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Finite-temperature momentum distribution of a trapped Fermi gas
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We present measurements of the temperature-dependent momentum distribution of a trapped Fermi gas
consisting of 0K in the BCS to Bose-Einstein condensation crossover regime. Accompanying theoretical
results based upon a simple mean-field ground state are compared to the experimental data. Nonmonotonic
effects associated with temperature T arise from the competition between thermal broadening and a narrowing
of the distribution induced by the decrease in the excitation gap A(7T) with increasing T.
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The recent discovery of superfluidity in trapped fermionic
gases has paved the way for arriving at a much deeper un-
derstanding of the phenomena of superfluidity and supercon-
ductivity [1-8]. This may ultimately have application in
high-temperature (7) superconductors [9,10], nuclear, astro-,
and particle physics. In these trapped gases one has the abil-
ity to tune the strength of the attractive interaction that leads
to pairs of fermions (Cooper pairs), which then Bose con-
dense. As the pairing strength is increased a smooth cross-
over from BCS behavior to Bose-Einstein condensation
(BEC) occurs. This tunability is a remarkable feature of
trapped atomic gases and arises from a phenomenon known
as a Feshbach resonance. In general the resulting superfluid
state is more complex than that of simple BCS theory. Simi-
larly the normal state is expected to be quite different from
its BCS analog, since in general pairing takes place at higher
temperatures (7°) than the condensation temperature (7).

The ultracold gases have, thus, presented us with an op-
portunity to investigate in a more complete fashion all as-
pects of fermionic superfluidity. Because of their charge neu-
trality and trap confinement effects there exists a different set
of tools for their experimental investigation, among which
are measurements of the real space and momentum space
distributions of the atomic fermions [11-15]. At finite T these
distributions must change significantly in ways that reflect
both pairing and possibly the onset of phase coherence.

In this paper we study both experimentally and theoreti-
cally the T dependence of the momentum distribution of fer-
mionic atoms within a trapped Fermi gas. Recent measure-
ments of this momentum distribution near 7=0 showed a
dramatic broadening as the pairing strength increased [13],
as is qualitatively consistent with theoretical calculations
[13,16]. In the present paper we extend these measurements
by varying 7 from below to well above the theoretically
predicted values of T; this allows us to probe the momentum
distribution in the normal as well as the superfluid phase.

In general, in a 7=0 fermionic system the physical phe-
nomenon that controls the momentum distribution is pairing.
In the BCS theory the momentum distribution of a homoge-
neous sample shows a slight smearing of the Fermi surface
due to pairing. This effect is very small and associated with
the gap parameter A. In the BCS-BEC crossover, however,
one greatly increases the interaction strength that leads to
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pairing. It is conventional to parametrize the state within this
crossover in terms of kga, where a is the two-body s-wave
scattering length between atoms and k?p is the Fermi wave
vector in the noninteracting limit. While in the BCS limit
(1/k% — —o0) it is difficult to observe the slight change in
the momentum distribution, as the interaction strength in-
creases this broadening grows. Indeed, at unitarity (1/kga
=0) the broadening is no longer small, but instead compa-
rable to the Fermi energy. Finally, in the BEC limit (1/ kga
— o) the atomic momentum distribution becomes extremely
broad and corresponds to the square of the molecular wave
function in momentum space.

At finite T one expects a similar broadening of the mo-
mentum distribution as the interaction is increased. However,
the extent of this broadening is determined by the 7 depen-
dence of the excitation gap A(7T); it is maximum at 7=0 and
should disappear as A(T) goes to zero around 7", where all
pairs are broken. This effect of pairing on the distribution
will occur in addition to the usual thermal broadening of the
momentum profile that occurs in a Fermi gas. While the
thermal broadening increases with 7, the pairing induced
broadening decreases with 7. As we will show below, these
two competing effects lead to a nontrivial 7 dependence in
the Fermi gas momentum distribution.

While the discussion thus far has centered on the expec-
tation for a homogeneous Fermi gas, the experiments pre-
sented here take place in a harmonic trapping potential. The
local Fermi wave vector in a trap varies with position r, so
that the integrated momentum distribution for a noninteract-
ing Fermi gas is significantly different from that for a homo-
geneous case [13]. Thus, in addition to the local broadening
due to pairing, the trapping potential compresses the density
profile and thereby enlarges the overall momentum distribu-
tion.

To perform our experiments, we follow the techniques
described in Refs. [17,18] to create an ultracold *°K gas.
Briefly, starting with a cold gas we slowly ramp a magnetic
field to approach a wide Feshbach resonance at 202.1+0.1 G
[3]. The rate of the field ramp (6.5 ms/G)~! is slow enough
to ensure adiabaticity with respect to many-body time scales
in the system. We then probe the momentum distribution of
atoms in this final state using the experimental sequence de-
veloped in Ref. [13]. In this sequence the atom gas must
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expand freely without any interatomic interactions; this we
achieve through a fast magnetic-field ramp (here =8 us/G)
to a=0 [11]. This is followed by the standard technique of
time-of-flight expansion and optical absorption imaging.

To obtain the data in this paper we repeat the process
above for gases at a variety of interaction strengths and at a
variety of temperatures. To vary the temperature of our initial
Fermi gas we increase the depth of our optical dipole trap
after evaporative cooling and heat the gas by modulating the
optical trap strength. To characterize the temperature of the
gas we measure the temperature compared to the Fermi tem-
perature in the noninteracting limit (7/Ty)°. The physical T
at a given k(}a can then be extracted using the theoretical
thermometry described in Ref. [19], which is based upon
entropy conservation in the adiabatic magnetic-field ramp.

In Fig. 1, we plot experimental azimuthally averaged mo-
mentum distributions as a function of k/k%. From top to bot-
tom, each panel corresponds to a fixed (T/Tr)°=0.11, 0.2,
0.3, 0.5, 0.7, and 1.0, with variable l/k?pa. The scattering
strength 1/k2a=—71, —-0.5, 0.0, and 0.5 represent the nonin-
teracting Fermi gas, near-BCS, unitary, and near-BEC cases,
respectively. For each set of measured distributions at a par-
ticular (7/Ty)°, parameters such as trap strength and initial
gas density are fixed. However, these parameters vary among
the different sets at constant (7/7x)° (panels in Fig. 1). For
example, for the data at (7/Tx)°=0.11 the peak density, for
atoms in one spin state, in the weakly interacting regime is
n=1.4x10" cm™ and E}=0.56 uK. For the hottest data
n,; decreases to 6 X 10'? cm™ and E9=0.79 uK.

On top of the data points in Fig. 1 we show a fit to an
empirical function, which we utilize both for normalization
and for later data analysis. We apply the following two-
dimensional (2D) surface fit to the measured optical depth D
of the expanded Fermi gas.

D(x,y) = Dygo(= L™ PP gy ), (1)
Here g,ix):—ﬁ 1) gde%:/x=2;°=l;ﬁ( is the polylogarithmic
function, ¢ is the fugacity, and 032(’v are proportional to the
Fermi gas temperature and related to the expansion time ¢.
This form can be derived microscopically in the limit of
weak interactions, where {— e*/*sT. While this equation is
only physically valid for an ideal Fermi gas, empirically we
find that it fits reasonably well to the data throughout the
crossover [13]. In this way the 2D momentum distribution is
given by Nyp(k,.k,)=AD(hkt/m, fk,t/m). Here A is a nor-

%Nw(kx,kthw where N,

malization constant such that [
is the total number of atoms.

The experimental results of Fig. 1 show that, at (7/T})°
=0.11, as the system passes from an ideal Fermi gas to near-
BEC the momentum distribution widens significantly, just as
in the 7=0 case shown in Ref. [13]. As (7/T)" increases the
effect of pairing becomes less pronounced, and at sufficiently
high T the curves coalesce. Here A(T)<T, and the system
basically behaves as a classical gas of atoms.

Theoretical calculations for the momentum distributions
in the crossover are presented in the right column of Fig. 1.
The calculations are based on a generalized mean-field
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FIG. 1. (Color online) Evolution of the momentum distribution
N,p(k) with the interaction strength 1/ k(}a from noninteracting to
near-BEC cases. The two columns compare experiment (left) and
theory (right). Different rows correspond to different values of
(T/Tp)°. The lines in the experimental plots correspond to a fit to
Eq. (1). The value of kg used to create the experimental plots was
determined through experimental measurements of the particle
number and trap strength, which led to systematic uncertainties in
kY. of up to 10% for these data. While the raw data are shown here,
the normalization applied in Fig. 3 removes this systematic error.

theory [9,20], which is consistent with the BCS-Leggett
ground state [21]. While 7=0 momentum profiles of this
state have been discussed in the literature [13,16], here we
include finite T effects. An important aspect of this theory is
that the fermionic excitation gap A(T) becomes distinct from
the superfluid order parameter A,.(7) at finite 7 (except in
the strict BCS regime). This point is illustrated in Fig. 2(a).
Here the trap-averaged value of the excitation gap, (A%)!2, is
shown as a function of (7/Ty)° for the near-BEC (1/k(}a
=0.5), unitary (1/k%=0), and near-BCS (1/k%a=-0.5)
cases from top to bottom. The arrows indicate the calculated
value of 7°. We find that A(T) has a gentle onset at high T,
corresponding to the pair formation temperature 7", which is
generally much higher than T..

The momentum and density distribution, along with the
chemical potential wu, the gap parameter, and the order pa-
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FIG. 2. (Color online) (a) Temperature dependence of the aver-
age excitation gap (A?)'2 at 1/k%a=0.5 [top (blue) curve], 0
[middle (red) curve], and —0.5 [bottom (black) curve]. The solid
circles indicate where this effective gap coincides with the tempera-
ture. The arrows indicate the transition temperatures 7? (b) Theo-
retical momentum distributions N, (k) at a variety of temperatures
for 1/k%a=0.5.

rameter, are self-consistently determined using the local den-
sity approximation. The local momentum distribution is
given by

ny(r) = 2{ol 1 = f(EY] + uif (B}, 2)
where uj,vi={1+[e—u(r)]/E(r)}/2 are the BCS coher-
ence factors; e,=h%k*/2m is the kinetic energy of free fer-
mions, Ey=[ g—u(r)]*+A? the fermionic quasiparticle dis-
persion, and f(x) the Fermi-Dirac distribution function. Then

the trap-integrated momentum distribution N(k) and its 2D
projection are given, respectively, by

N(k) = f d*rni(r) and N,p(k) = f ;&N(k). (3)
an

Note, it is N,p(k) that is directly comparable with our experi-
mentally measured optical depth. It can be seen that the ef-
fects of superfluidity and of pairing more generally enter
only through Ey which, in turn, depends upon A(T). Thus the
momentum distribution represents, in effect, the behavior of
the excitation gap, not the order parameter A, . Details of the
theoretical formalism can be found in Ref. [9].

Near 7=0 it has been shown that the simple mean-field
ground state we use here semi-quantitatively describes the
momentum distribution and effective kinetic energy [13,22].
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Thus, this ground state is an excellent starting point for
finite-7" comparisons between theory and experiment. Quan-
titatively, weaknesses of the mean-field ground state in re-
producing the momentum distribution exist, as seen in Ref.
[22]. These weaknesses include that, in the BEC regime, the
interboson scattering length is overestimated by roughly a
factor of 3. However, this does not substantially affect the
momentum distribution of atoms we address, in part because
for the k% considered here we confine our attention to the
fermionic regime (u>0). [For l/k?pa:O.S, our calculation
shows wu(r=0)/E%=0.23 at T,.] Second, the theory does not
include the Hartree self-energy. We also do not take into
account the finite rate of the magnetic-field ramp above the
Feshbach resonance as was done theoretically in Ref. [13].
This finite ramp rate leads to slight redistribution of the mo-
mentum so that high-energy spectral weight is somewhat
suppressed. This effect is crucial for accurately comparing to
the effective kinetic energy [13,22], but for our ramp rates
and in the fermionic regime we expect the effect on our
distribution comparisons to be small.

We now focus on the comparison between our mean-field
calculations and the experiment shown in Fig. 1. Overall we
find semiquantitative agreement. However, there are discrep-
ancies that can be seen in the profiles, especially in the
middle range of 1/k%a. This can be attributed mainly to the
neglect of the Hartree term in the theoretical formalism that
was noted above. If we were to include the Hartree correla-
tion, our calculation of the chemical potential w would de-
crease; this would result in a wider spread between the non-
interacting and interacting profiles in the theoretical portion
of Fig. 1 and, thus, a better quantitative agreement with ex-
periment.

We now turn to understanding the 7" dependence of the
distribution at a fixed value of 1/kja. In this analysis one
expects a competition between conventional thermal broad-
ening and narrowing due to the decrease of A(T) with in-
creasing 7. To illustrate this quantitatively we turn to Fig.
2(a). The solid circles indicate where the effective gap coin-
cides with the temperature. This corresponds roughly to the
temperature at which the broadening as a function of T
should display an inflection point.

In Fig. 2(b) we plot the theoretical results for the momen-
tum distribution at a fixed 1/k0Fa=0.5. Indeed, there is a
change in the 7 dependence of the curves that occurs roughly
when (A?)2=k,T. Below this temperature, the behavior of
the distribution tends to be dominated by that of A, and the
distribution initially narrows with increasing 7. Above this
temperature, thermal effects dominate and the distribution
widens with increasing 7. We find analogous nonmonotonic
behavior at the unitary limit.

To test this theoretical prediction of a nonmonotonic T
dependence of the broadening, we plot the half width (HW)
at half height of the distributions as a function of (T/T})°.
The experimental HW is determined from a fit of the data to
Eq. (1) using the curves in Fig. 1 as well as additional similar
data. For this analysis we have eliminated the dominant un-
certainty associated with the determination of E%- (and hence
k(}) by applying a multiplicative correction factor; this factor
is simply the ratio of the calculated and measured half-
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FIG. 3. (Color online) Comparison of the half width (HW) at
half height as a function of (7/T}) for different values of l/kOFa
from the noninteracting (bottom curve) to near-BEC (top curve)
cases between (a) experiment and (b) theory. The HW in the experi-
mental case is normalized to eliminate dependence upon the experi-
mental determination of Eg (see text); this results in perfect agree-
ment with theory in the noninteracting case [solid (black) line].

widths for the weakly interacting limit. This is done for each
set of data taken at fixed (7/Tz)°.

Figure 3(a) shows the experimental results; the different
symbols represent groups of data with an average value of
1/ kga indicated by the legend. The black line represents the
theoretical dependence of the HW in the noninteracting (a
=0) limit. As expected for this limit, in the classical regime
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the width scales linearly with T; the width then levels out to
a finite value due to Pauli pressure. As the interaction is
increased [(black) circles to (red) stars] the decrease of the
width with decreasing 7 becomes less dramatic, and at the
lowest T the width actually begins to increase as a function
of T. This temperature nonmonotonicity is particularly appar-
ent on the BEC side of the Feshbach resonance.

The experimental result of Fig. 3(a) compares favorably
with its theoretical counterpart [Fig. 3(b)] in that they both
display nonmonotonic 7" dependence. Note that the theoreti-
cal HW at low T and weak interaction is smaller than its
experimental counterpart; in this regime the width drops be-
low the noninteracting curve due to the absence of the Har-
tree term and changes in the shape of the distribution. This
aspect of the theory result again accentuates that, while we
have found the simple mean-field theory to be an excellent
starting point for finite-temperature studies, future quantita-
tive studies will require theories that incorporate the Hartree
term.

In summary, we have studied the momentum distribution
of trapped fermionic atoms at finite 7 by a detailed compari-
son of theory and experiment. Our results show that there is
a competition between the 7 dependence of the fermionic
excitation gap and thermal broadening, which leads to non-
monotonicities in the T dependence of the momentum pro-
files. Since temperature is often difficult to determine experi-
mentally, systematic studies at nonzero 7 are just beginning
in these ultracold gases. Here, by working with a theoretical
temperature scale (set by the entropy), under conditions of an
adiabatic sweep, we are able to show semiquantitative agree-
ment between theory and experiment using a simple mean-
field theory.
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