are treated on an equal footing with
single particle propagators. In contrast to the s-wave singlet
pairing case [17], an extra exchange diagram has now been
retained in the self-energy, as shown in Fig. 1. Besides the
pairing symmetry, this exchange diagram is a major difference
between singlet and triplet pairing. Therefore, we obtain the
fermion self-energy from noncondensed pairs

�pg(K) = �direct
pg (K) + �exchange

pg (K)

=
∑
Q�=0

t(Q)G0(Q − K)ϕk−q/2ϕ
∗
k−q/2

−
∑
Q�=0

t(Q)G0(Q − K)ϕk−q/2ϕ
∗
3q/2−k, (1)

where t(Q) = 1/[g−1 + χ (Q)], with χ (Q) =∑
K G(K)G0(Q − K)|ϕk−q/2|2, and G0 (G) the bare

(full) fermion Green’s function. Below Tc, the condensate
self-energy is

�sc(K) = −�2
scG0(−K)|ϕk|2, (2)

as in BCS theory, with the superfluid order parameter �sc. As
in Ref. [17], we use a four-vector notation, K ≡ (iωn,k), Q ≡
(i�l,q),

∑
Q ≡ T

∑
l

∑
q, etc., with ωn (�l) being odd (even)

Matsubara frequencies. Here ϕ∗
k is the complex conjugate

of ϕk.
We emphasize that the derivation of this theory is indepen-

dent of the concrete form of the pairing interaction, namely, it
is not essential whether the interaction is s wave, p wave, or d

wave, short range or long range, provided that one can assume
a separable potential in the scattering T matrix [28]. In fact,
the original zero-temperature BCS-BEC crossover by Leggett
was done with p-wave pairing [29].

Due to the anisotropy of the DDI, the pair dispersion
acquires an anisotropy as well, in contrast to the short-range
contact potential case in a two-component Fermi gas. Namely,
the finite q pair propagator tpg(Q) can be expanded as

t−1
pg (Q) = Z(i�l − �q + μpair + i	�,q), (3)

with an effective pair dispersion �q = q2
⊥/(2M∗

⊥) +
q2

z /(2M∗
z ) and an effective pair chemical potential μpair. Here

the inverse residue Z and the (anisotropic) effective pair mass
M∗

⊥ = M∗
x = M∗

y and M∗
z can be determined in the process

of Taylor expansion, as usual. Following Ref. [17], �pg can
be approximated as �pg(K) ≈ −�2

pgG0(−K)|ϕk|2. With the
odd parity ϕ−k = −ϕk, here we have defined the pseudogap
�pg as

�2
pg = −2

∑
Q

tpg(Q) ≈ 2Z−1
∑

q

b(�q), (4)

where b(x) is the Bose distribution function. This leads to the
BCS form of the total self-energy,

�(K) = �sc(K) + �pg(K) = −�2G0(−K)|ϕk|2, (5)

with a total excitation gap � =
√

�2
sc + �2

pg.

As in Ref. [17], from the Thouless criteria, t−1(0,0) = 0,
we have the gap equation

1 + g
∑

k

1 − 2f (Ek)

2Ek
|ϕk|2 = 0, (6)

and the fermion number equation

n =
∑
K

G(K) =
∑

k

[
1

2

(
1 − ξk

Ek

)
+ ξk

Ek
f (Ek)

]
, (7)

where Ek =
√

ξ 2
k + �2|ϕk|2 is the Bogoliubov quasiparticle

dispersion and f (x) the Fermi distribution function.
Now we determine the symmetry factor ϕk from the DDI,

Vd (r) = d2 1 − 3 cos2 θr

r3
= V (r)Y2,0(θr,φr), (8)

where the radial part V (r) = −√
16π/5 d2/r3, and the

angular part Y2,0(θr,φr) is the spherical harmonic Ylml
(r̂),

with θr and φr the polar and azimuthal angles of r. So the
DDI breaks SO(3) symmetry and mixes different partial
waves. Expanding Vk,k′ in terms of partial waves, we
have Vk,k′ = ∑

ll′
∑

mlml′
gll′

mlml′ (k,k′)Ylml
(k̂)Y ∗

l′ml′
(k̂′), with

gll′
mlml′ (k,k′) = (−1)

3l+l′
2 16π2wl,l′(k,k′)〈lml|Y20|l′ml′ 〉 and

wl,l′ (k,k′) = ∫ ∞
0 r2dr jl(kr)V (r)jl′(k′r), where jl(kr) is the

spherical Bessel function. For a single-component Fermi gas,
only odd l and l′ are allowed, with l′ = l, l ± 2. The r−3

dependence of the DDI leads to a k-independent wl,l′(k,k).
Detailed analyses show that the dominant attractive channel in
Vk,k is l = 1, ml = 0, i.e., the pz wave, where g11

00(k,k) < 0 is
the leading order term, with g33

00(k,k) ≈ 0.1g11
00(k,k) being the

next leading order term. The leading hybridization terms with
l = 1, l′ = 3 are repulsive. Therefore here we concentrate on
the pz-wave channel.

To remove the ultraviolet divergence in the momentum
integral of the gap equation, caused by the k independence of
wl,l′ (k,k), we regularize the DDI by multiplying a convergence
factor F (r/r0), where r0 is the typical radius beyond which
the DDI becomes dominant [30]. We choose F (x) = 1 −
e−x(1 + x + x2/2), similar to that used in Ref. [15] but here the
regularized DDI approaches a finite value as r → 0, as shown
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FIG. 2. (a) Radial part, V (r), and regularized V (r) of the DDI,
in units of

√
16π/5 d2. (b) k dependence of |ϕk|2 calculated from

the regularized DDI (black solid line) and |ϕk|2NSR (blue dashed). For
comparison, the radial part of a short-range interaction induced p

wave |ϕk|2p , which scales as k2 in the low energy limit, is plotted as
well (red dotted).

in Fig. 2(a). This leads to a modified pz-wave symmetry factor

ϕ2
k = 1

2η2

[
1 − ln(1 + 4η2)

4η2

]
cos2 θk, (9)

where ϕk is real, with η = k/k0 = kr0, and θk the polar angle
of k. Interestingly, the k dependence of this ϕk is quantitatively
very close to a rescaled s-wave Lorentzian symmetry factor
used in Ref. [26],

ϕ2
k

∣∣
NSR = 1

1 + (1.55k/k0)2
, (10)

as shown in Fig. 2(b). For comparison, we also plot the k

dependence of a typical p-wave symmetry factor, |ϕk|2p =
(k/k0)2

[1+(k/k0)2]2 , induced by a short-range interaction [31–33],

for which the partial wave scattering amplitude f l
k ∼ Vkk ∼

|ϕk|2 ∼ alk
2l as k → 0 so that for l = 1, a1 is the scattering

volume. In contrast, the behavior of the pz-wave scattering
amplitude of the DDI is very similar to the short-range s-wave
case, giving rise to a well-defined scattering length rather
than scattering volume. Indeed, the strict V (r) gives rise to
a completely k independent scattering amplitude [8,34], as is
the k0 → +∞ limit of Eq. (9).

Now with ϕk given by Eq. (9) for the DDI, Eqs. (4), (6), and
(7) form a closed set, which can be solved self-consistently
for Tc as a function of the p-wave pairing strength, g =
−24πD/(5m), and for gaps below Tc as a function of T , where
D = md2/2 is the dipole length. The unitary limit corresponds
to the critical coupling strength gc = −18π/(mk0), at which
the scattering length diverges, and a bound state starts to form,
as determined by the Lippmann-Schwinger equation [31,35]
g−1

c = −∑
k |ϕk|2/(2εk), with εk = k2/(2m). Thus g/gc =

4k0D/15. In our numerical calculations we take k0/kF = 20,
corresponding to a dilute case.

III. NUMERICAL RESULTS AND DISCUSSIONS

We first present in Fig. 3 the calculated superfluid transition
temperature Tc and corresponding μ and pseudogap �pg at
Tc as a function of pairing strength, which are obtained
by setting �sc = 0. For comparison, the mean-field solution
T MF

c is also shown in Fig. 3(a) (red dashed curve). In the

FIG. 3. (a) Superfluid transition temperature Tc (black solid
curve), the mean-field T MF

c (red dashed curve) and (b) chemical
potential μ(Tc) as a function of g/gc. Shown in the insets are the
pseudogap �pg(Tc) and the inverse pair mass m/M∗. A PDW state
emerges where Tc shuts off at intermediate coupling strength and the
inverse pair mass m/M∗

z becomes negative. The right insets share the
same horizontal axis as the main panels. The lower left inset shows
schematic pair dispersion in the PDW regime. While the inverse
mass remains positive in the xy plane (blue dashed line), it becomes
negative in the z direction (black solid curve), with a minimum at
finite qz in �z

q .

weak-coupling regime, Tc follows the mean-field BCS result.
It starts to decrease after it reaches a maximum around unitarity
g/gc = 1, due to the shrinking Fermi surface. Remarkably,
it exhibits a reentrant behavior. For a range of intermediate
pairing strength, Tc shuts off completely, before it recovers
at stronger couplings, where the system has entered the
BEC regime and all fermions are paired, with μ < 0. With
M∗ approaching 2m and npair = n/2, Tc approaches the
BEC asymptote, 0.137TF , from below. The pseudogap at Tc

increases monotonically with g/gc.
In order to understand the reentrant Tc behavior, we plot the

inverse pair masses in the lower inset of Fig. 3(b). It reveals
that, when Tc vanishes at the intermediate pairing strength,
the effective pair mass in the dipole direction, M∗

z , at zero
momentum becomes negative, so that the pair dispersion �q
in the ẑ- direction becomes rotonlike [36], with a minimum at
a finite qz, as shown schematically in the lower left inset of
Fig. 3 (solid curve). The pair mass in the xy plane remains
positive. This corresponds to a pair density wave ground
state, with a crystallization wave vector qz in the ẑ direction.
Similar PDW states were extensively investigated in high-Tc

superconductors in the quasi-2D context [20,21].
We emphasize that the nonmonotonic behavior of Tc as

a function of pairing strength, as found in our T -matrix
approach of the pairing fluctuation theory [17], can be under-
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stood on physical grounds, without invoking specific details
of the theory. Indeed, this approach has been accepted by
increasingly more researchers [37,38]. In the weak-coupling
regime, Tc follows the mean-field behavior. As the pairing
strength increases towards unitarity, the chemical potential
decreases, leading to a shrinking Fermi surface and thus a
decreasing density of state (DOS) N (0) ∝ √

μ. At the same
time, a pseudogap develops gradually due to strong pairing
correlations, which causes a further depletion of the DOS
at the Fermi level. Both these effects cause a reduction of
Tc, as one can naively expect from the BCS formula for Tc.
Such effects will reach their utmost when the Fermi surface
disappears completely at μ = 0. Therefore, it is natural to
have a maximum of Tc within the fermionic regime. The
actual position of the maximum depends largely on the
range of the pairing interaction, and is close to unitarity
in the contact potential limit. On the other hand, as the
pseudogap develops, fermions form pairs. Upon entering the
bosonic regime, essentially all fermions are paired. The BEC
temperature of these pairs increases with the pairing strength,
as the pair density does. This explains why the combined Tc

exhibits a minimum around μ = 0. At this point, the effective
pair mass M∗ is significantly heavier than 2m, due to the
repulsive interaction between pairs. As the pairing strength
increases further into the BEC regime, the pair size shrinks,
and the interpair scattering length decreases, so that M∗
decreases gradually towards 2m. As a consequence, the Bose
condensation temperature Tc of the pairs necessarily increases
towards its BEC asymptote from below. Within a T -matrix
approximation, these arguments are independent of the specific
form of the pair susceptibility.

We note that the emergence of the PDW state has to do
with the long-range nature of the DDI, which essentially put
the system in the high density regime. At the same time, due
to the pz symmetry, the coherence length ξ ∼ vF /�k diverges
in the nodal xy plane (i.e., kz = 0) so that the order parameter
�k = �ϕk exhibits a nonlocal effect similar to the case of
a dx2−y2 -wave superconductor [23]. (Here vF is the Fermi
velocity). Such a diverging in-plane coherence length makes it
difficult for the pairs to move in the ẑ direction, without heavily
colliding with other pairs. At certain intermediate interaction
strength, pairing is strong while the pair size is large, so that the
repulsive interaction between pairs becomes strong. Indeed, a
careful look at the effective inverse pair mass reveals that
before entering the PDW state, the pair mass already becomes
heavy due to strong pair-pair repulsion. Therefore, the kinetic
energy of the pairs (in the ẑ direction) becomes much smaller
than the growing potential energy between pairs, in favor of
forming a Wigner-like crystal structure, which is what we
call the PDW state. Formation of such a crystal structure
and minimization of the pair dispersion at a finite momentum
suppress the superfluid Tc down to zero. Such a periodic crystal
structure of a PDW state can be most directly probed using
Bragg scattering, similar to the x-ray diffraction of a crystal
structure of a solid.

To further test this picture, we plotted in Fig. 4 the Tc

behavior of the finite range pz-wave superfluid, with a pairing
symmetry factor given by |ϕk|p cos θk, as a function of pairing
strength for representative values of the range of interaction,
as given by k0/kF = 2.5 and 1.0. Here kF /k0 serves as the

FIG. 4. Tc behavior of a finite range pz-wave superfluid as a
function of g/gc for k0/kF = 2.5 (black solid) and 1.0 (red dashed
line). The pairing symmetry is given by |ϕk|p cos θk.

effective range of interaction, in units of the interparticle
distance (1/kF ). For a short range, k0/kF = 2.5, the crossover
is smooth and continuous, similar to a short-range s-wave
case [39], except for a reduced BEC asymptote. As kF /k0

increases, more particles are within the range of interaction
at the same time so that the effective repulsion between pairs
becomes strong and the pair mass becomes heavy. For a larger
range, k0/kF = 1, a reentrant behavior of Tc appears, as in the
dipole-dipole interaction case (and PDW states emerge where
Tc vanishes). In fact, such reentrant behavior also occurs for
s-wave pairing with a large range of interaction [28]. This
supports our conclusion that the reentrant behavior of Tc for
a dipolar Fermi gas results from the long-range nature of the
DDI. We emphasize that the reentrant behavior is not unique
to the DDI, nor is it to the p-wave pairing symmetry.

In the absence of an underlying lattice potential, the PDW
state in the dipolar Fermi gases is distinct from a Mott state.
Instead, it may exhibit behaviors of a Bose metal [24,25].
The presence of the PDW manifests a Bose “surface” for pair
excitations [40], whose energy vanishes at a finite momentum
qz (with qx = qy = 0). While the pair dispersion remains
positive in the xy plane, the two dimensionality destroys
the long-range superfluid order, leading to a metallic ground
state with a density wave of Cooper pairs in the ẑ direction.
The nature of the PDW state deserves further systematic
investigations [41].

It should be mentioned that the chemical potential μ

changes sign within the PDW regime. In the fermionic regime,
there is a line node at kz = 0 on the Fermi surface in the
pz-wave superfluid order parameter. Once μ becomes neg-
ative, the node disappears and the excitation spectrum Ek
becomes fully gapped. This may be regarded as a topological
transition [29,32]. The anisotropy in the pair mass is a
consequence of the DDI. We emphasize that the reentrant
behavior of Tc is robust against changes of k0 and independent
of the regularization scheme, because k0 does not modify the
long-range part of the DDI. It is also present in the next leading
order, fz-wave channel.

Note that when μ changes sign, the pairing gap � is rather
large (of the order EF ). There exists an extended range of low
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FIG. 5. Transport and thermodynamic behavior. (a) ns/n and
(b) γ (T )/γ (Tc) as a function of T/Tc for g/gc = 0.85 (BCS), 1.0
(unitary), and 1.5 (BEC), and log-log plot of (c) 1 − ns/n and
(d) γ (T )/γ (Tc) vs T/Tc.

T � �, where μ, �, and M∗ remain essentially constant, so
that the PDW state is rather insensitive to T in this temperature
range.

For d-wave pairing as in the cuprates, Tc vanishes at a
lower critical doping concentration, for which the calculated
effective pair mass diverges as well. Below this doping
concentration, the pair dispersion acquires a minimum at a
finite momentum, with a negative mass at q = 0. This suggests
that the PDW in the cuprates and the PDW in the dipolar Fermi
gases may share the same origin.

Next we investigate the transport and thermodynamics
behavior in the superfluid phase. The superfluid density can
be derived using a linear response theory. Following Ref. [17],
we obtain

ns = m�2
sc

3

∑
k

1

E2
k

[
1 − 2f (Ek)

2Ek
+ f ′(Ek)

]

×
[

(∇kξk)2|ϕk|2 − 1

4

(∇kξ
2
k

) · (∇k|ϕk|2)

]
, (11)

where f ′(x) = df (x)/dx. It can be shown that ns(0) = n.
At 0 < T � Tc, both Bogoliubov quasiparticles and pair
excitations contribute to the thermodynamics. This leads to
the specific heat Cv = ∑

k Ek∂T f (Ek) + ∑
q �q∂T b(�q).

Shown in Fig. 5 are the T dependencies of (a) ns and (b) γ =
Cv/T , for g/gc = 0.85, 1.0, and 1.5, corresponding to BCS,
unitary, and BEC regimes, respectively. These two quantities
are sensitive to the elementary excitation spectrum. Due to the
line node on the Fermi surface of the pz-wave superfluid, the
low energy density of states N (E) is linear in E. Therefore,
the low T superfluid density and specific heat exhibit power
laws in contrast to the exponential behavior of an s-wave
superfluid. In the BCS regime, both the low temperature
normal-fluid density nn/n = 1 − ns/n and γ (T ) are linear in
T , similar to their counterpart in the nodal d-wave cuprate
superconductors. On the other hand, in the BEC regime,
pair excitations dominate, so that nn/n ∼ (T/Tc)3/2 and

FIG. 6. Comparison of density profiles in an isotropic harmonic
trap at T/TF = 0.01, 0.15, and 0.25 and pairing strengths g/gc =
0.85 (BCS), 1.0 (unitary), and 1.5 (BEC). Here RTF is the Thomas-
Fermi radius and the density n is in units of k3

F .

γ ∼ (T/Tc)1/2, similar to the short-range s-wave case. At
g = gc, both types of excitations coexist, and thus the T

dependence exhibits a crossover. The power-law behaviors are
best manifested in log-log plots, as slope changes in Figs. 5(c)
and 5(d). While the qualitative features shown here may be
easily anticipated, we emphasize that this is the first systematic
study of the thermodynamic behavior of a superfluid of a
dipolar Fermi gas throughout the BCS-BEC crossover.

Finally, we consider the effect of a 3D isotropic harmonic
trap of frequency ω with a trapping potential Vtrap(r) =
1
2mω2r2. We assume that EF is large enough to justify
the use of LDA [38,42]. Then μ is replaced by μ(r) =
μ0 − Vtrap(r), where the global chemical potential μ0 is
determined by the total fermion number constraint, N =∫

trap n(r)d3r , with local density n(r). Outside the superfluid
core, a nonvanishing μpair(r) is included so that the gap and the
pseudogap equations are extended as t−1(0,0) = Zμpair and
�2

pg = 2Z−1 ∑
q b(�q − μpair), respectively. Shown in Fig. 6

is the evolution of the density profile from low to high T ,
throughout the BCS-BEC crossover. Despite the anisotropic
pairing interaction, the density profile remains isotropic under
LDA. It broadens with increasing temperature, whereas it
shrinks with increasing DDI strength, similar to its s-wave
counterpart with a contact potential [42]. The isotropic density
profile partly reflects the fact that (i) the pairing symmetry
becomes internal degrees of freedom for the fermion pairs and
(ii) within the LDA, this isotropy comes from the isotropic
Vtrap(r). Possible anisotropy in the density profile may occur
when direct pair-pair interactions beyond the T -matrix level
are included, without using the LDA.

Recent studies [43–45], using Hartree-Fock approximation,
suggest that the normal state 3D dipolar Fermi gas is subject
to collapse and phase separation instabilities in the high
density and strong DDI regime. For the dilute case considered
in the present work, the Hartree-Fock contribution to the
system energy, proportional to n2, is relatively weak. Our
calculations show that, within the T -matrix approximation, the
compressibility for paired superfluid phase at T � Tc remains
positive definite throughout the BCS-BEC crossover, ensuring
a stable superfluid state. Effects of direct pair-pair interactions
beyond the T -matrix approximation will be investigated in a
future study.
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IV. CONCLUSIONS

In summary, our study of single-component dipolar Fermi
gases reveals a reentrant behavior of a pz-wave superfluid
transition Tc and a PDW state in a range of intermediate DDI
strength. Such a PDW state as well as the pz-wave superfluid
phase may be detected using local density measurements,
Bragg spectroscopy, and momentum resolved rf spectroscopy.
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