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The superfluid transition temperature Tc of a unitary Fermi gas on a three-dimensional isotropic lattice with
an attractive on-site interaction is investigated as a function of density n, from half filling down to 5 × 10−7 per
unit cell, using a pairing fluctuation theory. We show that except at very low densities (n1/3 < 0.2), where Tc/EF

is linear in n1/3, Tc/EF exhibits a significant higher-order nonlinear dependence on n1/3. This calls for extra
caution against possible significant error in the zero-density-limit value of Tc/EF from typical quantum Monte
Carlo (QMC) simulations, obtained by linearly extrapolating data points at intermediate and high densities. Our
result, Tc/EF = 0.256, at the n = 0 limit, is close to, and should be compared with, the maximum Tc/EF near
the Bose-Einstein condensation regime obtained from QMC calculations.
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Experimental realization of superfluidity in cold atomic
Fermi gases has given the study of the BCS–Bose-Einstein
condensation (BEC) crossover a strong boost over the past
decade. More importantly, the main attention has been paid to
the strongly interacting regime, where the s-wave scattering
length a is large. In particular, the unitary limit, where the
scattering length diverges, has become a test point for theories.
As a consequence, the superfluid transition temperature Tc in
a unitary Fermi gas has been under intensive investigation in
recent years.

Apart from calculating Tc directly in the three-dimensional
(3D) continuum with various analytical approximations
[1–16], one important method is to calculate Tc on a lattice
and then extrapolate to zero density. It has been argued that the
zero-density limit is identical to the continuum case. Indeed,
this is the approach used by various quantum Monte Carlo
(QMC) simulations. For this approach to work, two conditions
have to be met. First, the result obtained from the simulation
at a given density has to be accurate; this requires that both the
lattice size and the particle number have to be large enough.
Second, the densities n at which the simulations are performed
have to be in the asymptotic linear regime of Tc as a function
of n1/3.

It is extremely important to investigate this issue, because
the results of QMC calculations have often been taken as
highly credible in the cold-atom community, despite the large
discrepancies between the results from different groups (as
well as within the same group sometimes), and the small total
fermion number and lattice size used. For example, using
QMC simulation, Troyer and co-workers [17,18] reported
Tc/EF = 0.152, whereas Bulgac and co-workers [19,20]
reported Tc/EF = 0.23 and 0.15 in different papers. The
simulations in Ref. [17] were done for lattice fermions at
finite densities and then extrapolated to zero density. Using the
method of Ref. [17], Goulko and Wingate [21] found Tc/EF =
0.171. Another recent result [22] from QMC simulation gave
Tc/EF = 0.245. These different results do not seem to be
converging.

Without reproducing these QMC results, it is hard to
understand what causes these large discrepancies. However,
we have noticed that the simulations mentioned above have

been done only in the high- and intermediate-density regimes.
A natural question one may ask is whether these densities
are low enough to ensure a good linear extrapolation to the
zero-density limit.

To answer this question, ideally one would like to perform
QMC simulations in the very-low-density regime. While such
a low-density regime is practically unreachable in QMC
simulation at present, one may start by studying how Tc/EF

extrapolates to the zero-density limit in other theories. It
is the purpose of the present paper to investigate, using an
alternative approach, how low in density one needs to go so
that the simulations are in the asymptotic linear regime to
ensure the accurateness of the zero-density-limit extrapolation.
We argue that the presence of the lattice effect is sensitive
predominantly to the finite fermion density and the type of the
lattice (or the band dispersion) instead of different analytical
approximations, provided that the approximations involved do
not exhibit explicit dependencies on the fermion density and
lattice periodicity. Therefore, it is hoped that our result may
shed light on how the extrapolation should be properly done in
various formulations of the QMC method. In what follows, we
will mostly compare with the QMC result of Ref. [17] because
it has been widely cited and compared with recently.

In this paper, we will study the finite-density effect on
the zero-density-limit extrapolation by calculating Tc on a 3D
isotropic lattice with an attractive on-site interaction U , using a
pairing fluctuation theory. This theory has been able to generate
theoretical results in good agreement with experiment [12,23].
To show how the lattice effect evolves with fermion density, we
drop the complication of the particle-hole channel, which does
not depend explicitly on the density or the lattice periodicity.
Indeed, the particle-hole channel has been neglected in most
theoretical calculations since the very first Tc calculation
in the study of the BCS-BEC crossover by Nozières and
Schmitt-Rink (NSR) [1]. Our result reveals that, as the density
approaches zero, Tc/EF does reach the 3D continuum value
within the present theory. However, linear extrapolation using
data points calculated at intermediate densities, such as those
in Ref. [17], will lead to a significant underestimate of Tc for
the continuum limit. When particle-hole channel contributions
are properly included [24], we expect that the zero-density
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limit will yield Tc/EF = 0.217, as directly calculated in the
continuum.

Details of the pairing fluctuation theory can be found
in Ref. [10] both in the continuum and on a lattice (see
Ref. [24] for the treatment of the particle-hole channel
effect). On a lattice, the fermion dispersion is given by
ξk = 2t(3 − cos kx − cos ky − cos kz) − μ ≡ εk − μ, where t

is the nearest-neighbor hopping integral, εk is the kinetic
energy, and we have set the lattice constant a0 to unity.
We define the Fermi energy EF for a given density n as
the chemical potential μ for a noninteracting Fermi gas on
the lattice at zero T . In addition, a contact potential in the
continuum now becomes an on-site attractive interaction U .
Namely, we are now solving a negative-U Hubbard model.
The Lippmann-Schwinger relation reads m/4πah̄2 = 1/U +∑

k(1/εk). Therefore, the critical coupling strength is given
by Uc = −1/

∑
k(1/εk) = −7.913 55t . Here m = t/2 is the

effective fermion mass in the dilute limit, where the Fermi
surface becomes spherical so that one may define the Fermi
wave vector kF by EF = h̄2k2

F /2m. In what follows, we shall
set kB = h̄ = 1.

To recapitulate our theory, the fermion self-energy comes
from two contributions, associated with the superfluid con-
densate and finite-momentum pairs, respectively, given by
�(K) = �sc(K) + �pg(K) , where �sc(K) = −�2

scG0(−K)
and �pg(K) = ∑

Q tpg(Q)G0(Q − K), with �sc being the su-
perfluid order parameter. �sc(K) vanishes at and above Tc. The
finite-momentum T matrix tpg(Q) = U/[1 + Uχ (Q)] derives
from summation of ladder diagrams in the particle-particle
channel, with pair momentum Q, where the pair susceptibility
χ (Q) = ∑

K G(K)G0(Q − K) involves the feedback of the
self-energy via the full Green’s function G(K). As usual,
we use a four-vector notation, K ≡ (iωl,k), Q ≡ (i	n,q),∑

K ≡ T
∑

l

∑
k, and

∑
Q ≡ T

∑
n

∑
q, where ωl (	n) are

the odd (even) Matsubara frequencies.
By the Thouless criterion, the Tc equation, given by 1 +

Uχ (0) = 0, now contains the self-energy feedback. This is a
major difference between our pairing fluctuation theory and
those based on NSR [1] or saddle-point approximations [2].

After analytical continuation i	n → 	 + i0+, one can
Taylor-expand the (inverse) T matrix as t−1

pg (	,q) ≈ Z(	 −
	q + μpair + i
q), and thus extract the pair dispersion 	q =
2B(3 − cos qx − cos qy − cos qz), where B is the effective pair
hopping integral. Here the imaginary part 
q can be neglected
when pairs become (meta)stable [10].

At and below Tc, μpair = 0 and �pg(K) can be approxi-
mated as �pg(K) = �2

pg/(iωl + ξk) + δ� ≈ −�2
pgG0(−K),

with the pseudogap parameter �pg defined as

�2
pg ≡ −

∑
Q

tpg(Q) ≈ Z−1
∑

q

b(	q), (1)

where b(x) is the Bose distribution function. Neglecting the
incoherent term δ� in �pg , we arrive at the total self-energy
�(K) in the BCS form:

�(K) ≈ −�2G0(−K), (2)

where the total gap � is determined via �2 = �2
sc + �2

pg .

Therefore, the Green’s function G(K), the quasiparticle
dispersion Ek =

√
ξ 2

k + �2, and the gap (or Tc) equation all
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FIG. 1. (Color online) Behavior of Tc/6t as a function of the
attractive on-site interaction −U/6t on a 3D isotropic lattice for
various densities from high to low, as labeled. The unitary limit
corresponds to −U/6t = 1.318 93, as indicated by the vertical dotted
line.

follow the BCS form, except that the total gap � now contains
contributions from both the order parameter �sc and the
pseudogap �pg . Thus the gap equation is given by

1 + U
∑

k

1 − 2f (Ek)

2Ek
= 0, (3)

where f (x) is the Fermi distribution function. In addition, the
number equation n = 2

∑
K G(K) is given by

n =
∑

k

[
1 − ξk

Ek
[1 − 2f (Ek)]

]
. (4)

Equations (3), (4), and (1) form a closed set. For given
interaction U , they can be used to solve self-consistently for
Tc as well as � and μ at Tc.

In Fig. 1 we plot Tc as a function of pairing strength −U/6t

for various densities from high to low. Here 6t is the half
bandwidth. For n = 0.7, the maximum Tc occurs on the BEC
side of unitarity. Then it moves to the BCS side as n decreases.
As n further decreases, the maximum moves slowly back to the
unitary point. This should be contrasted with the 3D continuum
case, for which the maximum occurs slightly on the BEC side.
The fact that the maximum occurs on the BCS side manifests
a strong lattice effect at these intermediate densities; it is
the lattice effect that causes difficulty for pair hopping and
thus suppresses Tc. Even at density as low as n = 0.005, the
maximum is still slightly on the BCS side.

In order to compare with the continuum Tc curves (see
Fig. 10 in Ref. [12] for example) more easily, we normalize
the Tc curves by the corresponding Fermi energy EF , as shown
in Fig. 2. For clarity, we have dropped the curves for the
two high densities n = 0.7 and 0.5, for which Tc shuts off
abruptly (for details, see Ref. [10]). The lattice effect has
made the peak around unitarity much more pronounced and
necessarily present in all different theoretical treatments of
finite-temperature BCS-BEC crossover [25]. As n decreases,
this peak becomes narrower and moves closer to unitarity.
Beyond the unitary limit, the curve for n = 0.001, as a low-
density example, exhibits a rapid falloff with pairing strength,
and then decreases following the functional form Tc ∝ −t2/U .
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FIG. 2. (Color online) Tc/EF as a function of −U/6t on a 3D
isotropic lattice for various densities from n = 0.2 to 0.005. The
unitary limit corresponds to −U/6t = 1.318 93, as indicated by the
vertical dotted line.

This is due to the virtual ionization during pair hopping in the
BEC regime. At unitarity, a significant fraction of fermions
form metastable pairs [10,11] already at Tc, and thus they
also experience the lattice effect during pair hopping through
virtual ionization. The tight-binding pair dispersion, restricted
momentum space, and virtual ionization process suggest that
the lattice effect does not readily go away completely as the
n = 0 limit is approached. Figure 2 also reveals that, as n

approaches zero, the maximum Tc/EF as well as Tc/EF at
unitarity gradually increase.

Finally, presented in the main figure of Fig. 3 is Tc/EF as
a function of (the cubic root of) the density n in the unitary
limit, down to n = 5.0 × 10−7. For low n, the lattice effect
is expected to vary as n1/3 to the leading order, namely,
Tc(n)/EF (n) = Tc(0)/EF (0) − αa0n

1/3 + o(a2
0/n2/3), where

α is a proportionality coefficient. Note that a0n
1/3 represents

the ratio between the lattice period and the mean interparticle
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FIG. 3. (Color online) Tc/EF as a function of n1/3 on a 3D
isotropic lattice at unitarity. Shown in the lower left inset is EF /6t

as a function of n, and plotted in the upper inset are Tc/EF (black
solid curve) and Tc/6t (red dashed line) as functions of n. The (green
dotted) linear extrapolation line obtained from fitting using data points
below n1/3 = 0.2 yields Tc/EF = 0.2557 at n = 0.

distance. At the same time, Tc/EF and Tc/6t are plotted as
functions of n in the upper inset. It shows that Tc/EF increases
rapidly near the very end of n = 0. The behavior of EF /6t is
shown in the lower inset, in a log-log plot. In units of 6t ,
both EF and Tc vanish at n = 0 and reach a maximum at half
filling [26]. In particular, EF = 6t at half filling, n = 1, as
expected.

It is evident that Tc/EF is highly nonlinear as a function
of n1/3. Our result reveals that as n decreases from half
filling, Tc/EF decreases and reaches a minimum of 0.172
around n = 0.28, and then starts to recover slowly. It does
not accelerate until the very end of n = 0. The main plot
suggests that Tc/EF eventually does recover its continuum
counterpart value, 0.256, but the curve exhibits a good linearity
only for n1/3 < 0.2, i.e., n < 0.008. At n = 5.0 × 10−7, we
find Tc/EF = 0.254, close to 0.256. Using the data below
n1/3 = 0.2, our extrapolation (the green dotted line) leads
to Tc/EF = 0.2557 ≈ 0.256 for the continuum limit. Note
that the data points for n1/3 > 0.3 show a rather obvious
deviation from the lower-n extrapolation line. It is possible
that the Tc/EF extrapolation in QMC simulations exhibits a
similar behavior. Then this would suggest that the range of
density for extrapolation used in Ref. [17] is still far from the
asymptotic linear regime. In fact, n1/3 > 0.3 (or equivalently,
kF a0 > 0.9) cannot be regarded as �1. Indeed, the recent
result of Goulko and Wingate [21] seems to confirm this point.
Being able to push their simulations down to n1/3 ≈ 0.23
(albeit with a big error bar for this lowest-density data point),
they obtained Tc/EF = 0.173 for the zero-density limit using
a linear extrapolation. One can also see from their Fig. 7
that, without this lowest-density data point, they would have
obtained a lower value for Tc/EF . In addition, their quadratic
fit would yield Tc/EF ≈ 0.19. Finally, we note that a closer
look at Fig. 3 of Ref. [17] suggests that the lowest-density
point of those authors (also with a big error bar) actually
already shows that their curve starts to bend upward, away
from the straight extrapolation line. Although not conclusive,
this observation does agree with the Tc/EF curve in Fig. 3.

As argued above, despite the big difference between our
theory and the QMC approach, it is not unreasonable to expect
that the lattice effect has a rather similar impact (with possible
minor quantitative differences) on Tc/EF . Without a rigorous
proof, the above examination of Refs. [21] and [17] does seem
to support such an expectation. Even if the QMC approach may
have a different scaling behavior of Tc/EF versus n1/3, it is
highly unlikely that the linear regime extends up to n1/3 = 0.35
(and all the way through n1/3 = 0.8 as shown in Ref. [17]).
Therefore, we propose that in order to obtain an accurate value
of Tc/EF in the zero-density limit using a linear extrapolation,
one needs to perform QMC calculations down to n1/3 ∼ 0.1
(i.e., n ∼ 1.0 × 10−3) or lower. A more careful study of the
scaling behavior of Tc/EF in various QMC formulations is
required and extrapolation using a higher-order polynomial fit
may be needed.

The authors of Ref. [18] reported that they confirmed their
lattice fermion result of Ref. [17] by working in the continuum
limit. However, here we argue that the lattice effect was
actually introduced back through their Eqs. (3) and (4) and
the periodic boundary condition, which is roughly equivalent
to restricting consideration to the lowest energy band in the
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zero-strength limit of the lattice potential [27]. Indeed, this
has also been confirmed by Ref. [28]. In Ref. [18], simulations
at unitarity were performed down to n ≈ 0.05 (with l0 = 1),
or n1/3 ≈ 0.37 (or kF l0 ≈ 1.1). Above this density, the curve
in the main figure of Fig. 3 shows significant deviation from
linearity, caused by contributions of order n2/3 and higher. Our
result suggests that the densities used for the QMC simulations
in Ref. [17] were not low enough to ensure a good linear
zero-density-limit extrapolation of Tc/EF as a function of n1/3.

The QMC simulations by Bulgac et al. were also done on a
lattice, with a small atom number and a small lattice size (e.g.,
only 50–55 atoms on an 83 lattice in Refs. [19,20], equivalent to
n = 0.1–0.11 or n1/3 = 0.46–0.48), rather far from the dilute
limit. In the context of dynamical mean-field theory, Privitera
et al. [29] studied the importance of nonuniversal finite-density
corrections to the unitary limit and found that “densities around
n � 0.05–0.01 are not representative of the dilute regime”; a
lower density is needed.

It should be noted that our EF is the actual Fermi energy in
the 3D lattice, whereas in Ref. [17] it is simply defined as EF =
tk2

F = t(3π2n)2/3, which will become the true Fermi energy
only in the dilute limit. This definition also introduced extra
(unphysical) dependence of Tc/EF on n1/3, especially at high
and intermediate densities (see the lower inset of Fig. 3). There
is no reason to believe that this extra dependence will cancel
out the intrinsic high-order dependence of Tc/EF on n1/3.

Finally, it is interesting to note that on the lattice, the inter-
action at unitarity, Uc, is density independent so that Uc/EF

will scale to infinity as n approaches 0; the lattice periodicity
introduced a natural momentum cutoff k0 = π/a0. In contrast,
in the continuum, a contact potential can be regarded as the
cutoff momentum k0 → ∞ limit of an s-wave interaction,
U (k) = Uθ (k0 − k), which has Uc = −2π2/mk0. Apparently,
this Uc is scaled down to 0 for a contact potential. This dramatic
contrast for Uc between 3D lattice and 3D continuum seems
to suggest that there exist some differences between the 3D
continuum and the zero-density limit of a 3D lattice. Indeed,
a single fermion has a tight-binding lattice dispersion defined
in the first Brillouin zone due to the lattice periodicity. Only
in the zero-strength limit of the lattice potential and with the
summation of all the infinite number of energy bands can
one recover the parabolic dispersion of the continuum model
with an infinite momentum space. Therefore, the fermions are
always subject to the lattice periodicity no matter how low the
density is. This, however, may be regarded as a consequence of
the single- (lowest-energy) band approximation of the lattice
Hamiltonian.

Without including the particle-hole channel and the self-
energy feedback in the Tc equation [11], the NSR theory
[1,4,30] and the saddle-point approximation [2] predicted
Tc/EF = 0.22. Other approaches reported Tc/EF ≈ 0.26 [3],
0.15 [5], and 0.16 [6], the last of which exhibits unphysi-
cal nonmonotonic first-order-like behavior in entropy S(T ).

Floerchinger et al. [7] found Tc/EF = 0.264 even after
including particle-hole fluctuations. Within the present theory,
Chen and co-workers reported Tc/EF = 0.256 [10–12].

Experimentally, the measurements of Tc/EF have not
reached a consensus yet. Kinast et al. [31], in collaboration
with Chen et al., found Tc/EF = 0.27 through a thermody-
namic measurement in a unitary 6Li gas. Later, they [32,33]
obtained 0.29 and 0.21 by fitting entropy and specific heat
data with different formulas. The latter value was obtained
assuming a specific heat jump at Tc, which may not be a good
approximation in the presence of a strong pseudogap at Tc

(see, e.g., Refs. [12,34,35]). According to our calculations,
Tc at unitarity in the trap is only slightly higher than its
homogeneous counterpart, 0.272 versus 0.256. A similar small
difference in Tc between the trap and homogeneous cases
is expected from other theories as well. Therefore, these
measurements imply that the homogeneous Tc/EF is about
0.25–0.19. Recently, Ku et al. [36] reported Tc/EF ≈ 0.167
for a homogeneous Fermi gas by identifying the λ-like
transition temperature.

Our result demonstrates that the n → 0 limit of the lattice
Tc/EF does approach that calculated directly in the continuum.
We expect this to remain true when the particle-hole channel
contributions are properly included. In that case, we obtain
Tc/EF = 0.217 at unitarity [24], consistent with some of the
above experimental measurements. In addition, the maximum
Tc/EF ≈ 0.256 is then shifted to 1/kF a ≈ 0.35, leading to a
positive slope of Tc/EF vs 1/kF a at unitarity, in agreement
with the QMC result [18]. In this way, our maximum Tc/EF

seems to be close to, and should be compared with, the
maximum Tc/EF around 1/kF a = 0.47 in Ref. [18]. Finally,
we note that inclusion of the incoherent self-energy δ� in
our calculations would further reduce the value of Tc/EF at
unitarity [24], bringing it closer to the result of Ku et al. [36].

In summary, we have investigated the lattice Tc/EF as
a function of n1/3 down to n = 5 × 10−7, using a pairing
fluctuation theory. It turns out that only below n1/3 ≈ 0.2 does
Tc/EF exhibit a good linearity. Despite the difference between
this approach and QMC simulations, which have difficulty
reaching the low-density regime, this finding calls for extra
caution when linearly extrapolating Tc/EF to the zero-density
limit using QMC simulation data points at intermediate and
high densities. More careful studies of the scaling behavior
of the lattice fermion Tc/EF as a function of n1/3 in various
QMC formulations are suggested.
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