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We use Bogoliubov-de Gennes �BdG� theory to describe a vortex in a neutral fermionic gas, for an attractive
interaction that can be arbitrarily tuned to exhibit a crossover from BCS to Bose–Einstein condensation �BEC�.
We adopt the BCS–Leggett mean-field ground state for which a BdG approach is microscopically justified, and
for which a Gross–Pitaevskii description emerges in the BEC limit. The local density of fermionic states is
used to provide insight into the particle density depletion from BCS to BEC. We relate this depletion to the
presence of unoccupied discrete states at the core center, as well as to a suppression of negative energy
continuum states.
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One of the most exciting developments in atomic and
condensed matter physics has been the mounting evidence in
support of superfluidity in trapped fermionic systems �1–4�.
In these systems, the presence of a Feshbach resonance pro-
vides a means of tuning the attractive pairing interaction with
applied magnetic field. In this way the system undergoes a
continuous evolution from BCS to Bose-Einstein condensed
�BEC� superfluidity.

A conclusive demonstration of the superfluid phase has
been the experimental observation of vortices �5�. Particu-
larly interesting from a theoretical viewpoint is the way vor-
tices evolve from BCS to BEC. This evolution is associated
not just with a decrease in vortex size but with a complete
rearrangement of the fermionic states which make up the
core. As a result, there is a continuous evolution of the par-
ticle density within a vortex, thereby affecting the visibility
of vortices in experiment. In this paper we discuss the be-
havior of a �single� vortex as the system crosses from BCS to
BEC. Our work is based on the simplest BCS-like ground
state first introduced by Leggett �6� and Eagles �7� to treat
BCS-BEC crossover. With this choice of ground state inho-
mogeneity effects are readily incorporated as in generalized
Bogoliubov-de Gennes �BdG� theory. Here we demonstrate
analytically that the BdG strong coupling description of the
T=0 vortex state coincides with the usual Gross-Pitaevskii
�GP� treatment of vortices in bosonic superfluids. A fermi-
onic theory based on BdG is, thus, very inclusive, and within
this approach one expects a smooth evolution of vortices
from the BCS to BEC limit as the statistics effectively
change from fermionic to bosonic.

Previous studies of vortices in these fermionic superfluids
addressed the BCS limit at T=0 �8� and T�Tc �9�. There is
also work �10� on the T=0 strict unitary case where a BdG
approach was used with Hartree-Fock contributions in-
cluded. In the present work, by contrast, we discuss the en-
tire crossover regime and, importantly, present a detailed
analysis of the energy and spatial structure within the core
and how it evolves from BCS to BEC. A very different path
integral approach was introduced in Ref. �11� to address vor-
tices with BCS-BEC crossover, but here the authors note that
density depletion effects appear to be unphysically large in

the BCS regime. Our analytical approach builds heavily on
previous work �12�, which showed a general connection be-
tween GP theory and BdG. From this one can conclude that
a generalized BCS theory �6� treats the bosonic degrees of
freedom at the same level as GP theory. Different ground
states can be contemplated �with incomplete condensation,
say� but they will not be compatible with BdG theory. In a
similar way, once T�0 one has to incorporate noncondensed
pairs and associated pseudogap physics �13�, which are not
present in a finite temperature BdG theory.

The general self-consistent BdG equations �14� are

�h − � ��r�
�*�r� − h* + �

��un

vn
� = En�un

vn
� , �1�

where h=−�1/2m��2+Vext�r�, ��r� is the T=0 gap function,
which is importantly the same as the T=0 order parameter.
Vext�r� is the external potential associated with the trap, and
we choose �=1. Because we will focus here on a single
vortex, the effects of the trap potential are unimportant for
the present purposes. There is a general symmetry of the
BdG equations so that they are satisfied under the replace-
ment un→vn

*, vn→−un
*, En→−En. En corresponds to the

quasiparticle dispersion and we restrict our discussion to
En�0 only. Here the fermionic chemical potential � must be
appropriately adjusted, as the attractive coupling constant is
varied.

The quantities un and vn are functions of r and define
the amplitudes of the unoccupied and occupied pair
states, respectively, in the ground-state wave function. They
satisfy �dr�	un	2+ 	vn	2�=1 for all energy levels n. The total
number of particles is given by n�r�=2
n 	vn�r�	2. Not only
do un, vn, and En relate to ground-state properties, these
quantities also appear in the T=0 spectrum for single
fermionic excitations. We characterize this excitation spec-
trum via the local density of states �LDOS�, N�E ,r�, given
by 2
n�	un	2��E−En�+ 	vn	2��E+En��. The total of the occu-
pied and unoccupied states, �−�

� N�E ,r�dE, is r independent.
The local particle density, n�r�, is then given by integrating
N�E ,r� over E�0, so that negative energies correspond to
occupied states at T=0.
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For the most part, BdG approaches require detailed nu-
merical solution �8,15–17�, so it is particularly useful to have
analytical tools. These tools were provided in Ref. �12� for
the deep-BEC limit. Using a similar Green’s-function for-
malism, combined with that of Ref. �15�, one finds that the
zero-temperature energy

E0�	� =� dr� 1

2mB
	�	�r�	2 + 2Vext�r�		�r�	2�

+
1

2
U0		�r�	4 − �B		�r�	2 . �2�

In this deep-BEC regime � is negative and necessarily, �

 	�	. Here we have identified the condensate wave function
	�r� as �m2a /8���r�; U0=4�aB /mB, and mB=2m and
aB=2a are the mass and the scattering length of the compos-
ite bosons.

Importantly, this expression has the same form as the
T=0 energy of a gas of weakly interacting bosons �18�
associated with GP theory. It should be noted that here this
GP theory is written in terms of the grand canonical repre-
sentation where the bosonic chemical potential �rather than
the number of particles N� is held fixed. Minimizing
the zero-temperature energy E0 �via �E0 /�	*=0�, leads
to the well-known GP equation: −�1/2mB��2	�r�+2Vext�r�
+U0 		�r�	2	�r�=�B	�r�.

We emphasize that this BdG analysis has, in effect, de-
rived GP theory from a fermionic starting point. A Hartree
contribution for the composite bosons is found here of the
form U0 			2	→U0nB	 �where nB is the density of
bosons�. This is, of course, unrelated to the Hartree term of
the original fermions, which is absent in Eq. �1�, as is con-
sistent with the usual BCS-Leggett mean-field theory �6�.
Indeed, the presence of a Hartree term in the BdG equations
will destroy the simple analytic arguments presented here.
The inclusion of Hartree terms �8� in the vortex problem has
been accounted for in the literature, at weak �8� and strict
unitary coupling �10�, but they do not appear to lead to im-
portant differences.

The next order contribution to the zero-temperature
energy E0 in powers of � yields �drd0�r� 	��r�	6
with d0�r��−5m5a7 /256�. This will contribute a term
g3 		�r�	4	�r� with g3=−15�2aB

4 /4mB in the GP equation; it
introduces the appropriate analog in Eq. �2� as well. This
three-body correction to the usual GP equation �g3� �12� rep-
resents an effective attraction. In the composite-boson sys-
tem, it provides a first-step correction of the deep-BEC limit
en route to the fermionic or BCS end point.

In the presence of a single vortex, the wave function
can be written as 	�r�= f�r�e−i�. We introduce the BEC
correlation length BEC in the strong-pairing limit as
�2mBBEC

2 �−1=�B=U0f0
2, with f0� f�r→ � �. We rescale

r=BECx and f�r�= f0X�x� and apply standard boundary con-
ditions �18,19�. The results for 	�r� in these units are plotted
as the solid lines in Fig. 1. As shown in Fig. 1�a� �and con-
sistent with earlier results in the literature �18,19��, the wave
function rises smoothly from zero at the center of the core to
its full magnitude at infinity on a length scale of BEC. In this
deep-BEC limit of the BdG equations, the wave function is
smooth, as a consequence of the absence of Andreev-like
bound states �20� �i.e., states having En����. Here �� is the
value of gap function in the bulk, away from the core. This
means that Friedel-like oscillations and the abrupt rise in the
pair potential with small r �seen in the BCS regime �16�� are
missing here.

The next order contribution in our composite-boson
system is via the g3 term in the GP equation and the corre-
sponding term in the zero-temperature energy E0. The effects
of this addition, which reflect the underlying fermionic char-
acter, are plotted as dashed lines in Fig. 1 for �rescaled�
g3�=−g3f0

2 /U0=0.1. This g3 contribution represents an attrac-
tive interaction, and, as shown in the figure, leads to a slight
increase in the core size.

One can similarly compute the particle density nB�r�
associated with composite bosons, which is simply related
to the wave function as nB�r�= 		�r�	2=n�r� /2, where n
is the density of fermions. The density n�x� is plotted in
Fig. 1�b�, normalized at the bulk value n��n���, as a func-
tion of x. As expected, the particle density is strictly zero
at the core center in the deep-BEC limit, where there is
complete depletion.

The energy cost of a single vortex can also be calculated
from Eq. �2� and the result is plotted in Fig. 1�c�. The
energy cost per unit length is given by

Ev = ��f0
2

mB
��

0

R/BEC ��dX

dx
�2

+
X2

x2 +
1

2
�X2 − 1�2�xdx ,

where R is a cutoff needed to regularize the calculation of the
vortex core energy. In Fig. 1�c� the solid line indicates Ev as
a function of R /BEC. The shape of the curve for sufficiently
large R /BEC�2 can be fitted to the usual functional form
Ev� ln�DGR /BEC�, where DG=1.48. The dashed line in Fig.
1�c� presents results for Ev in the presence of the three-body
term, where we take g3�=0.1. This correction �red dot-dashed
curve� lowers the vortex energy, as shown in the figure, and
it approaches an asymptote as R /BEC→�.

FIG. 1. �Color online� �a� Numerical solution
of GP equation in the BEC limit with �g3�=0.1,
dashed lines� and without �solid lines� the three-
body g3 term; �b� the corresponding normalized
particle density n�x� /n� as a function of x; and
�c� the zero-temperature vortex energy cost Ev as
a function of R /BEC. In �c�, the difference is
shown as the red dot-dashed curve. Here
n��n���.
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To understand the details of the core structure we turn
now to numerical solutions, building on the above GP analy-
sis in the deep-BEC regime, which provided a good check on
our numerical algorithms. Here the physical coupling
strength is controlled by the parameter 1 /kFa, where kF is the
noninteracting Fermi wave vector at the trap center. We have
verified that changes in our high cutoff energy and coupling
constant V do not affect the numerical results. Our numerical
method is very similar to that in Ref. �21�. The chemical
potential � is approximated by the homogeneous solution,
since the vortex core occupies only a small portion of the
entire system.

We begin with a study of the local �fermionic� density of
states, N�E ,r�, which, when integrated over negative energy
gives rise to the particle density distribution n�r� inside the
core. We ignore, for numerical simplicity, dependencies of
the wave functions on the cylindrical variable z, since these
do not lead to qualitative effects. Because the LDOS is a
fundamentally fermionic quantity, this information is lost
from the analytical analysis we presented earlier that leads to
a Gross-Pitaevskii transcription of the BEC limit. We finally
note that there is considerable interest in the literature in the
behavior of the LDOS for high-Tc �22� as well as low-Tc
superconductors �16�, since this quantity is accessible
through scanning tunneling microscopy.

Figure 2 represents a central figure of this paper which
consolidates our observations about the ground state as well.
Here we plot the LDOS inside the core, as a function of
energy E for r=0 and in the bulk regime, r=25/kF. A small
spectral broadening for all energy levels En was introduced
to regularize the numerics. The four panels correspond to the
BCS �1/kFa=−1�, unitary, near-BEC �1/kFa=0.5�, and BEC
�1/kFa=1� cases, respectively. The latter is not yet in the
deep-BEC discussed analytically.

The figure shows a clear systematic evolution in which
a discrete energy state �i.e., separated from the continuum� at
the core center �r=0, with angular momentum l=0� evolves
continuously from a peak at E�0 in the BCS limit �where
it corresponds to an Andreev-like bound state with En����
to the unitary case �where En��� /2�. Finally, in the
BEC limit this discrete state gives rise to the peak at large
positive energy shown in Fig. 2. The energy of the discrete
state is large and positive in this latter regime �of order

��2+��
2 �	�	�, so that En� 	�	 in the strong coupling limit.

Physically, this means that fermionic excitations only exist in
the core when the energy is sufficiently high so that the pairs
are broken. It can be seen from Fig. 2, that in all cases at
sufficiently large distances from the core center the fermionic
density of states assumes the bulk value.

We turn now to the continuum contribution. Except for a
small numerical broadening effect, both the bulk and core
center continuum states experience an excitation gap, which
is relatively smaller for the r=0 states. Away from the BCS
regime, the corresponding weight of these continuum states
with E�0 is relatively weak, falling off as E decreases. This
reflects the behavior of the coherence factor 	vn	2. By con-
trast for E�0, one can see from Fig. 2 that the continuum
contribution varies as �E at large E. At the core center, as
compared with the bulk, there is thus a transfer of spectral
weight from negative to positive energies.

We now focus on the density depletion and how it is
reflected in the LDOS plotted in Fig. 2, first within the fer-
mionic regime where ��0 �first three panels�. We may use
the sum rule on the LDOS, to observe that a bound state
effectively removes spectral weight from the continuum con-
tribution at both positive and negative energies. This can be
seen from Fig. 2, when the bulk and r=0 contributions are
compared. By removing spectral weight at E�0, an unoccu-
pied bound state thereby leads to a density depletion within
the core. In addition to this bound-state-derived depletion
effect, the transfer of continuum spectral weight from nega-
tive to positive energy further adds to the depletion at the
core center. Parenthetically, it should also be noted that there
is a negative energy �and, therefore, occupied� contribution
at −En from the reflection of the discrete state. However, its
weight, vn

2, can be shown to be essentially zero, except in the
BCS regime.

In the BCS case, where the gap is very small and �=EF,
the bound state �and its reflection� have energy ±En�0. In
this limit, there is particle-hole symmetry so that both bound
states, contributing equally to n�r�, are each half occupied.
As a result, there is no particle density depletion in the ex-
treme BCS limit. For the unitary case, by contrast, the deple-
tion is considerable as a consequence of the transfer of con-
tinuum spectral weight from negative to positive energy and
of the fact that the discrete state now appears at a positive

FIG. 2. �Color online� Local fermionic density of states N�E ,r� as function of E for the BCS �1/kFa=−1�, unitary, near-BEC
�1/kFa=0.5�, and BEC �1/kFa=1� cases, at the center r=0 �black dashed curves� and radius r=25/kF �red solid curves� of the vortex core.
The bulk value of the gap �� is 0.21, 0.68, 1.01, 1.3EF, respectively. In the BEC case, ��−0.8EF. Here EF=�2kF

2 /2m is the noninteracting
Fermi energy at the trap center.
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energy and is thus unoccupied. In the BEC limit, the deple-
tion is close to complete. The local density of states yields
results for n�r�, which are necessarily consistent with the
GP-based approach derived earlier for the �albeit, deep� BEC
regime.

In Fig. 3 we plot the position-dependent order parameter
��r� along with the particle density distribution n�r� for the
unitary and BCS �1/kFa=−1� cases shown in the previous
figure. The two insets show the smooth evolution of the core
center particle density and vortex core size �� as deduced
from the position r at which ��r� reaches 0.9 of its bulk
value. Both insets represent plots as a function of 1/kFa. We
have found that the core size as obtained, alternatively, fol-

lowing Ref. �16� �from the maximum in the current density�
leads to very similar, slightly nonmonotonic results within
factors of order unity. The BCS-like case in Fig. 3 still has a
reasonably large bulk gap, so that the bound-state energy is
slightly positive, and, therefore, there is a non-negligible
depletion at the core. This is in contrast to arbitrarily weak
coupling, where the depletion vanishes. In agreement with
Refs. �16� and �8�, we find the small r oscillations in the BCS
regime derive from the presence of the bound state and have
been found here to be independent of system size.

Despite the fact that there are inadequacies of the mean-
field approach associated with an overestimate of the inter-
boson scattering length �23�, the depletion in the present uni-
tary case is surprisingly similar to that obtained earlier in
Refs. �24� and �10�. In each case, the depletion was attributed
differently to a Hartree-Fock correction �25� or closed-
channel bosons �24�. Here, we interpret this depletion in
terms of the local density of fermionic states as plotted in
Fig. 2. It derives from a combined effect of an unoccupied
discrete state, as well as a suppression of the negative energy
continuum contribution to n�r�.

Note added

After submission of this paper, a paper appeared with
similar calculations which attributed more significance to the
high-energy core discrete state in the BEC limit �observable
in our LDOS plot� than we do here �26�.
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FIG. 3. �Color online� Gap function � �black dashed curves�
and particle density n �red solid curves� as a function of r for BCS
�1/kFa=−1� and unitary cases. All quantities are normalized by
their bulk values. The insets to the left and right panels show de-
tailed behavior of the depletion and vortex core size.
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