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We determine the superfluid transition temperatures Tc and the ground states of the attractive Hubbard model
and find unusual insulating phases associated with noninteger filling at sufficiently strong pairing attraction �U�.
These states, distinct from the band-and Mott-insulating phases, derive from pair localization; pair hopping at
large �U� and high densities is impeded by intersite, interpair repulsive interactions. The best way to detect the
breakdown of superfluidity is by using fermionic optical lattices, which should reveal these unusual forms of
“bosonic” order, reflecting ground-state pairing without condensation.
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The attractive Hubbard model has captured the attention
�1� of the theoretical and experimental communities, al-
though this model is far from being fully understood. It is
hoped that experiments using ultracold fermionic atoms in
optical lattices �2� will shed light both on competing ground
states and on finite-temperature �T� effects, and, moreover,
provide insights into high-temperature superconductivity,
largely through the ubiquitous “pseudogap” effects. These
derive from �3� the fact that, as the attraction becomes stron-
ger, pairing takes place at a different temperature T* from
superfluid condensation, Tc.

For bosonic systems at half filling the strong �repulsive�
interaction limit gives rise to superfluid–Mott-insulator tran-
sitions �4�. It is a central goal of this paper to investigate this
counterpart strong �attractive� interaction regime for fermi-
ons and demonstrate that superfluid-insulator �S-I� transi-
tions �away from integer filling� are also present. Indeed, the
latest experiments on fermions �2� reveal competing insulat-
ing and superfluid ground states. It is not yet clear whether
these insulating phases are band insulators or localization-
induced insulating phases. We note that the largest coupling
regime we address in this paper has not yet been studied by
Monte Carlo �5� or other methods �6�, despite the fact that a
comparably strong �dimensionless� interaction strength is re-
quired for bosonic systems to undergo S-I transitions.

Our finite-T approach to the Hubbard model includes pair
fluctuations in a manner that is consistent with the standard
BCS Leggett ground state and, most importantly, with a
proper and physical treatment of pseudogap effects. We
stress, however, that these noncondensed pair effects must
necessarily be treated differently from previous Nozières-
Schmitt-Rink �7� based approaches to T�0. Indeed, follow-
ing Ref. �7�, essentially all other pairing fluctuation ap-
proaches to BCS–Bose-Einstein condensation �BEC�
crossover contain an inherent inconsistency; they presume
that, in the fermionic dispersion relation Ek=��k

2 +�2�T�, the
so-called pairing gap � vanishes at and above Tc. These non-
condensed pairs �present for all 0�T�T*� are also essential
for arriving at physical values for the transition temperature
Tc. Without including them it is not possible to know about
ground states with Tc=0, which will naturally occur, e.g., in
the present theory �8� in two-dimensional lattices, as compat-
ible with the Mermin-Wagner theorem �in the absence of
Kosterlitz-Thouless or other topological order�. This under-

lines the fact that one cannot solve the BCS Leggett T=0
equations in isolation to characterize the stable ground states.

Our principal result is that, in addition to the expected
band-insulating state �at filling n=2�, an unusual insulating
phase, which is stabilized by pair fluctuations, emerges when
n and the interaction strength exceed appropriate critical val-
ues. Strikingly, the critical value for the dimensionless inter-
action strength is comparable to that found for the Bose-
Hubbard model �4�. This unusual insulating phase is different
from the Mott or band insulator, both of which occur only at
integer filling, but like the Mott case it is due to localization
�of fermion pairs�. To address cold atom optical lattices, we
also extend the attractive Hubbard model to a two-channel
model and find that the insulating phases at noninteger filling
survive; thus, pair localization is a robust effect.

Our work can be contrasted with previous studies, which
focused only on T=0 �9–12� and with Monte Carlo �MC� �5�
as well as dynamical mean-field theoretic approaches �6�. In
the moderate coupling regime, where comparisons can be
made, we find transition temperatures to be of comparable
order of magnitude, albeit slightly larger �factors of 2�. In
part this derives from the fact that the standard BCS Leggett
ground state considered here does not include �6� the
Gorkov-Melik-Barkhudarov �13� effect. This semiquantita-
tive difference should not be of concern because different
MC calculations �14,15� of Tc in a unitary Fermi gas have
not yet converged to better than factors of 1.5.

Of particular interest here are the properties of the attrac-
tive Hubbard model, in the limit that the attraction �U� is
much larger than the hopping t. While this model exhibits a
smooth crossover from the BCS to BEC with increasing �U�,
it should be stressed that the BEC here is very different from
that of true bosons, since the hopping of the pairs involves,
as an intermediate or virtual step, their unbinding into fermi-
ons. In this way the inverse pair mass was argued �1,7�, to
vary as t2 / �U�. Important for the present purposes is the fact
that there is also a nearest-neighbor repulsion �1,7� which is
of the same magnitude as the effective pair hopping term. On
this basis it has been argued that “at higher densities the
overlap of the bound pairs severely restricts their motion”
�1�. This quotation is particularly relevant to our findings; we
show that at sufficiently high n �1� the pair motion is so
restricted that their effective mass diverges prematurely be-
fore �U�→�. This localization, in turn, is associated with the
breakdown of superfluidity.
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This frustration of superfluidity at high n can also be ad-
dressed via a mapping to a magnetic model. When �U� / t
�1 the attractive Hubbard model is equivalent to �1� an
effective quantum XXZ model with coupling constants JXX
=−JZ, both of which are proportional to t2 / �U�. This mapped
problem is subject to the constraint that the average magne-
tization along the z axis is fixed at �n−1� /2, making this a
rather difficult magnetic model to solve in general. Superflu-
idity corresponds to ordering in the x-y plane. When n is
small, the constraint is straightforward to implement and su-
perfluidity emerges. However, at high densities �n�1� new
states with order along the z axis are expected �1� to emerge,
thereby destroying the superfluid phases. Indeed, it is well
known that, for n strictly equal to 1, the simple superfluid
ground state is undermined as a result of a degeneracy with a
charge-ordered ground state �1�.

We now address these effects by investigating the physics
of fermions which interact via s-wave attraction in a three-
dimensional �3D� square lattice. We start with the one-
channel attractive Hubbard model Hamiltonian

Hf = �
k�

�kck�
† ck� + U �

kk�q

ck+q/2↑
† c−k+q/2↓

† c−k�+q/2↓ck�+q/2↑.

�1�

Here �k=�k−	, where 	 is the chemical potential. The one-
particle energy dispersion is �k=2t�3−cos kx−cos ky

−cos kz� in a one-band nearest-neighbor tight-binding ap-
proximation, where the values of k are restricted in the first
Brillouin zone, and we set the lattice constant a0=1. U rep-
resents the attractive on-site coupling. “Resonant” scattering,
which corresponds to an infinite two-body scattering length,
occurs at U / t�−7.915, in agreement with Ref. �16�. Note
that by adopting the Hubbard model we drop any terms as-
sociated with direct pair hopping, which should not be im-
portant in the regime we focus on here, where 	 is positive
or only slightly negative. We consider a one-band model, on
the premise that multiband effects will change the results
quantitatively but not qualitatively. There is still uncertainty
in the literature �12� about whether or not an effective one-
band �9� model is adequate.

We use a T-matrix formalism �3,17,18� to address finite
temperature. This particular T-matrix approach has a crucial
advantage because it leads to physical results for the super-
fluid density ns�T�. This single-valued, monotonic, and con-
tinuous behavior �from zero to Tc� for ns�T� is not found in
other theories; this physical behavior can be traced to a self-
consistent treatment of pseudogap effects �3�, in which pair
fluctuations enter into both the gap and the number equations
in a fully self-consistent fashion.

Details of this formalism can be found in �3�. We define
the noncondensed pair propagator as tpg�Q�=U / �1+U
�Q��,
where, as in Ref. �19�, our choice for the pair susceptibility,
given by 
�Q�=�KG0�Q−K�G�K�, can be derived from de-
coupling the Green’s function equations of motion. Here
G�K� and G0�K�= i�n−�k are the full and bare Green’s func-
tions. K	�i�n ,k� and Q	�i�m ,q� are four-vectors with
�K	T��n

�k. Below Tc, the self-energy �K�=�Qt�Q�
�G0�Q−K� can be well approximated by the BCS form

�K�=−�2G0�−K�, where t�Q�=−��sc
2 /T���Q�+ tpg�Q�, and

�sc is the superfluid order parameter. In the superfluid state,
the “gap equation” is given by the pairing instability condi-
tion tpg

−1�0�=U−1+
�0�=0, which is equivalent to the BEC
condition on the pairs. Therefore, we have

1

U
= − �

k

1 − 2f�Ek�
Ek

. �2�

Here f�x� is the Fermi distribution function. Similarly, the
average �20� density n in a lattice, derived from n
=�K,�G��K�, is given by

n = �
k

�1 −

�k

Ek
� + 2f�Ek�� �k

Ek
� . �3�

We next determine the dispersion relation and the number
density for noncondensed pairs. From the self-energy expres-
sion one obtains �2=�sc

2 +�pg
2 where the pseudogap contri-

bution satisfies �3,18,19�

�pg
2 	 − �

Q

tpg�Q� , �4�

which can be shown to vanish at T=0. The critical tempera-
ture Tc is defined as the lowest temperature where �sc=0. In
the superfluid phase �pair chemical potential 	pair=0�, and at
small Q, tpg

−1�Q�=
�Q�−
�0��Z1�2+ �Z0��−�2q2. Except
when particle-hole symmetry is present, e.g., at very weak
coupling and near half filling, we find Z1� �Z0�, which thus is
irrelevant. Near n=1, the Z1�2 term enters and regularizes
the van Hove singularity. To first order in � one can write
�pg

2 = �Z0�−1�qb��q�, where b�x� is the Bose distribution
function. At sufficiently low q, we can approximate the dis-
persion of the noncondensed pairs by �q=q2 /2M*, where
M* is the effective mass of pairs at the bottom of the band.

In Fig. 1 we show Tc /EF as a function of U / t for several
values of n in the one-channel model. Here EF is the Fermi
energy of a noninteracting Fermi gas with the same filling
factor. As in MC simulations, Tc exhibits a maximum near
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FIG. 1. �Color online� Tc /EF as a function of U / t. The corre-
sponding value of n is marked next to each curve. The vertical
dashed line indicates the unitary limit. Inset: T=0 mean-field results
for � / t as a function of n.
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resonance and decreases slightly when U / t is away from
resonance. When n is small, we find a long tail in Tc propor-
tional to t2 / �U�, as expected �7�. Importantly, it is observed
that, when n�nc�0.53, Tc vanishes provided U / t exceeds a
critical value �U / t�c. It should be noted that at the insulating
onset point, we find that 	 is zero or slightly positive, far
from the true bosonic regime. The inclusion of pair fluctua-
tion effects is essential here for establishing Tc=0 beyond
�U / t�c. This result can be contrasted with the predicted
ground state of strict mean-field theory shown in the inset of
Fig. 1, where � / t vanishes only at n=0 and 2 �band insula-
tor�.

In Fig. 2 we show typical phase diagrams at low and high
densities. In contrast to Tc, the pairing onset temperature T*

�as estimated from the strict mean-field solution for Tc� in-
creases monotonically with �U� / t. The high-density phase
diagram, in particular, bears some similarity to its counter-
part in high-temperature superconductors �3�. In both figures,
as in high-Tc superconductors, we see an anticorrelation be-
tween the behavior of Tc and T*, associated with lattice �1�
as well as pseudgogap effects �8�. The complete suppression
of superfluidity in Fig. 2�b� can be shown explicitly to come
from localization of pairs; that is, the effective pair mass
M*→�.

In the inset of Fig. 2 we show the T=0 phase diagram, in
which “BCS” �“BEC”� denotes states with 	 higher �lower�
than the bottom of the band. The shaded regime corresponds
to where there is a nonsuperfluid ground state. The lowest
value of ��U� / t�c�25 occurs at n=0.53. This is comparable
in magnitude to the critical value �U� / t�35 of the Mott-
insulator–superfluid transition of the 3D boson �repulsive�
Hubbard model with filling factor 1 �4�, although the physi-
cal origin of the two insulators is different.

In actual experiments, attractive interactions between the
atoms are generated by Feshbach resonance effects, which in
principle require a two-channel description. Previous work
on the two-channel model in a lattice concentrated on the
superfluid–Mott-insulator transition in the strongly interact-
ing regime near n=2 �10,11�. Other recent work discussed
band insulators in the weakly interacting regime �12�. The
generalization of our T-matrix formalism to the two-channel

model for Fermi gases was presented in �18�. To take into
account the closed-channel molecules, the Hamiltonian is ex-
tended to H=Hf +Hb+Hfb, where Hb=−�qEq

mbq
†bq describes

the hopping of molecules and Hfb=�q,kg�bq
†cq/2−k↓cq/2+k↑

+H.c.� describes conversion between molecules and fermion
pairs. Here Eq

m=�q
m−2	+�, � is the magnetic detuning, and g

is the coupling constant for molecule-pair conversion. The
strength of the attractive pairing interaction is modified rela-
tive to the one-band case �18� to

Uef f�Q� = U + g2D0�Q� , �5�

where D0�Q�=1 / �i�n−Eq
m� is the propagator for noninteract-

ing closed-channel molecules. The gap equation involves
only Uef f 	Uef f�Q=0�. The density in the lattice now be-
comes n=nf +2nb+2nb

0 where the open-channel contribution
nf is given by Eq. �3� and the closed-channel contribution
comes from the molecular condensate �2nb

0� and noncon-
densed molecules �2nb�. The energy of molecules has a
Bloch-like dispersion, just as found for the fermions. In the
long-wavelength limit, we may expand this Bloch band dis-
persion as �q

m�q2 /2Mb, where Mb=2 / t is the effective bare
mass of the molecules. The fermion pairs have a similar q2

dispersion and, in general, hybridize strongly with these
closed-channel molecules.

In our Hamiltonian we have dropped a direct closed-
channel boson-boson repulsion. This was included in previ-
ous work �10,11� which aimed to create Mott-insulating
phases associated with the closed channel. At n=2, because
the closed channel represents a band that is never completely
filled �due to the presence of the open channel�, we find that
localized states in the strict Mott sense are not obtainable as
is consistent with Ref. �11�. In this way, we argue that it is
appropriate here to drop the intra-closed-channel interac-
tions. We note parenthetically that to obtain a Mott-insulating
state one possibility is to treat the closed channel as compos-
ite fermion pairs �or hard-core bosons �1�� and to consider
filling above n=2.

Figure 3 shows Tc /EF in the two-channel model as a func-
tion of Uef f / t for �Figs. 3�a� and 3�c�� narrow and �Fig. 3�b��
broad Feshbach resonances. Here Uef f is tuned via � with
fixed U and g in Figs. 3�a� and 3�b� and via U with fixed �
and g in Fig. 3�c�. Figure 3�a� corresponds to the case in
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FIG. 2. �Color online� Phase diagrams of one-channel attractive
Hubbard model at �a� n=0.3 and �b� n=0.7. “SF” denotes superfluid,
“PG” denotes the pseudogap phase, and “Insulator” in �b� schemati-
cally indicates breakdown of ground-state superfluidity. Inset: T
=0 phase diagram. Here the boundary separating BCS and BEC
regimes is determined when 	 reaches the bottom of the band. The
gray shaded area shows where superfluid does not exist, corre-
sponding to the “Insulator” regime.
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FIG. 3. �Color online� Tc /EF as a function of pairing interaction
Uef f / t in the two-channel model, as tuned by �a�,�b� detuning � and
�c� U for relatively �a�, �c� narrow and �b� broad Feshbach reso-
nances. The parameters are �a� g / t=−60, U / t=−6, n=0.7 �black�
and 2 �red curve�; �b� n=0.7, g / t=−600, U / t=−6; �c� n=0.7, g / t
=−60, � / t=500. The shaded regimes in �b� and �c� schematically
indicate the noninteger-filling insulating states.
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which there is a considerable admixture of both closed and
open channels. We take U / t=−6 and consider a relatively
narrow resonance, g / t=−60, as well as two values of n
=0.7 and 2. For n=0.7, Tc is first suppressed by the opening
of the pseudogap as −Uef f increases; then Tc eventually in-
creases with increasing −Uef f as fermions are converted into
closed-channel molecules which have a finite BEC transition
temperature. For n=2, the cusp in the Tc curve comes from
the van Hove singularity at nf =1. For a large range of Uef f,
Tc for n=2 is effectively zero �21�, until a sufficient number
of open-channel pairs are converted to closed-channel mol-
ecules. Importantly, for this case, the insulating state thereby
observed is a band insulator.

When we decrease the participation of closed-channel
molecules by increasing either −U / t or �g� / t, insulating states
�of the unusual form, at noninteger filling� start to emerge. In
Fig. 3�b� we demonstrate these insulating states by plotting
Tc /EF for n=0.7 at U / t=−6 and a large �g� / t=600 �wide
resonance� as a function of Uef f / t by tuning �. In Fig. 3�c�
we plot the counterpart curve for a narrower resonance
�g / t=−60� as a function of Uef f / t by tuning U at fixed high
detuning �. In contrast to the result shown in Fig. 3�a�, by
decreasing the fraction of closed-channel states, as in Figs.
3�b� and 3�c�, we find localized insulating phases. This lo-
calization can be demonstrated by a divergence in the effec-
tive pair mass. In summary, insulating states at noninteger
filling are robust even in the presence of closed-channel mol-
ecules.

The experimental implications of our work are readily
testable, since, fortunately, using Feshbach resonances, cur-

rent cold atom experiments �2� are able to simulate these
attractive Hubbard Hamiltonians. Our principal result is the
theoretical observation of superfluid-insulator transitions in
the ground state of the attractive Hubbard model away from
integer filling. To observe these unusual phases experimen-
tally one needs to consider average densities n�1 and suf-
ficiently large �U� / t of the order of, or larger than, that re-
quired for superfluid–Mott-insulator transitions in Bose
gases �4�. Because experimentally there is an additional
background harmonic trapping potential, n can never be pre-
cisely specified throughout the lattice �20� and thus it should
be possible to find extended regions with noninteger filling
factors. The tunable parameters in optical lattice experiments
are the scattering length and lattice potential depth V0. While
it is relatively easy to express t in terms of V0, the conversion
of the on-site attraction U in terms of the scattering length
and V0 near unitarity is not as straightforward as that in free
space �4�.

It is clear that the crucial test of the phase diagram in Fig.
2�b� does not lie in distinguishing whether Tc is small or
strictly zero. Rather, with Tc=0 one can invoke entropic con-
siderations and deduce that signatures of this unusual ground
state will involve detecting some different form of �bosonic�
order. This may be the analog of a �pair density wave� phase
which appears to be present in high-temperature supercon-
ductors, in the underdoped side of the phase diagram �22�.
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