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We study the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell �LOFF� states for BCS-Bose-Einstein
condensation crossover at general temperatures T. Because we include the important effects of noncondensed
pairs, our T�0 phase diagrams are different from those reported in earlier work. We find that generalized
LOFF phases may be the ground state for a wide range of �weak through moderately strong� interactions,
including the unitary regime. However, these LOFF phases are readily destroyed by nonzero T.
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Recent atomic physics discoveries in the field of ultracold
polarized �1–3� fermionic superfluids have important impli-
cations in color superconducting quark matter as well as in
dense nuclear matter �4–6�. Moreover, there has been a long
standing interest from the condensed matter community �7�
in observing the very elusive Larkin-Ovchinnikov-Fulde-
Ferrell �LOFF� �8� states of a polarized superfluid. Here con-
densation of Cooper pairs takes place at one or more nonzero
momenta qi. These cold gases possess a remarkable flexibil-
ity in which they can be polarized as well as studied with
variable attractive interaction. This provides an additional
mechanism for �possibly� tuning in the various LOFF phases
as one changes the s-wave two-body scattering length a from
positive in the Bose-Einstein condensation �BEC� regime to
negative �BCS�. Thus far, experiments �1–3� have focused on
the unitary scattering regime, midway from BCS to BEC.
While Bogoliubov–de Gennes �BdG� based theories �9,10�
for a trap at unitarity suggest that the ground state is gener-
alized LOFF, homogeneous studies �11� conclude that
LOFF1 at least, is confined to a sliver near the BCS end-
point. A critical component which needs to be injected into
this controversy is the nature of the stability criteria �12–15�
which is also under lively debate.

The goal of this paper is to clarify these issues in a ho-
mogeneous system by addressing BCS-BEC crossover for
one particular member of the LOFF class—corresponding to
the single plane wave LOFF state. Our paper represents the
first systematic study of how temperature affects this state
which we call “LOFF1.” Given how fragile we find LOFF1
is to elevated T, we suggest that future trap experiments
should focus on large polarizations on the BCS side of reso-
nance. In a trap, in contrast to the homogeneous case �16�,
the phase separated state is found to be unstable �17,18� and
it is there that one might find a stable LOFF phase, at the
lowest possible T.

We implement a numerical procedure to solve all coupled
equations directly at fixed total particle number N�. We char-
acterize the “existence regime” �where solutions exist� and
the “stability regime” �where solutions are stable� in a series
of phase diagrams. When phase separation is considered as
the only alternative, our T=0 results are consistent with
those in Ref. �16�. Unlike this earlier work, our calculations
do not automatically incorporate first order transitions �from
a single phase state� to a phase-separated state, because
phase separation is not as universally stable �17,18� in the
presence of a trap. Moreover, we cannot rule out other mul-

tiplane wave LOFF phases as more stable than phase sepa-
ration. Our calculations show that the stable LOFF1 state is
primarily restricted to a regime near the BCS endpoint, al-
though it does overlap unitarity for a narrow range of high
polarizations. We show that the LOFF1 existence regime is
considerably broader and is directly associated �19� with the
phase space region where there is negative superfluid density
�12,20� in the q=0 or Sarma state �21�. Here it is likely that
a LOFF phase of one form or another will be stable, although
it may be something more complex �7,22� than LOFF1.

Our central phase diagram in the T vs p plane should be
of particular interest to experimentalists who are currently
creating plots of this nature. It can be contrasted with that
obtained in Ref. �23� in which temperature was introduced in
a fashion following the original Nozieres-Schmitt-Rink
�NSR� �24� scheme. Here, unlike Ref. �23� we choose to
include T in a manner which is fully consistent with the very
extensive literature �9–12� on the ground state of these po-
larized superfluids.

We introduce T�0 following a T-matrix scheme, and re-
strict our attention to the superfluid phase. This T matrix
represents the propagator for noncondensed pairs and is
given by t−1�P�=U−1+��P� where � is the pair susceptibility
and U�0 is the pairing interaction strength. For atomic
Fermi gases, we assume an s-wave contact interaction. The
present competition between Sarma and LOFF1 states bears
a strong similarity to analogous Hartree-Fock theories which
establish whether ferromagnetic or antiferromagnetic order
will arise. Here, the relevant ��P� necessarily involves the
self-consistently determined fermionic gap parameter ��T�
and chemical potential ��T�. Importantly at and below Tc the
chemical potential for the pairs ��pair� must be zero and this
BEC condition on t�P�, thereby, determines ��T�.

The pair susceptibility for LOFF1 condensates in which
momentum k pairs with −k+q �for as yet undetermined q�
may readily be written down �22�. We first introduce the
fermionic chemical potentials �↑ and �↓ for the two spin
states �= ��↑+�↓� /2 and h= ��↑−�↓� /2 and �k=k2 /2m, �k
=�k−�, where �� is the chemical potential for spin �
= ↑ ,↓. It is useful to also define Ek·q=��k·q

2 +�2, with �k·q
= ��k+�k−q� /2 and 	�k= ��k−�k−q� /2. As in Ref. �25�, we set
the volume V=1, 
=kB=1, and P��i�l ,p�, where �l

=2l�T is an even Matsubara frequency. Then the pair sus-
ceptibility ��P� at the mean field level, after analytical con-
tinuation i�l→�+ i0+, is given by
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��P� = �
k
�uk

2 f̄�Ekq + 	�k� + f̄��p−k� − 1

� − �p−k − �Ek·q + 	�k�

+ vk
2 f̄��p−k� − f̄�Ek·q − 	�k�
� − �p−k + �Ek·q − 	�k�

	 , �1�

which, as q→0, goes over smoothly to its counterpart in the
Sarma phase. Here the coherence factors uk

2, vk
2

= �1±�k·q /Ek·q� /2 and we define f̄�x�= �f�x−h�+ f�x+h�� /2,
where f�x� is the Fermi distribution function. The BEC con-
dition, U−1+��0,q�=0, leads to the usual gap equation in
terms of the scattering length a,

−
m

4�a
= �

k
�1 − 2f��Ek·q�

2Ek·q
−

1

2�k
	 , �2�

where we define f��x���f�x−h+	�k�+ f�x+h−	�k�� /2.
The number equations also depend �22� on the quantity �

through a self-energy involving t�P�. Our final results, con-
sistent with the standard equations in the literature, are

n = 2�
k
�vk

2 +
�k·q

Ek·q
f��Ek·q�	 , �3�

	n = �
k

	f�Ek·q� , �4�

where n=n↑+n↓ and 	n=n↑−n↓, and the polarization
p�	n /n. Here we have defined 	f�x�= �f�x−h+	�k�
− f�x+h−	�k��. Finally, we determine q by imposing an ex-

tremal condition on the pair susceptibility, 

���0,p�

�p 
p=q=0, so
that pairs necessarily reach the lowest energy at p=q. This
condition, which turns out to be equivalent to requiring that
there be no net current in this LOFF1 state, is given by

0 =
1

�2�
k
�q

2
��1 −

�k·q

Ek·q

 −

�k·q

Ek·q
f��Ek·q�	

+ �k −
q

2

	f�Ek·q�� . �5�

When this equation has a solution at q�0 we have a LOFF1
phase. There will always be a coexisting solution of the
Sarma-type with q=0.

At T�0, the parameter ��T� contains the contribution
from both condensed �sc� and non-condensed �pg�
pairs. We can show quite generally that below Tc, �2�T�
��sc

2 �T�+�pg
2 �T�, where

�pg
2 �T� = Z−1�

p
b��p� , �6�

and b�x� is the Bose distribution function. Here the pair dis-
persion is found to be �p��p−q�2 /2M*. Analytical expres-
sions for M* and Z are possible via an expansion of � in
small �p−q�,

���,p� − ��0,q� � Z�� −
�p − q�2

2M* 	 , �7�

where Z= 
 ��
�� 
�=0,p=q and 1

2M* =−
 1
6Z

�2�

�p2 
�=0,p=q. The quantity
� contains everything one needs to know about zero as well
as finite T. And our results for T=0 reduce to the standard
equations in the literature.

To demonstrate that a given LOFF1 solution to our self-
consistent equations is stable, we introduce an effective ther-
modynamic potential for this superfluid state

� = −
�2

U
+ �

k
���k·q − Ek·q� − T ln�1 + exp�− �Ek·q − h

+ 	�k�/T�� − T ln�1 + exp�− �Ek·q + h − 	�k�/T��� . �8�

It is straightforward to verify that the above gap, number and
zero-current equations are consistent with the variational
conditions

��

��
= 0, −

��

��
= n, −

��

�h
= 	n,

��

�q
= 0.

The stability condition requires that the symmetric number
susceptibility matrix

M =�
DN

D�

DN

Dh

D	N

D�

D	N

Dh
� �9�

be positive definite �12,13�. Here D
Dx � �

�x + ��
�x

�
�� + �q

�x · �
�q , with

x=� ,h. To evaluate this matrix we note

DN

D�
= −

�2�

��2 −
�2�

����

��

��
−

�2�

�q��

�q

��
,

DN

Dh
= −

�2�

���h
−

�2�

����

��

�h
−

�2�

�q��

�q

�h
=

D	N

D�
,
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FIG. 1. �Color online� LOFF1 wave vector q as a function of
1/kFa at T=0 and for various p. Beyond the turning point, no
LOFF1 state exists. The inset shows Tc and mean field Tc

MF=T*

�pair formation temperature� at unitarity over respective stability
regimes.
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D	N

Dh
= −

�2�

�h2 −
�2�

���h

��

�h
−

�2�

�q�h

�q

�h
,

where �� /��, �q /��, �� /�h, and �q /�h can be easily de-
rived by differentiating Eqs. �2� and �5� with respect to � and
h. It can be shown that the positive definiteness of M is
equivalent to

�2�

��2

�2�

�q2 − � �2�

���q

2


 0, �10�

which can be regarded as a local stability condition on the
LOFF1 state against phase separation. Figure 1 shows a nu-
merically obtained plot of the behavior of the LOFF1 wave
vector q as a function of 1/kFa, and at T=0, for various
polarizations p. Here EF=kBTF=
2kF

2 /2m is defined as the
Fermi energy of an unpolarized, noninteracting Fermi gas of
density n. For each value of p a turning point, �1/kFa�max, is
visible beyond which we can not find LOFF1 solutions. At
finite T the analogous curves �not shown� quickly become
monotonically decreasing so that �1/kFa�max corresponds to
q=0; thus the system smoothly transforms to the Sarma
state.

The inset in Fig. 1 shows the behavior of Tc and its mean
field counterpart T*=Tc

MF as a function of 1/kFa near unitar-
ity and for p=0.8. There is a considerable difference between
Tc and Tc

MF showing that pair fluctuation effects �via
�pg�0� are very important in the LOFF1 phase, just as else-
where �20�. In contrast to the behavior of the Sarma phase at
unitarity, in the LOFF1 state, superfluidity extends over the
range of temperatures from Tc down to T=0.

We turn to Fig. 2 beginning with the left panel �T=0� and
the nearly vertical line which is determined from �1/kFa�max.
This provides a bound on the existence region for our nu-
merically obtained LOFF1 solutions. Essentially on top of
this nearly vertical line is the locus of points to the left of
which the superfluid density for the Sarma state ns

Sarma�0� is
negative. That these two lines coincide reinforces earlier
work �19�: providing one considers a second order transition
between generalized LOFF and Sarma states, the boundary
line for the existence of all LOFF states is determined by
ns

Sarma=0. We indicate by the dotted background in Fig. 2,

where we have the possibility of superfluidity with multiple
nonzero q’s. This existence regime for generalized LOFF
states is relatively wide at T=0, importantly including uni-
tarity. The shaded region in Fig. 2 results from applying the
stability criteria associated with the positivity of the matrix
M in Eq. �9�. The nonvertical line to the right in this first
panel marks the onset point for a stable Sarma phase.

This phase diagram evolves with temperature as shown by
the other two panels in Fig. 2. In the middle and right panels
we have distinguished between normal and superfluid
LOFF1 states by using darker and lighter shaded regions,
respectively. At the highest T, for the panel on the right, there
is only a sliver of stable LOFF1 which corresponds to a
normal �pseudogapped� phase. It should be noted that the
size of the existence region for generalized LOFF solutions
quickly decreases as temperature is raised. This is related to
the fact that the ns

Sarma rapidly becomes non-negative as T
increases from zero.

Figure 3 represents a particularly convenient way of pre-
senting our results. For the trapped case, experimental stud-
ies �1–3� are in the process of mapping out this phase dia-
gram in the p-T plane at unitarity. From left to right, the
three panels correspond to unitarity, and the BCS and BEC
sides �close to resonance�, respectively. Also shown here is
the region where we have a stable Sarma state. This appears
only at intermediate temperatures �20�, when the superfluid
density �which is negative at T=0 for all 3 cases� is driven
positive. Our p-T phase diagram can be contrasted with that
in Ref. �23�, which is based on a different but unspecified
ground state. Indicated in all three panels are the �dotted�
regions where generalized LOFF states may exist, and the
�shaded� regimes where the LOFF1 phase is stable. As in
Fig. 2, the light shaded region corresponds to the superfluid
LOFF1 phase, and the dark shaded region to the normal
LOFF1 phase with a pseudogap. For these 1/kFa values, a
stable LOFF1 phase exists only at relatively high p and low
T. This is to be contrasted with the stable Sarma superfluid
which exists only at low p and intermediate T. Our findings
at 1 /kFa=−0.5 are qualitatively consistent with the mean-
field results of Ref. �19�. Here, however, we see no tetracriti-
cal point. Using this figure, one can compare the transition
temperatures for the LOFF1 and Sarma phases. For the latter,

FIG. 2. �Color online� Phase diagram in the p vs 1/kFa plane for T /TF=0, 0.05, and 0.1. The dotted region shows where LOFF1 state
is unstable but some form of LOFF phase may be stable. The �yellow� light shaded region indicates the stable LOFF1 superfluid and the
�cyan� darker shaded region the stable LOFF1 normal state. In contrast to Ref. �16� our calculations do not automatically incorporate phase
separation, which is not as universally stable in the presence of a trap.
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Tc is read off as the upper transition temperature in the three
plots. �The lower Tc is where ns

Sarma�T� changes sign and the
order parameter vanishes�. It can be seen that the transition
temperatures for the LOFF1 phase are very low compared to
their counterparts in the Sarma phase.

In summary, in this paper we have addressed homoge-
neous systems and mapped out the LOFF1 phase diagram at
general T. We have shown that LOFF1 phases are more
stable near unitarity at sufficiently high p than alternative
Sarma states. Since it is generally expected �7� that LOFF
states with multiple values of q are more stable than the
simplest LOFF1 states, we argue that quite possibly there
exist stable generalized LOFF ground states throughout most
�but perhaps not all� of the dotted regions shown in Figs. 2
and 3; this corresponds to where the Sarma phase has nega-
tive superfluid density. Our results support previous BdG-

based approaches �9,10� which argue that the ground state at
unitarity is a generalized LOFF phase. In a trap configura-
tion, one might expect that, since we find the LOFF1 phase is
stable at relatively high p, generalized LOFF phases should
appear in the neighborhood of the condensate edge, as also
found in earlier work �9,10�. However, in contrast to Ref. �9�,
we have addressed systematic LOFF1 stability criteria and,
moreover, find that the size of the stability region for the
LOFF1 state and that of the existence region for general
LOFF phases quickly diminish with T. Finally, our self con-
sistent calculations indicate very low Tc in the LOFF1 state
as compared with previous estimates �9�, which ignored the
effects of noncondensed pairs.
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FIG. 3. �Color online� Phase diagram in the p-T plane for unitary �left�, near BCS �middle�, and near-BEC �right�. The dotted region
shows where LOFF1 state is unstable against phase separation but stable generalized LOFF phases may in principle exist. The �yellow� light
shaded region is the LOFF1 superfluid, and the �cyan� darker shaded region is the LOFF1 normal state.
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