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We discuss the differences between one- and two-channel descriptions of fermionic gases with arbitrarily
tunable attractive interactions; these two cases correspond to whether molecular bosonic degrees of freedom
are omitted or included. We adopt the standard ground state wave function for the fermionic component
associated with the BCS to BEC crossover problem: for weak attraction the system is in the BCS state while
it crosses over continuously to a Bose-Einstein-condensedsBECd state as the interaction strength is increased.
Our analysis focuses on the BEC and near-BEC limit where the differences between the one- and two-channel
descriptions are most notable, and where analytical calculations are most tractable. Among the differences we
elucidate are the equations of state at generalT below Tc and related particle density profiles. We find a
narrowing of the density profile in the two-channel problem relative to the one-channel analog. Importantly, we
infer that the ratio between bosonic and fermionic scattering lengths depends on the magnetic detuning and is
generally smaller than its one-channel counterpart. Future experiments will be required to determine to what
extent this ratio varies with magnetic fields, as predicted here.
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I. INTRODUCTION

The recent observationsf1–8g of Bose-Einstein condensa-
tion sBECd of molecules formed from fermionic atoms are
extremely exciting. Because of a Feshbach resonance, it is
possiblef9,10g, via application of magnetic fields, to obtain
an arbitrarily strong attraction between fermions, and to
probe the crossoverf11,12g from BEC to BCS. The resultant
superfluidity of preformedsor precursord pairs has a natural
counterpart in some theoriesf13–17g of high Tc supercon-
ductors. Indeed, a striking and important feature of the cu-
prate superconductors is their pronounced precursor super-
conductivity, as evidenced by “pseudogap” effects, the origin
of which is still under active debate.

A second, very important motivation for these experi-
ments is based on the theoretical observation that a BCS-like
ground-state wave function is capablef18g of describing
both fermionic and bosonic superconductors, provided that
the chemical potential of the fermions,m, is determined self-
consistently. Given the vast success of weak coupling or
BCS theory, it is extremely important to formulate this ex-
tended theory at allT, and confront it with controlled experi-
ments.

In this paper, we explore the implications of this specific
ground-state wave functionf18,19g in detail to address both
T=0 andT=Tc, with particular emphasis on the “near-BEC”
regime. Our goals aresid to discuss in some detail the differ-
ences between the “one-channel” model, which is widely
used in BCS-BEC crossover studies, and the “two-channel”
model, in which the interatomic scattering processes are as-
sociated with a field-dependent Feshbach resonance;sii d to
provide analytic calculations and insights by working in a
snear-BECd regime where calculations are more tractable;
andsiii d to compare with well established theories of weakly
interacting Bose superfluidf20g; as well assivd with the mea-
sured density distributions in a trap.

Since both one- and two-channel models have been ap-
plied to the atomic Fermi gases, it is thus very important to
compare their different predictions. We begin with the homo-
geneous case and then consider the trap configuration; from
this we infer the ratio between the effective bosonic and
fermionic scattering lengths, which is found to be strongly
dependent on the magnetic detuningn0. Moreover, this ratio
is generally less than the number 2.0, associated with its
“one channel” counterpart. This factor of 2 is derived from
the standard ground statef18g shown in Eq.s3d below.

II. ONE AND- TWO-CHANNEL MODELS

The “one-channel” model, where the BCS-BEC crossover
is tuned via a single parametersi.e., the pairing strength or
scattering lengthd, has been widely used in the context of
high Tc superconductorsf13g. It has also recently been ap-
plied f21g to atomic Fermi gases. In the one-channel model,
no microscopic reference is made to the details of how the
variable scattering length is obtained. Alternatively, in the
two-channel model for cold atomic gases, this scattering
length is tuned with the application of an external magnetic
field. In the presence of a Feshbach resonance, one includes
f9,10g two types of particles—“fermions” and “molecular
bosons”—and the “two-channel” Hamiltonian contains two
types of interaction effects: those associated with the direct
interaction between fermions parametrized byU, and those
associated with “fermion-boson” interactions, whose
strength is governed byg,

H − mN = o
k,s

sek − mdak,s
† ak,s + o

q
seq

mb+ n − 2mdbq
†bq

+ o
q,k,k8

Usk,k8daq/2+k,↑
† aq/2−k,↓

† aq/2−k8,↓aq/2+k8,↑

+ o
q,k

fgskdbq
†aq/2−k,↓aq/2+k,↑ + H.c.g. s1d
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The “one-channel” Hamiltonian is given by the first and third
term only. As will become clear soon, these two different
Hamiltonians describe different physical systems. It is gen-
erally assumed, as we do here, that there are no direct boson-
boson interactions. Here the fermion and boson kinetic ener-
gies are given by ek ;"2k2/2m and eq

mb;"2q2/2M,
respectively, andn is an important parameter which repre-
sents the magnetic “detuning.” The bosonssbk

†d of the cold
atom problemf9,10g will be referred to as Feshbach bosons
sFBd. Formally, these represent a separate species, not to be
confused with the fermion pairsak

†a−k
† d operators; these dis-

tinctions arise from different hyperfine states of the atomic
system. The two scattering channels are sometimes referred
to as “closed” and “open.”

The variational ground state which we will consider here
is a product of both fermionic and bosonic contributions

C̄0 = C0 ^ C0
B, s2d

where the normalized fermionic wave function is the stan-
dard crossover statef18,19g

C0 = Pksuk + vkck
†c−k

† du0l s3d

and thenormalizedmolecular or Feshbach boson contribu-
tion C0

B is represented by

C0
B = e−l2/2+lb0

†
u0l. s4d

For completeness, we note here that in the “one-channel”
analog theory, the ground-state wave function is that of Eq.
s3d without the contribution fromC0

B.
The variational parameters are, thus,uk, vk, andl. Apply-

ing standard variational techniques on the ground-state wave
function leads to a number of results which have already
appeared in the literature; among these are theT=0 limits of
Eqs. s5d and sB4d, and Eq.s19d, along with the result that
l=fm;kbq=0l. Thus, this wave function is compatible with
previousT=0 studiesf11,12g.

Which of the one- or two-channel descriptions is appro-
priate is presumably dependent on the atomic system under
study, as well as the strength of the detuning. Present experi-
ments involve rather wide Feshbach resonances in6Li and
40K. We have shown elsewheref13g that for these wide reso-
nances and in the intermediate couplingsunitary scatteringd
and BCS regimes, there is little difference between the one-
and two-channel systems. The differences are most evident
in the BEC and near-BEC limits which we explore here. The
contributions of this paper are expected to help in the ongo-
ing debate as to whether one- or two-channel models are the
more appropriate.

A. Extending conventional crossover theory toTÅ0: BEC
limit without Feshbach bosons

In order to facilitate the comparison between “one-
channel” and “two-channel” models, here we will first
present the “one-channel” model from a slightly different
perspective than in previously published workf16,17g. We
begin by making the important observation that forTøTc,
the variational parameters associated with the wave function

of Eq. s3d—DsTd andmsTd—are temperature independent in
the near-BEC regime, for all TøTc. Indeed, this is consistent
with the physical picture of well established, preformed pairs
in the BEC limit, so that the fermionic energy scales are
unaffected byT below Tc.

This simple physics may be schematically represented by
plots of D versus temperature. Figure 1 contrasts the behav-
ior in the weak coupling or BCS and strong coupling or BEC
regimes. In the BCS limit,DsTd follows the behavior of the
order parameter,Dsc, whereas in the BEC regime, pairs are
preformed and there is no temperature dependence inDsTd
on the scale ofTc. We now extend these qualitative observa-
tions to a more quantitative level.

The self-consistent equations in the BEC limit for general
temperatureT can then be written as

m

4p"2as
= o

k
F 1

2ek
−

1

2Ek
G , s5d

n = o
k
F1 −

ek − m

Ek
G, T ø Tc, s6d

whereas is thes-wave scattering length,Ek =Îsek −md2+D2,
and D is, on general grounds, to be distinguished from the
order parameterf22,23g, Dsc. Note that we have used theT
=0 conditionsf18g in Eqs.s5d ands6d, since the Fermi func-
tion fsEkd is essentially zero in the BEC limit, whereEk /T
,umu /Tc@1. Equationss5d and s6d sand their two channel
analogsd are central to the theory presented in this paper.
They show that even in the strong attraction limit, where the
system can be viewed as consisting of “bosons,”the under-
lying fermionic constraints onD and m must be respected.
These constraints do not have a natural analog in the Gross-
PitaevskiisGPd theory of true bosons.

It follows from the above equations that, just as in theT
=0 limit f21,24g, we have for generalTøTc,

npairs =
n

2
= Z0D2, s7d

where the coefficient of proportionality

Z0 <
m2as

8p"4 . s8d

We arrive at an important physical interpretation of the
BEC limit. Even thoughD or npairs is a constant inT, this
constant must be the sum of two temperature-dependent
terms. As in the usual theory of BEC, these two contributions

FIG. 1. Contrasting temperature dependences ofD in the BCS
and BEC regimes. Similarly, in the BEC regimem is a constant, so
that all fermionic energy scales areT-independent, as expected.
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correspond to condensed and noncondensed components

npairs = npairs
condensedsTd + npairs

noncondensedsTd, s9d

so that we may decompose the excitation gap into two con-
tributions

D2 = Dsc
2 sTd + Dpg

2 sTd, s10d

whereDsc
2 sTd corresponds to the condensed andDpg

2 sTd to the
noncondensedsor pseudod gap component. Each of these are
proportional to the respective number of condensed and non-
condensed pairs with proportionality constantZ0. Just as in
conventional BEC, atTc,

npairs
noncondensedsTcd =

n

2
= o

q
bsVq,Tcd, s11d

wherebsxd is the usual Bose-Einstein function andVq is the
dispersion of the noncondensed pairs, which will be self-
consistently determined below. Thus

D2sTcd = Dpg
2 sTcd = Z0

−1 o bsVq,Tcd =
n

2
Z0

−1. s12d

We may deduce from Eq.s12d thatDpg
2 =−oQtsQd, if we pre-

sume that belowTc, the noncondensed pairs have propagator
tsQd=Z0

−1/ siVn−Vqd. In this way, we may rewrite Eq.s11d in
the form

npairs
noncondensedsTcd = − Z0 o

QÞ0
tsQd. s13d

fFor brevity, we have used a four-momentum notation as in
Ref. f16g: K;sk , ivnd, Q;sq , iVnd, oQ;Ton,q, wherevn

and Vn are odd and even Matsubara frequencies, respec-
tively.g

This leads to a key question: how can one deduce the
contribution fromnoncondensedpairs? We now work back-
wards to infer the dispersionVq for these pairs. A fundamen-
tal requirement on noncondensed pairs in equilibrium with a
Bose condensate is that their effective chemical potential sat-
isfiesmpairsTd=0, for TøTc. Equations5d can be shownf23g
to be consistent with this constraint onmpair provided that the
propagator for noncondensed pairs is given by

tsQd =
U

1 + UxsQd
, s14d

where

xsQd ; o
K

GsKdG0sQ − Kd, s15d

andG represents the fermionic Green’s function which has a
self-energySsKd=−D2G0s−Kd. HereG0 is the bare propaga-
tor. The details of this analysis are presented in Appendix A.

Another important point should be noted. This pair propa-
gator or T-matrix differs from that first introduced by No-
zieres and Schmitt-Rinkf25g because here there is one
dressed and one bare Green’s function. In the approach of
Ref. f25g, both are taken as bare Green’s functions. By con-
trast, there are other schemes in the literaturef26–28g where
both Green’s functions are dressed. We end by noting that at

small four-vectorQ sand moderately strong couplingd we
may expand Eq.s14d after analytical continuation to real
frequencyiVn→V+ i0+ to obtain the expected form

tsQd <
Z0

−1

V − Vq + mpair + iGQ
. s16d

Now we can deduce directly from Eq.s14d that the disper-
sion of noncondensed pairs is of the form

Vq = "2q2/2M0
* . s17d

In summary, this quadratic dispersion can be derived from
the pair susceptibilityxsQd. In turn, the particular form for
xsQd shown in Eq.s15d is chosen in order to be consistent
with Eqs.s5d ands6d. In this sense, the usual BEC constraint
smpair=0d is intimately connected to the BCS-like gap equa-
tion of Eq. s5d. The details of this analysis are given in Ap-
pendix A.

B. Two-channel model: Effects of Feshbach bosons

We now extend this analysis to include Feshbach bosons
f11,12g. For this situation we can write down an equation
f23g equivalent to Eq.s5d with the effective scattering length
as→as

* or equivalently the direct fermion interactionU re-
placed byUeff;U+g2/ s2m−nd. Here we define

U * ; U0 −
g0

2

sn0 − 2md
;

4p"2as
*

m
, s18d

whereas
* is dependent onm. We thus arrive back at Eqs.s5d

and s6d with as
* appearing in place ofas.

In this generalization of Eq.s6d, n represents the number
of fermions, which is to be distinguished from the total num-
ber of particles which involves both condensed and uncon-
densed bosons as well. Importantly, in the two-channel prob-
lem the particle number constraint involves the sum of three
terms given by

n + 2nb + 2nb
0 = ntot, s19d

where nb
0;fm

2 is the number of molecular bosons in the
condensate; this condensate is discussed in more detail in
Appendix B. The number of noncondensed molecular bosons
is given by

nbsTd = − o
QÞ0

DsQd, s20d

where the Bose propagator is

DsQd ;
1

iVn − eq
mb− n + 2m − SBsQd

s21d

and we choose the self-energyf23g

SBsQd ; −
g2xsQd

1 + UxsQd
s22d

to be consistent with the Hugenholtz-Pines condition that
bosons in equilibrium with a condensate must necessarily
have zero chemical potential:mbosonsTd=0 at TøTc, where
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mboson=2m−n−SBs0d. It follows after some simple algebra
that this constraint onmboson is equivalent to Eq.s5d.

In this way, DsQd may be expanded at smallQ in real
frequency to be of the same form as Eq.s16d,

DsQd <
Zb

−1

V − Vq + mboson+ iGQ
. s23d

Importantly,there is only one branchVq for bosoniclike ex-
citations. This branch represents a hybridized mix of mo-
lecular bosons and fermion pairs. Just as there is a direct
analogy between Eqs.s16d and s23d, Eqs.s13d and s20d are
closely connected.

III. EQUATIONS OF STATE AT T=0

We now rewrite our central equationss5d–s7d in the near-
BEC limit to compare more directly with the case of a
weakly interacting Bose gas, described by the GP theory. It
can be shown thatsin the absence of FBd

n = D2 m2

4pÎ2mumu"3
, s24d

which, in conjunction with the expansion of Eq.s5d,

m

4p"2as
= S2m

"2 D3/2Îumu
8p

F1 +
1

16

D2

m2G , s25d

yields

m = −
"2

2mas
2 +

aspn"2

m
. s26d

These equations hold at allTøTc. At T=0, these equations
have been shownf21,24g to be equivalent to the results of
GP theory where one identifies an effective interpair scatter-
ing lengthaB=2as via nB=mB/ s4paB"2/MBd. HerenB=n/2
represents the number density of pairs,mB=2m+"2/mas

2 is
the “bare” chemical potential of the pairs, andMB<2m the
pair mass. We emphasize thatthe value of 2 for the scatter-
ing length ratio is entirely dictated by the assumed form for
the ground state, Eq. (3).

We now show that in the presence of Feshbach bosons,
this equation of state is no longer that of GP theory and,
moreover, there are important implications for the ratio of
the bosonic to fermionic scattering lengths. As a result of the
Bose condensatenb

0 in Eq. s19d one finds an extra term in the
number equation which is discussed in more detail in Appen-
dix B,

ntot = D2F m2

4pÎ2mumu"3
+ 2

s1 − U0/U * d2

g0
2 G . s27d

Combining the gap and number equation yields

m

4p"2as
* = S2m

"2 D3/2Îumu
8p 31 +

1

16m2

3
ntot

1

16pÎumu
S2m

"2 D3/2

+ 2
s1 − U0/U * d2

g0
2 4 . s28d

Solving for m in terms ofas
* , one finds a new equation of

statef29g

m < −
"2

2mas
*2 +

2p2

m

g0
2"2

U0
2 ntotas

*4 s29d

to lowest order inas
* . The second term in the above equation

derives from the molecular boson condensate contribution.
The first term in Eq.s27d contributes only a term of orderas

*7

to the equation of state. This behavior should be contrasted
with the situation when FB are absent, whereaB=2as. It
should also be emphasized that the fermionic scattering
length in a model without FB is an independent experimental
parameter, while hereas

* depends onm, and must be obtained
self-consistently.

IV. CALCULATIONS AT Tc

We turn now to a calculation ofTc, which requires that we
determineVq fvia Eq. s11d, along with the T-matrix of Eq.
s14dg as a function of the scattering lengthas. We address the
one-channel case first. The general expression for 1/M0

* in
the near BEC limit is given by

1

M0
* =

1

Z0D2o
k
F 1

m
vk

2 −
4Ek"2k2

3m2D2 vk
4G , s30d

where we have used Eqs.s17d and s16d. After expanding to
lowest order innas

3,

M0
* < 2mS1 +

pas
3n

2
D . s31d

Equations11d reflects the fact that, in the near-BEC limit,
and atTc, all fermions are constituents of uncondensed pairs.
It then follows thatsM0

*Tcd3/2~n=const, which, in conjunc-
tion with Eq. s31d, implies

Tc − Tc
0

Tc
0 = −

pas
3n

2
. s32d

Here Tc
0 is the transition temperature of the ideal Bose gas

with M0=2m. This downward shift of Tc follows the
effective-mass renormalization, much as expected in a Har-
tree treatment of GP theory atTc. Here, however, in contrast
to GP theory for a homogeneous system with a contact po-
tential f20g, there is a nonvanishing renormalization of the
effective mass.

In the presence of Feshbach bosons, thesinversed residue
in the T-matrix is replaced by
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Z = Z0 + Zg <
n

2D2 , s33d

where

Zg =
g2

fUs2m − nd + g2g2 s34d

is derived from Ueff
−1sQd, and the "2q2 coefficient B1

;1/s2M1
*d in Vq is such that

B =

B0Z0 +
1

2M
Zg

Z
<

1

4m
F1 −

2g0
4

U0
4 p3nas

*9G . s35d

HereZ0 andB0 are the appropriate counterparts when FB are
absent. SinceZ0 is proportional to the fermionic contribution
to the density, it is very small in the BEC limit. Using the
same reasoning as in the previous case, we conclude that the
ratio Tc/B is constant with varying coupling.Thus, in the
two-channel case as well, Tc follows the behavior of the in-
verse effective masswith, to leading order, a very weak de-
pendence on scattering length:sTc

0−Tcd /Tc
0~as

*9.

V. SUMMARIZING THE DIFFERENCES BETWEEN ONE-
AND TWO-CHANNEL SYSTEMS

In this section, we summarize the differences and similari-
ties we have found thus far between the one- and two-
channel descriptions of the atomic Fermi gases at the level of
the ground state equation: Eq.s3d.

sid The gap equationsfEq. s5dg are essentially equivalent
in the two cases, except that for the two-channel system, an
effective interactionUeff enters in place ofU. This is equiva-
lent to the statement that the scattering lengthas is replaced
by them-dependent quantity we have defined asas

* .
sii d In both cases, the full excitation gapD is to be distin-

guished from the order parameterD̃sc. Thus, there are non-
condensed fermion pairs and the associated pseudogapDpg in
both cases. When two channels are present, the noncon-
densed fermion pairs are strongly admixed with the Fesh-
bach bosons. A physical probe will, in general, only couple
to this single hybridized bosoniclike excitation. The degree
of fermion pair and FB admixture will vary with detuning.

siii d The number equationsfEqs.s6d and s19dg in the two
models contain an important difference. The condensate con-
tribution for Feshbach bosonssFBd appears as a separate
term in the number equation, along with the contribution
from noncondensed FB. Importantly, the Cooper condensate
Dsc and its noncondensed analogDpg appear more directly in
the gap equation. There is, of course, a single physical con-

densate or order parameterD̃sc in the problem as discussed in
Appendix B.

sivd Finally, there is a crucial difference which we explore
in the remainder of this paper. This difference is associated
with the fact that in the BEC limit, when there are two chan-
nels available, the system consists entirely of Feshbach
bosons; in this way, the number equation is satisfied without
a population of fermions. The absence of fermions means

that there is no medium for the interaction between bosons,
and they are even more “ideal” than in the one-channel case.
This demonstrates thatfor the particular ground-state ansatz
considered here, and in the BEC limit, the “one-channel”
and “two-channel” models describe very different physics.

VI. PARTICLE DENSITY PROFILES IN TRAPS

These differences between the equations of state for the
one- and two-channel models will have physical implications
in the density profiles of particles in a trap. We now intro-
duce the harmonic trapping potentialVsrd= 1

2mv2r2, which is
treated in the Thomas-FermisTFd approximation. In this ap-
proximation, one replacesm with msrd=m−Vsrd. In contrast
to the uniform case, herempairsr ,Td becomes nonzero beyond
a critical radiusRcsTd, whereRcsTcd=0. In this way atTc,
only the center of the trap is superfluid, while atT=0 all of
the trap contains condensed states. To obtain theT=0 density
profile, nsrd, we insertmsrd into Eq. s28d and solve fornsrd
fherensrd refers to the sum of both fermion and molecular
boson contributionsg. The solution is

nsrd = 16m2srdF "

Î2mumsrduas
*

− 1G
33 1

16pÎumsrdu
S2m

"2 D3/2

+ 2
S1 −

U0

U*
D2

g0
2 4 , s36d

where we useN=ensrdd3r to self-consistently determinem.
Here it should be noted thatas

* is itself a function ofmsrd.
In Fig. 2sad, we plot nsrd for the parametersU0=−0.89,

g0=−35, n0=−1260, andN=105, for the units specified in
the caption. We chose parameters appropriate to40K. To con-
nect the various energy scales which appear in the problem,
typically 1 G<60EF. For this value ofn0, we are somewhat
away from the deepest BEC regime as is necessary to ensure
the validity of the TF approximation, and the fermionic con-
tribution to the density is no longer negligible compared to
its bosonic counterpart. Indeed, the percentage weight of the
molecular boson condensate contributionsshown in the in-
setd indicates that byn0<−400, the Cooper pair condensate
contribution is beginning to dominate. In this figure, we also
show the density profile as computed in the absence of FB
sdashed lined, as well as the behavior atT=Tc sdotted lined.
Our T=Tc curves were computed in the absence of FB for
both panels. We were unable thus far to find important dif-
ferences between this distribution and that of a weakly inter-
acting Bose gas. Here one has to solve self-consistently for
mpairsrd, as well.

To arrive at a meaningful comparison of the twoT=0
casesswith and without Feshbach bosonsd, we used the same
value for the effective two-body scattering lengthas

* , ob-
tained from the self-consistent calculations ofnsrd in the
presence of FB. The profile without FB is then calculated
using the familiar TF result near the BEC limitf24g at a fixed
fermionic scatteringf30g lengthas

* . The same plots are pre-
sented withn0=−250 in Fig. 2sbd, which is further from the
BEC limit.
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An important consequence of the one- versus two-channel
problems is that for the latter, as the extreme BEC limit is
approached, the number of fermions is diminished in favor
of FB. This occurs due to the self-consistent adjustment of
the fermionic chemical potential. Thus the interaction be-
tween the bosons mediated by the fermions is weaker than
what might have been expected without consideration of FB.
This weakened interaction is reflected in Fig. 2 through a
comparison between the solid and dashed lines, which shows
that the trap profiles are narrower in the presence of Fesh-
bach effects. Indeed, this could have been anticipated from
the above calculations in the homogeneous case, atT=0 and
Tc, which deduced a very weak dependence of the bosonic
scattering length and effective pair mass on the fermionic
scattering lengthas

* . This finding is analogous to the result in
a trapped atomic Bose gasf20g, where one sees that a weaker
repulsive interboson interaction leads to a narrowed density
profile. Comparison between the lower and upper panels of
Fig. 2 shows that in both casesswith and without FBd, the
profiles become narrower as the BEC limit is approached.

We may use the results in Fig. 2 to obtain a semiquanti-
tative estimate of the bosonic scattering lengthaB, based on a
phenomenology used in experimental analysisf1–3g. We
compare our results to the Thomas-Fermi approximated GP
equation atT=0, which yieldsnBsrd=fmB−Vsrdg /UB where
the interboson interactionUB is connected to the scattering
lengthaB via UB=4p"2aB/MB. If we fit the profiles of Fig. 2
to the inverted parabolasC1−C2r

2d, we may infer thataB

=MB
2v2/4p"2C2. The ratioaB/as

* is plotted versusn0 in the
inset to the lower panel of Fig. 2sbd. The same analysis ap-
plied to the profile without FB yields the familiar 2:1 ratio of

the bosonic to fermionic scattering lengths. The parameteraB
is an important quantity which appears, as in experiment, to
be considerably less than a factor of 2 times its fermionic
counterpart.

Other estimates of the interboson scattering length

There are very detailed calculationsf31g of the exact four-
body atomic scattering processes which yield a fixed length
ratio aB/as=0.6 for the bosonic to fermionic scattering
lengths. It is widely agreed that this constraint should be
imposed on a more complete theory of the ground state. In-
deed, a weakness of the approach taken heresbased on a
generalized BCS ground stated is that “boson-boson” inter-
actions are treated only approximately, in a mean-field sense.
This can be viewed as being related to the inclusion of only
one-fermion and two-fermion propagatorssi.e, T-matrixd
with no higher-order terms.

The theory of Ref.f31g is based on treating fermions in a
single- sopend channel problem. This approach is presumed
to be exact providing the system is sufficiently dilute and in
the BEC regime so that one may consider only a four-body
problem. By contrast, in the present approach, the many-
body physics associated with the broken symmetry or super-
fluid state is included.A comparison of the one- and two-
channel calculations presented here shows that, through
many-body effects, the nature of the condensate enters in an
important way to determine the equation of state and,
thereby, the ratio of the scattering lengths. In the many-body
context, the interboson scattering length ratio is different
from the canonical value 2.0, which is based on Eq.s3d and
derived following Eq.s26d; this value is only appropriate to
the single-channel case.

In the two-channel problem, where Feshbach bosons are
present, the ratioaB/as depends upon the magnetic field or
detuning. This is a central point of the present paper. Future
experiments will be required to determine whether, as some
have presumed, the ratio of 0.6 applies to all detunings, or
whether this number is variable as argued here. Furthermore,
it will be of interest to repeat the few-body calculations of
Ref. f31g in the presence of both open and closed channels.
Although the factor of 2 associated with the single-channel
calculations will be changed in a more elaborate many-body
theorysi.e., beyond the simplest ground state assumed hered,
it is, conversely, reasonable to assume that for the few-body
calculations such as in Ref.f31g, the ratioaB/as will change
as well. Indeed, it seems reasonable to assume that, as found
here, it will be smaller in the two-channel than in the one-
channel cases.

VII. CONCLUSIONS

In this paper, we have shown that superfluidity of fermi-
onic atoms in the near-BEC limit is in general different from
Bose superfluiditysas described by GP theoryd. We have
compared one- and two-channel models and find that differ-
ences from the GP picture for each are associated with the
underlying fermionic character of the system. Our compari-
sons with GP theory were presented at bothT=0 andT=Tc,

FIG. 2. Density profiles atsad n0=−1260 andsbd n0=−250.
Solid and dashed lines are atT=0 with and without Feshbach
bosonssFBd, respectively, and the dotted lines are atT=Tc. The
inset tosad plots the FB weight in the condensate. The inset tosbd
shows the ratio of the interboson to interfermion scattering lengths
at trap center. Units are chosen such thatkF;1 and EF

=s3Nd1/3"v=1. Hence the units forn0, U0, andg0 swhich areEF,
EF /kF

3, and EF /kF
3/2, respectivelyd are all set to unity. Forn0

=−250, the interaction parameterkFas
* <0.22 and forn0=−1260 it

is 0.05.
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both with and without Feshbach bosons. A related set of
observations concerning the difference between composite
and true bosons can be made on the basis of the behavior of
the collective modesf32,33g.

A key aspect of this work is in the comparison we have
presented between one- and two-channel models. Differ-
ences arise because of the nature of the condensate. A fermi-
onic or Cooper pair condensate contributionsDscd enters into
the gap equation while a bosonic condensate contribution
snb

0d enters also into the number equation. When there is an
appreciable fraction of bosonic condensatesas in the near-
BEC and BEC regimesd, these differences will be apparent.
A distinction between the one- and two-channel models is
relatively unimportant once the bosonic condensate contribu-
tion is negligible.

These differences are associated with physical properties
such as the equations of state and the density profiles in a
trap. Feshbach bosons can, in effect, collapse much more
completely to the center of a trap than can fermion pairs.
This effect can be inferred from the ratio of the scattering
lengths, and is related to the fact that in this limit, fermions
are essentially absent, since the number equation constraint
can be entirely satisfied by populating the bosonic state. As a
result, these bosons are close to ideal.

For the relatively broad Feshbach resonances currently
under study in lithium and potassium, differences between
the one- and two-channel models are presumably important
only in the BEC and near-BEC limits studied here, where
there is an appreciable bosonic condensate. It will be inter-
esting to study narrower Feshbach resonances where these
differences may persist into the unitary scattering regime.
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APPENDIX A: CONNECTION BETWEEN x„Q… AND THE
STANDARD GAP EQUATION

The expansion of the T-matrix, after analytical continua-
tion iVn→V+ i0+d, at small four-vectorQ=sV ,qd can be
written in the following form:

t−1sQd < Z0sV − Vq + mpair + iGqd. sA1d

Therefore, the condition for the divergence of the T-matrix at
zeroQ is equivalent to

mpair = 0 sA2d

or

U−1 + xs0d = 0. sA3d

We now show that for a proper choice of the pair suscepti-
bility

xsQd = o
K

GsKdG0sQ − Kd, sA4d

Eq. sA2d is equivalent to the BCS-like gap equation of Eq.
s5d, provided also the Green’s function is of the BCS form

GsKd =
uk

2

ivn − Ek
+

vk
2

ivn + Ek
=

ivn + jk

sivnd2 − Ek
2 . sA5d

Just as in BCS theory, we associate this dressed Green’s
function with self-energy,

SsKd = − D2G0s− Kd. sA6d

We calculatexfQ=siVm,qdg by performing the appropri-
ate Matsubara sums following standard proceduref34g. At
Q=0, we have

xs0d ; o
K

ivn + jk

sivnd2 − Ek
2

1

− ivn − jk
= o

k

1 − 2fsEkd
2Ek

sA7d

and Eq.sA3d becomes

U−1 + o
k

1 − 2fsEkd
2Ek

= 0, sA8d

which, in conjunction with the two-body scattering equation

m

4p"2as
= U−1 + o 1

2ek
, sA9d

gives

m

4p"2as
= o

k
F 1

2ek
−

1 − 2fsEkd
2Ek

G . sA10d

Thus, we have demonstrated that, if we presume Eqs.sA4d
and sA6d then Eqs.sA2d and sA10d are equivalent.

APPENDIX B: CHARACTERIZING THE CONDENSATE

There is an important difference in the nature of the con-
densate for the two cases, with and without Feshbach bosons.
In the latter case, there are two components to the condensate
associated with Cooper pairssDscd and condensed molecular
bosonsnb

0. Moreover, the Cooper condensate enters only into
the gap equation, whereas the molecular Bose condensate
enters also into the number equation. As long as the bosonic
condensatenb

0 is non-negligible, this difference leads to es-
sentially different physics between the one- and two-channel
problem, as will be demonstrated below.

In this appendix, we enumerate the different relationships
between the different components. The order parameter as-
sociated with Eq.s1d represents a linear combination of both
paired fermionssCooper condensated and condensed mol-
ecules. It is given byf11,12g

D̃sc= Dsc− gfm, sB1d

where the boson order parameterfm=kbq=0l. We have
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Dsc= − Uo
k

ka−k↓ak↑l, sB2d

and D̃sc can be written as

D̃sc= − FU +
g2

s2m − ndGok
ka−k↓ak↑l, sB3d

where we have used the factf35g that

fm =
gDsc

sn − 2mdU
. sB4d

The number of condensed Feshbach bosons which enters
the number equationfEq. s19dg is given bynb

0=fm
2 . Thus we

have

nb
0 =

g2Dsc
2

fsn − 2mdUg2 =
g2D̃sc

2

fs2m − ndU + g2g2 . sB5d

Using the renormalization scheme of Ref.f35g, it can be
shown that we can also write

nb
0 = S1 −

U0

U*
D2D̃sc

2

g0
2 , sB6d

whereU* is defined in Eq.s18d. Note that Eq.s27d in the text
is based on the above result atT=0 with D̃sc;D.
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