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Particle density distributions in Fermi gas superfluids: Differences between one- and two-channel
models in the Bose-Einstein-condensation limit
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We discuss the differences between one- and two-channel descriptions of fermionic gases with arbitrarily
tunable attractive interactions; these two cases correspond to whether molecular bosonic degrees of freedom
are omitted or included. We adopt the standard ground state wave function for the fermionic component
associated with the BCS to BEC crossover problem: for weak attraction the system is in the BCS state while
it crosses over continuously to a Bose-Einstein-conde(BEE) state as the interaction strength is increased.

Our analysis focuses on the BEC and near-BEC limit where the differences between the one- and two-channel
descriptions are most notable, and where analytical calculations are most tractable. Among the differences we
elucidate are the equations of state at gen&rdkelow T, and related particle density profiles. We find a
narrowing of the density profile in the two-channel problem relative to the one-channel analog. Importantly, we
infer that the ratio between bosonic and fermionic scattering lengths depends on the magnetic detuning and is
generally smaller than its one-channel counterpart. Future experiments will be required to determine to what
extent this ratio varies with magnetic fields, as predicted here.
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[. INTRODUCTION Since both one- and two-channel models have been ap-
The recent observatiofi$—8] of Bose-Einstein condensa- Plied to the atomic Fermi gases, it is thus very important to
tion (BEC) of molecules formed from fermionic atoms are €OMpare their different pred|c§|0ns. We begin W'.th thg homo-
extremely exciting. Because of a Feshbach resonance, it B€neous case and then consider the trap configuration; from
possible[9,10], via application of magnetic fields, to obtain (NiS We infer the ratio between the effective bosonic and
an arbitrarily strong attraction between fermions, and tdf€fmionic scattering lengths, which is found to be strongly
probe the crossovéi1,12 from BEC to BCS. The resultant d€Pendent on the magnetic detuning Moreover, this ratio
superfluidity of preformedor precursor pairs has a natural 1S 9enerally less than the number 2.0, associated with its
counterpart in some theori¢&3-17 of high T, supercon- one channel” counterpart. This facjtor of 2 is derived from
ductors. Indeed, a striking and important feature of the cuthe standard ground st&ft#8] shown in Eq.(3) below.

prate su_p_ercondu<_3t0r5 is their pronounced precursor super- Il. ONE AND- TWO-CHANNEL MODELS
conductivity, as evidenced by “pseudogap” effects, the origin
of which is still under active debate. The “one-channel” model, where the BCS-BEC crossover

A second, very important motivation for these experi- is tune_d via a single paramet(?ire., the pai_ring strength or
ments is based on the theoretical observation that a BCS-likscaltering length has been widely used in the context of
ground-state wave function is capaHl&8] of describing |_gh Te superconductorgl_?a]. It has also recently been ap-

. a;Plled [21] to atomic Fermi gases. In the one-channel model,
: ; : . ; —"no microscopic reference is made to the details of how the
the c_h(tam|t(|:al %O.tent'?rl]‘)f thetferm|or)8, IS fdeterrlr(nned SI?” variable scattering length is obtained. Alternatively, in the
consistently. Lsiven the vast success of weak coupling Ofyq_channel model for cold atomic gases, this scattering
BCS theory, it is extremely important to formulate this ex-

S -~ length is tuned with the application of an external magnetic
tended theory at al, and confront it with controlled experi- fjg|q. |n the presence of a Feshbach resonance, one includes
ments.

] o ] . [9,10] two types of particles—“fermions” and “molecular
In this paper, we explore the implications of this specificjyo5ons” —and the “two-channel” Hamiltonian contains two

gr_ound-stafe wave functioii8,19 in detail to adgress bOth" types of interaction effects: those associated with the direct
T=0 andT=T,, with particular emphasis on the “near-BEC" jyieraction between fermions parametrizedUyand those

regime. Our goals arg) to discuss in some detail the differ- jgqociated  with  “fermion-boson” interactions, whose
ences between the “one-channel” model, which is Widelystrength is governed by,

used in BCS-BEC crossover studies, and the “two-channel”
model, in which the interatomic scattering processes are as- H = uN =2} (& = w)a} ,a ,+ >, (€5°+ v = 2u)blbg
q

sociated with a field-dependent Feshbach resondii¢ep k.o

provide analytic calculations and insights by working in a Aot +

(near-BEQ regime where calculations are more tractable; - %(, Ulk,k )aq/2+k,Taq/2—k,Laq/2—k',1aq/2+k',¢
and(iii ) to compare with well established theories of weakly @

interacting Bose superflui@0]; as well agiiv) with the mea- + [g(k)béaq/z—k,iaq/zw +H.c]. (1)
sured density distributions in a trap. a.k
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The “one-channel” Hamiltonian is given by the first and third A BCS A BEC
term only. As will become clear soon, these two different
Hamiltonians describe different physical systems. It is gen-
erally assumed, as we do here, that there are no direct boson-
boson interactions. Here the fermion and boson kinetic ener-
gies are given by e=%%?/2m and e)°=%%?/2M,
respectively, andv is an important parameter which repre-
sents the magnetic “detuning.” The bosdhg) of the cold FIG. 1. Contrasting temperature dependenced @i the BCS
atom problen{9,10] will be referred to as Feshbach bosonsand BEC regimes. Similarly, in the BEC regineis a constant, so
(FB). Formally, these represent a separate species, not to lieat all fermionic energy scales afeindependent, as expected.
confused with the fermion paiiaja’,) operators; these dis-

tinctions arise from different hyperfine states of the atomicof £q. (3)—A(T) and w(T)—are temperature independent in
system. The two scattering channels are sometimes referrggde near-BEC regime, for all £ T.. Indeed, this is consistent

to as “closed” and “open.” _ _ _ with the physical picture of well established, preformed pairs
The variational ground state which we will consider herej, the BEC limit, so that the fermionic energy scales are
is a product of both fermionic and bosonic contributions  ynaffected byT below T...

This simple physics may be schematically represented by

Te T Te T

Yo=Y ® \Pg' 2 plots of A versus temperature. Figure 1 contrasts the behav-
where the normalized fermionic wave function is the standor in the weak coupling or BCS and strong coupling or BEC
dard crossover stafd.8,19 regimes. In the BCS IlimitA(T) follows the behavior of the

order parameter),, whereas in the BEC regime, pairs are
Wo =TIy (uy + vicycl)|0) (3)  preformed and there is no temperature dependenc T

on the scale of.. We now extend these qualitative observa-
tions to a more quantitative level.
The self-consistent equations in the BEC limit for general

and thenormalizedmolecular or Feshbach boson contribu-
tion \Ifg is represented by

wB= —>\2/2+MJ$|0>_ (4)  temperaturel can then be written as
For completeness, we note here that in the “one-channel” m__ {i_i} (5)
analog theory, the ground-state wave function is that of Eq. Amhla, T | 26 2E( |’

(3) without the contribution fromlfg.
The variational parameters are, thug,v,, and\. Apply- € — 14
ing standard variational techniques on the ground-state wave n=>|1- E | T=T, (6)
function leads to a number of results which have already K K
appeared in the literature; among these areTth@ limits of  \herea, is thes-wave scattering lengttE, = \ (e, — )2+ A2,
Egs. (5) and (B4), and Eq.(19), along with the result that 504 A is, on general grounds, to be distinguished from the
A= ém=(bg=0). Thus, this wave function is compatible with rger parametef22,23, A, Note that we have used the
previousT=0 studieg11,12,. =0 conditiong 18] in Egs.(5) and(6), since the Fermi func-
Which of the one- or two-channel descriptions is appro-tjon f(E,) is essentially zero in the BEC limit, whefg /T
priate is presumably dependent on the atomic system under|M|/-|-c> 1. Equations(5) and (6) (and their two channel
study, as well as the strength of the detuning. Present experinalogs are central to the theory presented in this paper.
ments involve rather wide Feshbach resonanced.irand  They show that even in the strong attraction limit, where the
K. We have shown elsewhef#3] that for these wide reso- system can be viewed as consisting of “bosottise’ under-
nances and in the intermediate couplinmitary scattering  |ying fermionic constraints om and x must be respected

and BCS regimes, there is little difference between the onethese constraints do not have a natural analog in the Gross-
and two-channel systems. The differences are most evidepiitaeyskii(GP) theory of true bosons.

in the BEC and near-BEC limits which we explore here. The |t follows from the above equations that, just as in e
contributions of this paper are expected to help in the ongo=q |imit [21,24], we have for general <T,,
ing debate as to whether one- or two-channel models are the

i n
more appropriate. Noais = > = Z,A2, )
A. Extending conventional crossover theory toT #0: BEC where the coefficient of proportionality
limit without Feshbach bosons mzas
In order to facilitate the comparison between “one- Zy= PETE (8)

channel” and “two-channel” models, here we will first

present the “one-channel” model from a slightly different We arrive at an important physical interpretation of the
perspective than in previously published wdd6,17. We  BEC limit. Even thoughA or ny,s is @ constant iril, this
begin by making the important observation that Toe T, constant must be the sum of two temperature-dependent
the variational parameters associated with the wave functioterms. As in the usual theory of BEC, these two contributions
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correspond to condensed and noncondensed components small four-vectorQ (and moderately strong couplihgve
Noars= n;‘;ﬂ‘s’ensef’T) +ngg::g°“densidr), ) ][nay expa}nd Eq(14) +after anfalyncal continuation to real
requencyiQ),— Q+i0" to obtain the expected form
so that we may decompose the excitation gap into two con-
tributions t(Q) =

AZ=AZ(T) + AG(T), (10)

Zy
Q=g+ ppair +ilg"

(16)

5 Now we can deduce directly from E@L4) that the disper-
whereAZ(T) corresponds to the condensed arg(T) tothe  sjon of noncondensed pairs is of the form

noncondensetbr pseudd gap component. Each of these are -
proportional to the respective number of condensed and non- Qg =hq72M,,. (17)
condensed pairs with proportionality constagt Just as in

) In summary, this quadratic dispersion can be derived from
conventional BEC, aT,

the pair susceptibilityy(Q). In turn, the particular form for

n x(Q) shown in Eq.(15) is chosen in order to be consistent
noncondens ) _ 0 E b(Q T ) (11) N . X
pairs 757 o e with Eqgs.(5) and(6). In this sense, the usual BEC constraint

q (1pair=0) Is intimately connected to the BCS-like gap equa-

whereb(x) is the usual Bose-Einstein function af)d is the  tion of Eq. (5). The details of this analysis are given in Ap-
dispersion of the noncondensed pairs, which will be self{pendix A.
consistently determined below. Thus

n

- n__ B. Two-channel model: Effects of Feshbach bosons
A%(To) = AT = Z5" 2 b(2 T =225 (12)

We now extend this analysis to include Feshbach bosons

We may deduce from Eq12) thatA2,=-St(Q), if we pre- [11,12. For this situation we can write down an equation
pg Q ’ . . . .

sume that belowl, the noncondensed pairs have propagatof23] equivalent to Eq(5) with the effective scattering length

t(Q)=Z(§1/(iQn—Qq). In this way, we may rewrite Eq11) in 8 as O equivalently the direct fermion interactids re-
the form placed byU.=U+g?/(2u—v). Here we define

2 2,*
) == 2,3 1Q). (13 Ur =Up- B AT g
Q+0 (vo=2p) m

[For brevity, we have used a four-momentum notation as irwherea; is dependent om.. We thus arrive back at Eqéb)

Ref. [16]: K= (k,iwy), Q=(q,iQy), 2q=TZ,4 Wherew, and(6) with a; appearing in place ods.

and Q, are odd and even Matsubara frequencies, respec- In this generalization of E¢6), n represents the number

tively.] of fermions, which is to be distinguished from the total num-
This leads to a key question: how can one deduce theer of particles which involves both condensed and uncon-

contribution fromnoncondensegairs? We now work back- densed bosons as well. Importantly, in the two-channel prob-

wards to infer the dispersidfl,, for these pairs. A fundamen- |em the particle number constraint involves the sum of three

tal requirement on noncondensed pairs in equilibrium with aerms given by

Bose condensate is that their effective chemical potential sat-

0_
isfies upqi(T)=0, for T<T,. Equation(5) can be showi23] n+2n,+2n,=n", (19
to be consistent with this constraint pi;, provided thatthe \yhere nd= 42 is the number of molecular bosons in the
propagator for noncondensed pairs is given by condensate; this condensate is discussed in more detail in

Appendix B. The number of noncondensed molecular bosons

Q) =~ (14 isgivenb
1+Ux(Q grenty
where N(T) == ng D(Q), (20)
XQ = EK: G(K)Go(Q-K), (15) where the Bose propagator is
andG represents the fermionic Green’s function which has a D(Q) = 1 (21)
self-energy2(K) =—A2Gy(-K). HereG; is the bare propaga- iQ,- eg“b— v+ 2u-25(Q)
tor. The details of this analysis are presented in Appendix A, 3
Another important point should be noted. This pair propa—and we choose the self-ener3g]
gator or T-matrix differs from that first introduced by No- g*x(Q)
zieres and Schmitt-RinK25] because here there is one 2(Q) =- 1+Ux(Q) (22)

dressed and one bare Green’s function. In the approach of

Ref.[25], both are taken as bare Green'’s functions. By conto be consistent with the Hugenholtz-Pines condition that
trast, there are other schemes in the literaf@f-2g where  bosons in equilibrium with a condensate must necessarily
both Green’s functions are dressed. We end by noting that dtave zero chemical potentiglpyso{T)=0 at T<T., where
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[,

that this constraint om,,s0niS equivalent to Eq(5). H2 8 1642

In this way, D(Q) may be expanded at smdl in real
frequency to be of the same form as Ef6),

i

Mposor= 21— v—2g(0). It follows after some simple algebra m <2m>3’2
AmhZag

ntot

- X .
S S I E e
Q= Q4+ pposont ilg 167 || h? gg

Importantly,there is only one branck), for bosoniclike ex-
citations This branch represents a hybridized mix of mo-
lecular bosons and fermion pairs. Just as there is a direéltate[zg]
analogy between Eq$16) and(23), Egs.(13) and(20) are

(28)

Solving for u in terms ofa;, one finds a new equation of

A

closely connected. ~——— tot,*4 29
B oma? " m w2 % (29
lIl. EQUATIONS OF STATE AT T=0 to lowest order ira;. The second term in the above equation

) _ _ derives from the molecular boson condensate contribution.
We now rewrite our central equatiofs)(7) in the near-  The first term in Eq(27) contributes only a term of ordet’
BEC limit to compare more directly with the case of atg the equation of state. This behavior should be contrasted
weakly interacting Bose gas, described by the GP theory. With the situation when FB are absent, wheig=2a. It
can be shown thain the absence of PB should also be emphasized that the fermionic scattering

length in a model without FB is an independent experimental
2

A2 m parameter, while hem; depends o, and must be obtained
- 477\s"—2m|,u\h3’ (24) self-consistently.
which, in conjunction with the expansion of E), IV. CALCULATIONS AT T,
— We turn now to a calculation df., which requires that we
m _(2m\¥*\ul| 142 determineQ, [via Eq. (11), along with the T-matrix of Eq.
4mh2as \ h2 sr |t 1642 |’ (25 (14)] as a function of the scattering lengil We address the
one-channel case first. The general expression fMBlih
yields the near BEC limit is given by
11 1, AEHN 4]
2 2 —=— —uvi — , 30
f + agmnh . 26 M}, ZoAzg [mvk 3mPA2 UK (30

# 2mé m
where we have used Egd7) and (16). After expanding to

These equations hold at &ll<T,. At T=0, these equations lowest order inna,
have been showf21,24 to be equivalent to the results of 3
GP theory where one identifies an effective interpair scatter- M~ 2m<1 + wasn> (31)
ing lengthag=2a via ng=ug/ (4magh?/Mg). Hereng=n/2 0 '
represents the number density of pajug= 2,u+ﬁ2/ma§ is _ ) o
the “bare” chemical potentia' of the pairS, aNtEQZm the Equat|0n (11) reﬂ.ects the fact !:hat, in the near-BEC |ImI'F,
pair mass. We emphasize tfthe value of 2 for the scatter- and atT, all fermions are constituents of uncondensed pairs.
ing length ratio is entirely dictated by the assumed form forlt then follows that(M,T)¥2=n=const, which, in conjunc-

the ground state, Eq. (3) tion with Eq. (31), implies

We now show that in the presence of Feshbach bosons, 0 3
this equation of state is no longer that of GP theory and, Te-Tc__man (32)
moreover, there are important implications for the ratio of Tg 2

the bosonic to fermionic scattering lengths. As a result of the
Bose condensat@ in Eqg. (19 one finds an extra term in the Here TS is the transition temperature of the ideal Bose gas
number equation which is discussed in more detail in Appenwith Mg=2m. This downward shift of T, follows the
dix B, effective-mass renormalization, much as expected in a Har-
tree treatment of GP theory &t. Here, however, in contrast
m (1-UgU * )2 to GP theory for a homogeneous system with a contact po-
; s > (27) tential [20], there is a nonvanishing renormalization of the
Aary2m| puf % effective mass.

In the presence of Feshbach bosons,(theerse residue

Combining the gap and number equation yields in the T-matrix is replaced by

tot — A2
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n that there is no medium for the interaction between bosons,
L=Zg+ 2y~ 272’ (33 and they are even more “ideal” than in the one-channel case.
This demonstrates th&tr the particular ground-state ansatz
where considered here, and in the BEC limit, the “one-channel”
o and “two-channel” models describe very different physics
%7 [U2u-n + P 39

VI. PARTICLE DENSITY PROFILES IN TRAPS
is derived from U.}(Q), and the #2g? coefficient B,

s . These differences between the equations of state for the
=1/(2My) in Qg is such that

one- and two-channel models will have physical implications
in the density profiles of particles in a trap. We now intro-

1
BoZo + ng 1 20l duce the harmonic trapping potenti&r) = 3mw?r?, which is
B=—————M ~ —{1 - %’ﬂﬁna?} . (35) treated in the Thomas-FerriiF) approximation. In this ap-
Z 4m Uo proximation, one replaces with u(r)=u—V(r). In contrast

HereZ, andB, are the appropriate counterparts when FB ard® the uniform case, herg,.;(r, T) becomes nonzero beyond
absent. Sincé, is proportional to the fermionic contribution @ critical radiusRe(T), whereR(T)=0. In this way atT,

to the density, it is very small in the BEC limit. Using the only the center of the trap is superfluid, whileTat 0 all of
same reasoning as in the previous case, we conclude that tH {rap contains condensed states. To obtaif t@ density
ratio T./B is constant with varying couplingThus, in the Profile, n(r), we insertu(r) into Eq.(28) and solve fom(r)
two-channel case as well,, follows the behavior of the in- [heren(r) refers to the sum of both fermion and molecular
verse effective masasith, to leading order, a very weak de- boson contributionls The solution is

pendence on scattering lengti2—T,)/T0xa’’.

h
n(r w(r) o,

V. SUMMARIZING THE DIFFERENCES BETWEEN ONE-

2
AND TWO-CHANNEL SYSTEMS 1-Yo
1 2m 3/2 u*
In this section, we summarize the differences and similari- X Tordami\ A2 +2————|, (36
ties we have found thus far between the one- and two- | )| %

channel descriptions of the atomic Fermi gases at the level gfhere we useN=/n(r)d® to self-consistently determinge.

the ground state equation: E@). . _ Here it should be noted that is itself a function ofu(r).

(i) The gap equationgEg. (5)] are essentially equivalent In Fig. 2(@), we plotn(r) for the parametert),=—-0.89,
in the two cases, except that for the two-channel system, =-35, 1,=-1260, andN=1CP, for the units specified in
effective interactiorUy; enters in place of). This is equiva- ;. L 0 ' ’

X > the caption. We chose parameters appropriaf8¢oTo con-
lent to the statement that the scattering lerafs replaced P P pprop

. . . nect the various energy scales which appear in the problem,
by the u-dependent quantity we have definedags =~ typically 1 G=60E¢. For this value ofyo, we are somewhat

(i) In both cases, the full excitation gdpis to be distin- 5,4y from the deepest BEC regime as is necessary to ensure
guished from the order paramet&g. Thus, there are non- the validity of the TF approximation, and the fermionic con-
condensed fermion pairs and the associated pseudiygap  tribution to the density is no longer negligible compared to
both cases. When two channels are present, the noncofs bosonic counterpart. Indeed, the percentage weight of the
densed fermion pairs are strongly admixed with the Feshmolecular boson condensate contributishown in the in-
bach bosons. A physical probe will, in general, only couplesey indicates that by,~-400, the Cooper pair condensate
to this single hybridized bosoniclike excitation. The degreecontribution is beginning to dominate. In this figure, we also
of fermion pair and FB admixture will vary with detuning. show the density profile as computed in the absence of FB

(iit) The number equatior{€gs. (6) and(19)] in the two  (dashed ling as well as the behavior =T, (dotted ling.
models contain an important difference. The condensate cour T=T, curves were computed in the absence of FB for
tribution for Feshbach boson&B) appears as a separate poth panels. We were unable thus far to find important dif-
term in the number equation, along with the contributionferences between this distribution and that of a weakly inter-
from noncondensed FB. Importantly, the Cooper condensatgcting Bose gas. Here one has to solve self-consistently for
Agcand its noncondensed analag, appear more directly in Mpair(r), as well.
the gap equation. There is, of course, a single physical con-' To arrive at a meaningful comparison of the tWe0
densate or order parametky. in the problem as discussed in casegwith and without Feshbach bosonae used the same
Appendix B. value for the effective two-body scattering lengify ob-

(iv) Finally, there is a crucial difference which we explore tained from the self-consistent calculations rdf) in the
in the remainder of this paper. This difference is associategresence of FB. The profile without FB is then calculated
with the fact that in the BEC limit, when there are two chan-using the familiar TF result near the BEC lili#4] at a fixed
nels available, the system consists entirely of Feshbacfermionic scattering30] length as The same plots are pre-
bosons; in this way, the number equation is satisfied withousented withy,=—250 in Fig. 2Zb), which is further from the
a population of fermions. The absence of fermions mean8EC limit.
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the bosonic to fermionic scattering lengths. The paransger

is an important quantity which appears, as in experiment, to
be considerably less than a factor of 2 times its fermionic
counterpart.

Other estimates of the interboson scattering length

There are very detailed calculatiof®l] of the exact four-
body atomic scattering processes which yield a fixed length
ratio ag/a;=0.6 for the bosonic to fermionic scattering
lengths. It is widely agreed that this constraint should be
imposed on a more complete theory of the ground state. In-
deed, a weakness of the approach taken lileased on a
generalized BCS ground statis that “boson-boson” inter-
actions are treated only approximately, in a mean-field sense.
This can be viewed as being related to the inclusion of only
one-fermion and two-fermion propagatofse, T-matriX
with no higher-order terms.

FIG. 2. Density profiles ata) »=-1260 and(b) vp=-250. The theory of Ref[31] is based on treating fermions in a
Solid and dashed Iilnes are at0 with anq without Feshbach single- (open channel problem. This approach is presumed
bosons(FB), respectively, and the dotted lines areTaT.. The {5 he exact providing the system is sufficiently dilute and in
inset to(a) plots the FB weight in the condensate. The insettlo e BEC regime so that one may consider only a four-body
shows the ratio of th_e interboson to interfermion scattering length?)roblem. By contrast, in the present approach, the many-
at traﬁahce_mer' Units are chosen such that=1 and Br 4 ohysics associated with the broken symmetry or super-
_(3N3) w=1. H§-}£‘°e the units foro, Uo, andgo (Wh'f:h arekg, fluid state is includedA comparison of the one- and two-
%F_lzkg(’) ?r?g iiié 'r(gct’iofs‘;er;tr;\]’:tzf are oagzsae; dt?orunf%lggg?t channel calculations presented here shows that, through
é 0_05’_ P &= ro~ many-body effects, the nature of the condensate enters in an

important way to determine the equation of state and,

An important consequence of the one- versus two-channdhereby, the ratio of the scattering lengttis the many-body
problems is that for the latter, as the extreme BEC limit iscontext, the interboson scattering length ratio is different
approached, the number of fermions is diminished in favoiffom the canonical value 2.0, which is based on &.and
of FB. This occurs due to the self-consistent adjustment oflerived following Eq.(26); this value is only appropriate to
the fermionic chemical potential. Thus the interaction be-the single-channel case.
tween the bosons mediated by the fermions is weaker than In the two-channel problem, where Feshbach bosons are
what might have been expected without consideration of FBPresent, the rati@g/as depends upon the magnetic field or
This weakened interaction is reflected in Fig. 2 through gdetuning. This is a central point of the present paper. Future
comparison between the solid and dashed lines, which shov@xperiments will be required to determine whether, as some
that the trap profiles are narrower in the presence of Festlave presumed, the ratio of 0.6 applies to all detunings, or
bach effects. Indeed, this could have been anticipated fro¥hether this number is variable as argued here. Furthermore,
the above calculations in the homogeneous Cas'é’:ﬁtand it will be of interest to I’epeat the feW'bOdy calculations of
T., which deduced a very weak dependence of the bosonigef.[31] in the presence of both open and closed channels.
scattering length and effective pair mass on the fermionicAlthough the factor of 2 associated with the single-channel
scattering lengtla.. This finding is analogous to the result in calculations will be changed in a more elaborate many-body
a trapped atomic Bose gf20], where one sees that a Weaker_th_eory(Le., beyond the simplest ground state assumed here
repulsive interboson interaction leads to a narrowed densit IS, conversely, reasonable to assume that for the few-body
profile. Comparison between the lower and upper panels dfalculations such as in R€f31], the ratioag/as will change
Fig. 2 shows that in both caséwith and without FB, the ~ as Well. Indeed, it seems reasonable to assume that, as found
profiles become narrower as the BEC limit is approached. here, it will be smaller in the two-channel than in the one-

We may use the results in Fig. 2 to obtain a semiquantichannel cases.
tative estimate of the bosonic scattering lenaghbased on a
phenomenology used in experimental analylsis3]. We
compare our results to the Thomas-Fermi approximated GP
equation aff=0, which yieldsng(r)=[ug—V(r)]/Ug where In this paper, we have shown that superfluidity of fermi-
the interboson interactioblg is connected to the scattering onic atoms in the near-BEC limit is in general different from
lengthag via Ug=4m%2ag/ Mg. If we fit the profiles of Fig. 2 Bose superfluidity(as described by GP thegryWe have
to the inverted paraboléC,-C,r?), we may infer thatag ~ compared one- and two-channel models and find that differ-
=M3w?/47h2C,. The ratioag/a; is plotted versusy in the  ences from the GP picture for each are associated with the
inset to the lower panel of Fig.(8). The same analysis ap- underlying fermionic character of the system. Our compari-
plied to the profile without FB yields the familiar 2:1 ratio of sons with GP theory were presented at bot#0 andT=T,,

VII. CONCLUSIONS
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both with and withou_t Feshbagh bosons. A related set (_)f Q= G(K)Go(Q - K), (A4)

observations concerning the difference between composite K

and true bosons can be made on the basis of the behavior of

the collective mode§32,33. Eqg. (A2) is equivalent to the BCS-like gap equation of Eq.
A key aspect of this work is in the comparison we have(5), provided also the Green’s function is of the BCS form

presented between one- and two-channel models. Differ- 2 2 .

ences arise because of the nature of the condensate. A fermi- G(K) =- Uk - % _ _'w”+ i .

onic or Cooper pair condensate contributidny,) enters into o= B iog+E (iw)” - Eg

the gap equation while a bosonic condensate contributio

(ng) enters also into the number equation. When there is al

appreciable fraction of bosonic condenséds in the near-

BEC and BEC regimegsthese differences will be apparent. 3(K) = = A%Gy(- K). (A6)

A distinction between the one- and two-channel models is ) ) )

relatively unimportant once the bosonic condensate contribu- We calculatex[Q=(i€m,q)] by performing the appropri-

tion is negligible. ate Matsubara sums following standard proced@4. At
These differences are associated with physical properti€®=0, we have

such as the equations of state and the density profiles in a o+ & 1 1-2(E)

trap. Feshbach bosons can, in effect, collapse much more  y(0)=> — kz _ = i

completely to the center of a trap than can fermion pairs. k (o) —E—lon—& ¢ 2E

This effect can be inferred from the ratio of the scattering (A7)

lengths, and is related to the fact that in this limit, fermions

are essentially absent, since the number equation constraiand Eq.(A3) becomes

can be entirely satisfied by populating the bosonic state. As a

result, these bosons are close to ideal. ut+s> 1-2(E) =
For the relatively broad Feshbach resonances currently K 2E,

under study in lithium and potassium, differences between

the one- and two-channel models are presumably importarfthich, in conjunction with the two-body scattering equation

only in the BEC and near-BEC limits studied here, where

(A5)

Hust as in BCS theory, we associate this dressed Green’s
Runction with self-energy,

0, (A8)

there is an appreciable bosonic condensate. It will be inter- Lz U+ i (A9)
esting to study narrower Feshbach resonances where these 4mh*as 2€y
differences may persist into the unitary scattering regime. gives
m 1 1-2f(F
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APPENDIX B: CHARACTERIZING THE CONDENSATE
APPENDIX A: CONNECTION BETWEEN x(Q) AND THE
STANDARD GAP EQUATION There is an important difference in the nature of the con-
densate for the two cases, with and without Feshbach bosons.
The expansion of the T-matrix, after analytical continua-|n the latter case, there are two components to the condensate
tion iQ,— Q+i0%), at small four-vectorQ=({2,q) can be associated with Cooper paifds) and condensed molecular

written in the following form: bosonsnp. Moreover, the Cooper condensate enters only into
) ) the gap equation, whereas the molecular Bose condensate
Q) = Zo(Q = Qg + ppair +iT7). (Al)  enters also into the number equation. As long as the bosonic

N ) _ condensateng is non-negligible, this difference leads to es-

zeroQ is equivalent to problem, as will be demonstrated below.
In this appendix, we enumerate the different relationships
Mpair = 0 (A2) between the different components. The order parameter as-

sociated with Eq(1) represents a linear combination of both

or paired fermions(Cooper condensateand condensed mol-
ecules. It is given by11,12

Ut+x(0)=0. (A3)
We now show that for a proper choice of the pair suscepti- Ase=Asc™ 9bm B
bility where the boson order parametgf=(b,-o). We have

033601-7
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A= - U (aya), (B2)
k
and KSC can be written as

< gz
Asc_ [U + (2,“ _ V) ]% <a—klak1>r (BS)

where we have used the fd&5] that

0Asc

" (-2 (B4

bm

PHYSICAL REVIEW A71, 033601(2009

The number of condensed Feshbach bosons which enters
the number equatiofEq. (19)] is given bynd=¢2. Thus we
have

oAl AL
[(v=2wVUP [(2u-r)U+g*P

Using the renormalization scheme of RE35], it can be
shown that we can also write

U \2A2

ng:(l——f) =, (B6)
U %

whereU* is defined in Eq(18). Note that Eq(27) in the text

is based on the above resultat0 with A, =A.

no= (B5)
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