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Finite-temperature behavior of an interspecies fermionic superfluid with population imbalance
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We determine the superfluid transition temperature 7, and related finite temperature phase diagrams for the
entire BCS—Bose-Einstein-condensation crossover in a three-dimensional homogeneous mixture of ®Li and “°K
atoms with population imbalance. Our work is motivated by the recent observation of an interspecies Feshbach
resonance. Pairing fluctuation effects, which significantly reduce 7. from the onset temperature for pairing
(T"), provide reasonable estimates of T, and indicate that the interspecies superfluid phase should be accessible
in future experiments. Although a homogeneous polarized superfluid is not stable in the ground state near
unitarity, our phase diagrams show that it stabilizes at finite temperature.
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Ultracold Fermi gases with tunable attractive interactions
provide an exciting opportunity to study superfluidity in the
crossover from BCS theory to Bose-Einstein condensation
(BEC). Recently, there has been an emphasis on population
imbalanced gases [1-5]. There is evidence for a number of
exotic states including both homogeneously polarized
(widely called [21] the “Sarma” phase) as well as inhomo-
geneously polarized (or phase separated [6]) states [2,4].
Adding to the excitement is the possibility of discovering a
new form of superfluid involving interspecies pairing. A first
step en route to the discovery is the recent observation of
Feshbach resonances between °Li and *°K atoms [7]. If the
transition temperatures are accessible, this tunable attractive
interaction should enable BCS-BEC crossover in superfluid
phases associated with unequal mass pairing.

In this Rapid Communication we determine the transition
temperatures for the entire BCS-BEC crossover in a three-
dimensional homogeneous mixture of °Li and 40K atoms
with population imbalance. We present the temperature-
polarization phase diagrams associated with interspecies su-
perfluid phases at and around unitarity. Our calculations
show the importance of including pairing fluctuations which
greatly suppress the transition temperature 7. relative to the
pair formation temperature 7*. Our finite T theory is chosen
to be compatible with a generalized BCS-Leggett ground
state which has been studied previously [8,9] in the strict
T=0 limit. An understanding of finite temperature effects
positions us to address actual experiments (which are never
in the ground state).

Our theoretical findings have features in common with
previous equal-mass polarized gas experiments [10] where
superfluid phases appear which are constrained to an inter-
mediate regime of nonzero temperatures and restricted to
very low polarizations. That is, they are associated with a
lower as well as upper critical temperature although the po-
larized superfluid (when stable) is not otherwise atypical. We
show that, in the absence of a trap, this intermediate tempera-
ture superfluid will be extremely difficult to observe when
the heavy species is the majority, but it should be more ac-
cessible for the case where the heavy species is the minority.
Finally, we study how the phase diagram evolves as one
crosses from BCS to BEC. In contrast to polarized Fermi
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gases with equal mass, close to, but on the BEC side of
resonance, the intermediate temperature superfluid disap-
pears when the lighter species is the majority, giving way to
a superfluid with only one transition temperature.

Here we consider only a homogeneously polarized super-
fluid or “Sarma state,” noting that while it is unstable in the
deep BCS regime [11], it is stabilized toward and beyond
unitarity. We exclude from consideration the phase separated
state [6]. This is principally because it is now clear [5] that
the normal regions in this heterogeneous phase correspond to
a complicated correlated normal state, which is currently best
addressed nonanalytically using quantum Monte Carlo
(QMC) simulations [12]. We also omit from consideration
Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases which are
of interest in optical lattices [13] and one-dimensional gases
[14] since earlier work by our group [15] has indicated that
the LOFF state is generally very fragile with respect to rais-
ing temperature. There have been extensive studies on zero
temperature properties of homogeneous [8] as well as
trapped interspecies Fermi gases [8,16,17]. This body of
work (like that in the present Rapid Communication) is
based on a natural generalization of the BCS-Leggett ground
state to accommodate unequal populations. There are, simi-
larly, QMC simulations at 7=0 [18]. While a two channel
model formalism may be more relevant to the narrow reso-
nances seen in Ref. [7], all work to date (including our own)
deals with the simpler one channel model. Theoretical stud-
ies at finite temperatures that are consistent with these 7=0
calculations have been limited to a strict mean-field approach
[9] which ignores the important effects of pair fluctuations or
noncondensed pairs.

In our discussion of the generalized Sarma state, we
choose the convention m | >m;. The mass ratio is
m;/my=6.7. We define E; |=E,*§ and Ek=V’§;2+A2,
where & =(§;*&)/2. Here &,=(k*/2m,)—u, and
o=1,]. The four unknowns that must be determined at gen-
eral temperature 7 involve the two fermionic chemical po-
tentials u; and u |, the excitation gap A and the order param-
eter A,.. The central physical idea is that in our treatment
[19] of BCS-BEC crossover, the quantity A? contains a con-
tribution from condensed (denoted as sc) as well as noncon-
densed [pseudogap (pg)] pairs:
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AP=AL + A (1)

Thus the gap component A,, must be separately determined
in order to establish the transition temperature 7,, above
which A,, vanishes. This pg contribution to A? results from
the fact that the attractive interaction is stronger than in the
BCS limit so that an extra energy must be input (beyond Afc)
to break pairs. The distinction between A (associated with an
onset temperature 7%) and the order parameter A, (associ-
ated with T,) is an important component of the present
theory. Moreover, at unitarity, u is positive and nevertheless
A, # 0 so that we do not require a molecular binding energy
to obtain a pseudogap. Experimentally A ,, can be measured
using radio-frequency spectroscopy above T, [20].

There are then four equations which will be derived mi-
croscopically below. The equations for the total number
n=ny+n| and number difference dn=n —n; of fermions are

”=E{<1—E§>+[f(EkT)+f(Ek¢)]E§}, (2)
Kk k k

on = E LAE) = AE)]. (3)

Here f(x)=(e”"+1)7! is the Fermi distribution function. The
polarization is defined as p=dn/n. The gap parameter A is
obtained from

M| 1S B S E) L "
2a k 2Ek € ’
Here the coupling constant is regularized by

g '=M/(2ma)-2,(2¢€,)"', where a is the s-wave scattering
length M=mm /(m;+m)) is the reduced mass, and
€= k2/2M

Finally, an equation for Alz,g requires that we establish the
dispersion of the noncondensed pairs. These noncondensed
pairs or pseudogap effects appear at T+ 0 and are included
via a T-matrix contribution to the fermion self-energy.
Following Refs. [19,21], the fermionic self-energy
2, (K)=2,1(0)G5(0-K), where the four-momentum
0=(iQ,,q), K=(iw,,k), and Q)(w,) is the bosonic (fermi-
onic) Matsubara frequency, with 2,=T2,, 2x=T2,3y,
and 0=—0. The T matrix is presumed to have the structure
Q)= tw(Q)+ ,(Q). The condensate contribution satisfies
tsc(Q)_—(A /T) 8(Q). Here the fermionic Green’s function
is G,(K)= [Gog(K) 3K, with GOU(K) (iw,-&,). We
set A=1 and kz=1.

The excited pair propagator is given by 1,,(Q)
=[g7 '+ x(Q)]"', where the symmetrized pair susceptibility,
X(0)=2k ,Go,(Q-K)G5(K)/2, is used. A natural assump-
tion is the usual BEC condition that the pair chemical poten-
tial vanishes below T, which, in turn, allows us to derive Eq.
(4). This BEC condition [tpg(O) 0] implies that 7, is domi-
nated by terms with Q= O In this way the pseudogap is well
approximated by A 1,,(Q). It follows that
3 (K)=—A2Gy5(-K), and in that way we have derived Eq.
(1). One arrives at the two equations for the number densities
via n,=2¢G,(K), and in this way one derives Egs. (2) and
(3).
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FIG. 1. (Color online) T* as a function of 1/(kpa) for several
values of p=dn/n (as labeled). Here p<<0 when the lighter (spin-
up) species is the majority (left panel) and p>0 otherwise. Insets:
The black solid, light (red) solid, and light (green) dashed lines are
T*, T., and the boundary of stable phases, respectively. Here kz and
Tr are the Fermi momentum and Fermi temperature of an unpolar-
ized noninteracting Fermi gas with the same total particle density
presuming a mass equal to the average mass of SLi and ‘K. The
colored curves are to improve visibility but have otherwise no par-
ticular significance.

The T matrix may be expanded [22] as t;;(ﬂ,q)
=apQ+a, 0 -4, after analytic continuation
(iQ;— Q+i0*), where we have neglected the small
imaginary part I'y. The coefficients can be derived
from the pair susceptibility: ao=(Ix/ ) |00 =00 a1
=(1/2) (X1 0 |cggmoe and  E=(1/6)(Px1 36 l0mg g
Following this expansion, the pseudogap contribution can be
written as

A% = ﬂq)_ (5)

¢ Vag+4a,8q%

Here b(x) is the Bose distribution function and

Qy=(ag+4a,8¢°~ap)/2a,. In the BEC limit, it can be
shown that a;/ay—0 and Qq— g*/2M*, where M*=ay/2&
is the effective pair mass. Importantly, in this limit M* ap-
proaches the total mass of the two constituent fermions, and
T, approaches the BEC temperature of ideal bosons of den-
sity min(n;,n)/2 and mass M".

The gap equation [Eq. (4)] is equivalent to an extremal
condition on the thermodynamic potential ),/ dA=0,
where

+2(£* E) -T2 In(1+e ). (6)

k.o

QMF=_

Superfluid stability requires that the number susceptibility
matrix dn,/du, should be positive definite [21]. This can be
shown to coincide with the condition that ¢*Q),z/JA%>>0.
When this condition is violated, phase separated states may
occur.

We arrive at a reasonable estimate of the pairing onset
temperature 7* from Egs. (2)—(4), which is plotted in Fig. 1
as a function of 1/(kza). Two different signs of the polariza-
tion p are indicated in the right and left panels. We will see
that throughout the Rapid Communication a superfluid phase
with p <0 (where the lighter species is the majority) appears
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FIG. 2. (Color online) T, as a function of 1/(kra) for selected
values of p. Here p <0 when the lighter species is the majority (left
panel) and p >0 otherwise. The polarized superfluid solution is un-
stable in the shaded regions.

to be more readily obtainable than the one with p>0. The
arguments behind this asymmetry in p are subtle and involve
both energetic comparisons as well as mechanical stability
(in the sense of #Q,r/dA>>0). It can be analytically
shown that at 7=0 when polarization is small in the BEC
regime, a superfluid phase with p <0 is more energetically
favorable than one with p >0.

The figure shows that 7° vanishes when the attraction is
sufficiently weak and near its vanishing point it displays non-
monotonic behavior. Similar behavior has been observed
previously for population imbalanced Fermi gases of equal
masses [21]. The insets of Fig. 1 indicate the unstable re-
gimes for p= *=0.5. The unstable regimes are asymmetric in
the sign of p, and at 7=0 the behavior is consistent with
phase diagrams obtained earlier [8,9]. This instability can be
associated with the existence of a phase separated state [6].

We turn next to the superfluid transition temperature, 7.,
which is plotted in Fig. 2 as a function of 1/(kza), for both
p <0 (left panel) and p >0 (right panel). The shaded regions
indicate where this form of (Sarma state) superfluidity is un-
stable against phase separated states. Note that there is a
rather pronounced asymmetry between the p<<0 and p>0
cases. Indeed, when p>0, a stable superfluid cannot be
found in the shallow BEC near 1/krpa=1.5 although it will
emerge again the deep BEC. An “intermediate temperature
superfluid” phase exists in the BCS through unitary regimes,
which is stabilized only away from the ground state. This is
an unusual phase corresponding to a polarized superfluid en-
closed by both a lower and an upper critical temperature, as
previously found for population imbalanced equal mass
Fermi gases both theoretically [21] and experimentally [4],
albeit in a trap. As the polarization increases, in order to
establish continuous behavior, isolated islands of this inter-
mediate temperature superfluid develop on the BCS side of
resonance, until at sufficiently high p, a homogeneously po-
larized superfluid is no longer stable for negative scattering
lengths.

In Fig. 3 we present the phase diagram at unitarity as a
function of T and p. A uniformly polarized superfluid exists
at low |p| and low but finite 7' (the dark shaded region). At
higher T and higher |p|, the unusual normal state emerges in
which there is a finite excitation (pseudo)gap. At still higher
T, (above T*) the system is expected to be in a more conven-
tional Fermi gas state.
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FIG. 3. (Color online) Phase diagrams for mixtures of SLi and
40K atoms at unitarity. Here p <0 when ®Li is the majority species
and p>0 otherwise. The black solid, red solid, and green dashed
lines are T*, T,, and the boundary of stable phases, respectively.
Labeled are polarized superfluid (brown), pseudogap state (yellow)
and unstable Sarma (gray) phases. The white open space is a polar-
ized normal Fermi gas.

Note that at low 7 and relatively high |p|, the Sarma su-
perfluid phase (in the light shaded region) is found to be
unstable to phase separated states. There is a clear asymme-
try in the phase diagram so that for p >0 both the pseudogap
phase and the superfluid phases occupy a relatively smaller
region of phase space. One might be concerned that upon a
vertical (temperature) sweep at fixed p >0 superconductivity
appears to be re-entrant. That is, the pseudogap phase exists
at both low and high Ts. This is presumably an artifact of the
fact that we have not included phase separated states; indeed,
similar behavior was seen for the equal mass case as well
[21].

In a strict mean-field calculation [9] the pseudogap state
would be indistinguishable from the superfluid phase. It is
clear, then, that pair fluctuation effects are extremely impor-
tant for they greatly reduce the regime of superfluidity. In a
similar vein, one can see in both panels of Fig. 3 that while
mean-field theory predicts large values of the upper critical
polarization p, (beyond which the superfluid phase cannot
exist), our calculations reveal a much smaller range for su-
perfluidity. In the equal mass homogeneous case, where there
is an opportunity to compare with experiments [10], both p,
and T, were found [20] to be in reasonable agreement with
the data [10].

Another notable feature of the figure is that when the
heavier species is the majority, a stable homogeneously po-
larized superfluid only exists in a very narrow regime of
extremely low polarization. This should serve as an impor-
tant guide to future experiments for it suggests one has to be
very careful in order not to miss the (homogeneously) polar-
ized superfluid in this case. It might seem as though the
transition temperatures are much higher in the case of un-
equal masses than in the equal mass case. We stress that it is
more meaningful to compare quantities such as 7,./T" than
T./ Ty because, unlike in the equal mass case, here the energy
unit T does not correspond to the Fermi energy of either
species of the atoms. For the equal-mass case 7./T"=0.5
while 7,/T*~0.3 for a mixture of °Li and *°K atoms at
p=0.

To address how the phase diagram evolves from unitarity
to the BEC side of the Feshbach resonance, we present in
Fig. 4 the counterpart phase diagrams at 1/kza=0.5 for the
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FIG. 4. (Color online) Phase diagrams for mixtures of ®Li and
4K atoms at 1/ kra=0.5. The convention follows that in Fig. 3.

interspecies superfluid. It should be clear from the figure
that, just as in the previous case, pair fluctuation effects that
allow us [via Eq. (1)] to distinguish between the gap A and
the order parameter A,. are extremely important as they
greatly reduce the regime of stable homogeneous superfluid-
ity.

When the heavier species is the majority (p>0), there is
virtually no stable polarized superfluid. While a vertical
(temperature) sweep at constant p >0 would seem to suggest
a (re-entrant) low T pseudogap phase, this is an artifact of
our neglect of phase separation effects. When p <0, there is
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no longer an intermediate temperature superfluid phase.
Rather a stable superfluid can be found for all polarizations
and temperatures below the (single) critical temperature T..
This behavior can be contrasted with the equal mass case
where, for, e.g., p=0.5 at T=0, a stable superfluid cannot be
found until deep in the BEC regime (when 1/kpa>2). Im-
portantly, for a moderate polarization, say p=-0.5, this tran-
sition temperature 7.~ 0.187, which should be accessible in
future.

We end by noting that, although we have considered a
homogeneous rather than trapped situation, there are now
experimental capabilities for addressing the associated phase
diagrams using tomography [23]. Moreover, our earlier work
[20] characterizing the changes in the phase diagram (for the
equal mass case) upon going from the homogeneous to the
trapped situation can be used to argue that the characteristic
values of T, are not significantly altered. This comparison
[20] also reveals that the homogeneously polarized or Sarma
phase considered here has a greatly expanded range of sta-
bility in the presence of a trap.
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