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Quantum geometric contributions to the BKT transition: Beyond mean field theory
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We study quantum geometric contributions to the Berezinskii-Kosterlitz-Thouless (BKT) transition temper-
ature TBKT in the presence of fluctuations beyond BCS theory. Because quantum geometric effects become
progressively more important with stronger pairing attraction, a full understanding of 2D multiorbital super-
conductivity requires the incorporation of preformed pairs. We find it is through the effective mass of these
pairs that quantum geometry enters the theory and this suggests that the quantum geometric effects are present
in the nonsuperconducting pseudogap phase as well. Increasing these geometric contributions tends to raise
TBKT, which then competes with fluctuation effects that generally depress it. We argue that a way to physically
quantify the magnitude of these geometric terms is in terms of the ratio of the pairing onset temperature T ∗ to
TBKT. Our paper calls attention to an experimental study demonstrating how both temperatures and, thus, their
ratio may be currently accessible. They can be extracted from the same voltage-current measurements, which
are generally used to establish BKT physics. We use these observations to provide rough preliminary estimates
of the magnitude of the geometric contributions in, for example, magic angle twisted bilayer graphene.
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I. INTRODUCTION

The recent discovery of superconducting phases in twisted
bilayer graphene (TBLG) at the first magic angle has attracted
much attention [1–15]. The excitement surrounding this mate-
rial is driven largely by the flatness of the energy bands, which
effectively enhances the importance of electron-electron in-
teractions. This stronger interaction effect is consistent with
the observed high superconducting transition temperatures
[2] and has been speculated to place TBLG somewhere
in the crossover between the BCS and the Bose-Einstein
condensation (BEC) regimes [2,16,17]. Because of its two
dimensionality (2D) this superconductivity is associated with
a BKT instability, in which the transition temperature TBKT is
directly proportional to the superfluid phase stiffness [18–20].
In a single flat band, this stiffness vanishes; however, in
multiorbital band models, it was shown that the inclusion of
quantum geometric effects may reinstate a finite transition
temperature [21–25].

This physical picture of flat-band superconductivity has
been established within BCS mean field (MF) theory, which
is known to be problematic in 2D. Moreover, quantum geo-
metric effects become most apparent outside the BCS regime,
where noncondensed pairs, neglected in MF theory, play an
important role in the phase stiffness.

In this paper, we present a theory which addresses these
shortcomings through studies of the interplay of preformed
pairs with quantum geometric effects. We determine TBKT,
in 2D superconductors using a simple two-band tight-binding
model [26,27] that captures some key ingredients in common
with its TBLG counterpart, including potentially nontrivial

band topology. The model has some formal similarities to a
spin-orbit coupled Fermi gas Hamiltonian, where the nature
of (albeit, three dimensional) pairing fluctuations within the
BCS-BEC crossover is well studied [28–32]. Built on the
BCS-Leggett ground state [33], our approach yields results
for TBKT that are consistent with the mean field literature at
weak attraction, precisely where the MF theory is expected to
work.

A major contribution of this paper is to establish the impor-
tant competition: bosonic excitations lead to a decrease in the
effective phase stiffness, whereas, geometric effects generally
cause an increase. These latter become more appreciable as
the bands become flatter. As a result, TBKT remains substantial,
even though it is reduced by beyond mean field fluctuations.
An important finding is that geometric contributions appear
through the inverse pair mass, 1/MB. Unlike in previous work
[34,35] where the pair mass was also found to depend on
quantum geometry, here MB incorporates the self-consistently
determined pairing gap. Because MB enters the excitation
spectrum of the pairs, the effect of geometry must be present
in a host of general characteristics beyond the superfluid stiff-
ness including transport and thermodynamics [36], persisting
even into the pseudogap phase. Here the “pseudogap phase”
refers to the nonsuperconducting state with preformed pairs
at TBKT < T < T ∗. We reserve the term “normal state” for a
noninteracting system without pairing.

To physically understand the relation between the pair
mass and geometry, note that an increased magnitude of the
quantum metric reflects an increased spatial extent of the
normal state Wannier orbitals [37,38]. This increase leads to
larger pairs, which have a bigger overlap, leading to higher
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pair mobility (smaller MB). Nontrivial normal state band
topology enhances these effects, which become most apparent
in the so-called “isolated flat band limit” [22], where the
conventional contributions to the pair mobility are negligible.
In analogy with earlier findings [21,22], we demonstrate that
a nontrivial band topology provides a lower bound for 1/MB

in this limit.
Finally, it is important to determine the size of the geomet-

ric contributions using experimentally accessible quantities.
We find that the ratio of the pairing onset temperature T ∗ and
TBKT allows quantification of the geometric contributions and
characterization of a given 2D superconductor more generally.
We demonstrate how both temperatures can be determined
from the same voltage-current measurements [39].

The rest of the paper is organized as follows. Section II
introduces the theoretical approach for deriving the BKT
transition temperature. This includes the introduction of the
topological band model, our pairing fluctuation theory and
a procedure for calculating the transition temperature as ap-
proached from the nonsuperconducting state. We also present
a discussion of the isolated flat band limit where we derive a
lower bound for nB/MB associated with band topology. Here
nB is the areal density of preformed pairs. The corresponding
numerical results for TBKT and T ∗ are presented in Sec. III.
Based on our numerical results and an experimental estimate
of T ∗/TBKT, we speculate that magic angle TBLG is in the
BCS-BEC crossover regime, although it has not passed into
the BEC, and that the geometric contribution to TBKT is sig-
nificant.

Section IV contains a comparison of our results both to
numerical Monte Carlo calculations and to other approaches.
Section V presents our conclusions. Detailed descriptions of
the tight-binding model, derivations of our multiorbital pair-
ing fluctuation theory, discussions of the relation between
quantum geometry and pair mass, and equations used for the
mean field superfluid stiffness and TBKT can be found in the
appendices.

II. THEORETICAL FRAMEWORK

A. Band model

Our tight-binding model [26,27] is defined on a square
lattice, which splits into two sublattices, {A, B}, due to a stag-
gered π magnetic flux [40]. The flux is opposite for opposite
spins with preserved time reversal symmetry. This symmetry
and the absence of spin-orbit coupling reduces the four band
pairing problem, including sublattices and spin, to a two-band
system with sub-lattices only and we henceforth drop the spin.
Here we consider zero center-of-mass momentum and spin
singlet pairing.

As a result we have a simple normal state Hamiltonian
[26,40] in k space,

HN(k) = h0(k) + h(k) · s − μF, (1)

written in the basis (c†
A(k), c†

B(k)). Here, s= (sx, sy, sz )
are Pauli matrices defined for the sublattice space, h0 =
−2t5[cos 2(kx + ky) + cos 2(kx − ky)], hz = −2t2[cos(kx +
ky) − cos(kx − ky)], hx + i hy = −2t[ei(−φ−ky ) cos ky+ei(φ−ky )

cos kx], with φ = π/4, and μF is the fermionic chemical

potential. We set the lattice constant aL = 1. Diagonalizing
HN(k) gives two energy bands, ξ±(k) = h0(k) ± |h(k)| − μF,
with a nonzero Chern number C = ∓1.

For definiteness, following Ref. [26], we consider two
sets of hopping parameters: (1) (t, t2, t5) = (1, 1/

√
2, (1 −√

2))/4 and (2) (t, t2, t5) = (1, 1/
√

2, 0), corresponding, re-
spectively, to a lower bandwidth W ≈ 0.035t and 0.83t , and
to a band flatness (ratio) F ≡ W/Eg ≈ 0.01 and 0.2. Both sets
have a band gap Eg = 4t . Throughout the paper, we consider
electron density n = 0.3 per square lattice site so that the
lower band is only partially filled.

B. Pairing fluctuation theory for T � TBKT

Our approach is based on a finite temperature formalism
built on the BCS ground state, which can readily be extended
to include stronger pairing correlations [33]. It was derived
using an equation of motion approach [41,42], following
Kadanoff and Martin [43], and extended to address pairing
(fluctuations) at an arbitrary strength in the context of BCS-
BEC crossover [44]. Compared to other pairing fluctuation
theories [45], this formalism is consistent with a BCS-like gap
equation and simultaneously a gapless Anderson-Bogoliubov
mode in the superfluid phase. This approach has been used
to address pairing and pseudogap phenomena in Fermi gases
and the cuprates [42,44,46] as well as the effects of spin-orbit
coupling on ultracold Fermi gases [28–32], and most recently
to address the two dimensional BKT transition [17,47] in sev-
eral simple cases. In 2D, the natural energy scale parameter,
nB/MB, enters to describe TBKT.

To determine nB and MB we begin with the pair suscepti-
bility χ (Q). We presume that χ (Q) assumes a special form
(involving one dressed and one bare Green’s function) such
that the Q = 0 pole of the many body T matrix tpg [44],

tpg(Q) = −U

1 − Uχ (Q)
, (2)

yields the usual BCS gap equation for the pairing gap
�pg in the fermionic excitation energy spectrum, E±(k) =√

ξ±(k)2 + �2
pg. This �pg is to be distinguished from the

superconducting order parameter �sc, which vanishes at any
finite T in 2D. Here, U > 0 is the strength of a local attrac-
tive Hubbard interaction. Q ≡ (i�m, q) with �m = 2mπT the
bosonic Matsubara frequency [40].

Within “the pseudogap approximation” [28,29,32], it is
presumed that tpg(Q) is sharply peaked near Q = 0, close to
an instability, so that [44]

�2
pg ≡ −T

∑
Q �=0

tpg(Q). (3)

Following Refs. [17,44,47], for small Q, we Taylor-expand
t−1
pg (Q) = Z−1(i�m − q2/(2MB) + μB), where

μB

Z = − 1

U
+ χ (0) = − 1

U
+

∑
k∈RBZ

∑
α=±

tanh(βEα/2)

2Eα

. (4)

For brevity, we have suppressed the k dependence on the
right-hand side (r.h.s.) “RBZ” stands for reduced Brillouin
zone. Here μB is the bosonic pair chemical potential. When
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μB is zero Eq. (4) is recognized as the BCS gap equation,
but for the present purposes, we must include nonvanishing
μB. Note that tpg(Q) can be roughly viewed as a propagator
for the preformed pairs with an energy EB = q2/2MB − μB.
Both expressions for Z and 1/MB are obtained as functions of
{�pg, μF} from the Taylor expansion.

In 2D, with a simple parabolic pair dispersion, Eq. (3)
yields [17,47]

nB ≡
∑

q

fB(EB) = Z−1�2
pg = − MB

2πβ
ln(1 − eβμB ), (5)

where β = 1/T , and fB(x) = 1/(eβx − 1). Then we have

nB/MB = �2
pg/(MBZ ) = 2 �2

pg(Tconv + Tgeom), (6)

where we have split the contributions to the inverse pair mass
into two terms: Tconv is the conventional contribution that
only depends on the normal state dispersion while Tgeom is
the geometric contribution that carries information about the
normal state wave function. Here we present an expression for
Tgeom with details discussed elsewhere [40].

Tgeom =
∑

k∈RBZ

∑
{α,α′,η}=±

1

4

[
1 + η

ξα

Eα

]

× nF(ηEα ) − nF(−ξα′ )

ηEα + ξα′
(−αα′)

1

4

∑
μ=x,y

∂μĥ · ∂μĥ,

(7)
where nF(x) = 1/(eβx + 1) is the Fermi-Dirac distribution,
and ĥ(k) ≡ h(k)/|h(k)|. Interestingly, we see that Tgeom con-
tains both intra- and interband terms.

Quantum geometry enters into Tgeom, or equivalently
nB/MB, through the diagonal components of the quantum
metric tensor, gμν (k):

gμν (k) = 1
2∂μĥ(k) · ∂ν ĥ(k), (8)

where {μ, ν} = {x, y}. gμν is a measure of the distance be-
tween two Bloch states in the projective normal state Hilbert
space [48]. In the BEC regime, where nB = n/2, gμν is di-
rectly connected to the inverse pair mass 1/MB [40]. We stress
that in contrast to other work [34,49] here 1/MB depends on
the self consistently determined pairing gap.

Finally, the electrons are subject to the number constraint
[17,44,47],

n =
∑

k∈RBZ

∑
α=±

[
1 − ξα

Eα

tanh

(
βEα

2

)]
. (9)

Equations (4), (5), and (9) form a closed set that can be
solved for �pg and μF, for given (T , n, U ), which also deter-
mines the important ratio nB/MB.

C. BKT criterion

It was initially proposed in Ref. [50] based on experiments
in Fermi gases that the 2D BKT superconducting transition
can be reinterpreted as a “quasicondensation” of preformed
Cooper pairs. The onset of quasicondensation provides a nor-
mal state access to the BKT instability. Here the transition
is approached from above, which is complementary to the
superfluid phase stiffness based approach (from below). The

quasicondensation onset is quantified through the parame-
ter nB/MB which provides a natural 2D energy scale. More
specifically, this approach to the BKT transition builds on a
Monte-Carlo study of weakly interacting bosons [51] where
it was found that at the onset of quasicondensation, i.e., T =
TBKT, one has

nB(T )

MB(T )
= Dcrit

B

2π
T . (10)

Here, Dcrit
B is the critical value of the phase space density,

DB(T ) ≡ nBλ2
B with λB = √

2π/MBT the bosonic thermal
de-Broglie wavelength (setting h̄ = kB = 1). This BKT cri-
terion has been supported by experimental studies on atomic
Bose gases [52–54].

In general, Dcrit
B depends on the nonuniversal boson-boson

interaction strength gB. In the most general case, gB is un-
known for a fermionic superconductor where Cooper pairs
are the emergent composite bosons. However, a small value
of gB appears consistent with the BCS ground state, as the
bosonic degrees of freedom enter this wave function in a
quasiideal manner. Notably the dependence of Dcrit

B on gB

is logarithmic and therefore weak [51]. Estimates for Dcrit
B

for fermionic superfluids range from 4.9 to 6.45 [50,55]. We
choose Dcrit

B = 4.9 that best fits the data on Fermi gases [55].

D. Isolated flat band limit

It is useful to arrive at some analytical insights on how
nB/MB depends on the normal state band topology. This
can be done in the isolated flat band limit, corresponding to
W 
 U 
 Eg (which is in the BEC regime). In this limit,
superconductivity is restricted to the lower flat band while the
upper band is inactive, and Eq. (6) simplifies to

nB

MB
≈ �2

pg

∑
k∈RBZ

tanh (βE−(k)/2)

2E−(k)

1

2

∑
μ=x,y

gμμ(k). (11)

Using an inequality between the quantum metric tensor and
the normal state band Berry curvature, one obtains [40]

nB

MB
� �2

pg
tanh(βE−/2)

4E−

|C|
π

, (12)

which sets a lower bound for nB/MB when C �= 0, i.e., when
the system is topologically nontrivial. Here E− is k indepen-
dent and C = 1 is the normal state conduction band Chern
number. Interestingly, this lower bound is almost identical
to the one derived for the MF superfluid phase stiffness in
Ref. [22], provided one replaces �pg with the MF supercon-
ducting order parameter.

III. NUMERICAL RESULTS

In Fig. 1(a), we compare the calculated TBKT from our
pairing fluctuation theory with that using the BCS MF super-
fluid phase stiffness Ds for the case of a flatness parameter
F = 0.2. Also plotted is the pairing onset temperature, T ∗,
well approximated by the mean field transition temperature. In
the weak-coupling BCS limit, all three temperatures converge.
However, in the strong coupling regime, pairing flucuations
become important and our TBKT is significantly reduced rela-
tive to its MF counterpart, as a consequence of an additional
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FIG. 1. Behavior of calculated (a) TBKT (labeled “Present the-
ory”) and (b) {nB/n, MB}, (c) decomposition of TBKT (“Tot”) into
conventional (“Conv”) and geometric contributions (“Geom”) for
topological bands, and (d) TBKT for a nontopological system, as a
function of U/t , all with F = 0.2. In comparison, also plotted in
(a) and (d) are T ∗ and TBKT (“BCS MF”) calculated using the MF
phase stiffness.

bosonic excitation channel. Unlike the single band theory,
where there is a more dramatic TBKT downturn near U/t ≈ 3,
in this multiorbital model the geometric contribution prevents
the expected strong decrease [17].

These features can be traced to the behavior of the pair
mass, MB, which is plotted along with nB in Fig. 1(b). In
single band theories with conventional contributions only, due
to a large suppression of pair hopping [56] and an increase
of pair-pair repulsion with pair density [57], pairs tend to
be localized near U/t ≈ 3, corresponding to MB → ∞. The
presence of geometric terms prevents this pair mass diver-
gence. Figures 1(a) and 1(b) reveal that, while the small U
behavior of TBKT derives from variations in both MB and nB,
the behavior of TBKT in the BEC regime reflects that of 1/MB

only.
To see the importance of the geometric contributions

more clearly, in Fig. 1(c), we present a decomposition of
TBKT in terms of the conventional and geometric com-
ponents, by separating the total nB/MB into two terms,
(nB/MB)conv ≡ 2�2

pgTconv and (nB/MB)geom ≡ 2�2
pgTgeom. We

then apply the BKT criterion in Eq. (10) to each of
{nB/MB, (nB/MB)conv, (nB/MB)geom} to arrive at the three
curves in Fig. 1(c). Here we see that TBKT is almost com-
pletely geometric at U/t � 3. The conventional contribution
in Fig. 1(c) exhibits a dome-like dependence on U with a
maximum at U ∼ W . Its contribution to TBKT in the pairing
fluctuation theory falls precipitously to almost zero at U/t ≈ 3
and remains extremely small at larger U , resulting from a
cancellation between pair hopping and inter-pair repulsion
effects [40].

It is instructive to compare with a nontopological super-
conductor, as shown in Fig. 1(d). Our nontopological bands
are constructed by adding a staggered on-site potential to
the topologically nontrivial Hamiltonian HN in Eq. (1) [40].
For a meaningful comparison the trivial band structure is so
chosen that both its conduction band width W and band gap Eg

FIG. 2. (a) Characteristic temperatures for the topological F =
0.01 superconductor, and comparison with lower bound of TBKT

in the isolated flat band limit (“Isol. Flat. Lim”), obtained using
Eqs. (10) and (12). This bound nearly coincides with the calculated
TBKT for the range 0.4 � U/t � 2, where the system is in the BEC
regime and TBKT is nearly completely geometric. (b) Comparison
between the T dependence of nB/MB and that of BCS MF Ds at
U/t = 0.5. For the sake of clarity, only geometric contributions are
included.

are comparable to the nontrivial F = 0.2 case. This ensures
that the conventional contributions to TBKT, as well as the U
dependence of �pg and μF, are more or less the same in both
cases. Comparison of TBKT in Figs. 1(d) and 1(a) at U/t � 4,
where the geometric component dominates, demonstrates that
the geometric contribution to TBKT is significantly enhanced
in the nontrivial case.

In Fig. 2(a), we present a comparison between the MF
and present theory for a nearly flat conduction band, with
F ≈ 0.01. Just as in Fig. 1(a), pairing fluctuations suppress
significantly the transition temperature relative to the mean
field result. Also important is the absence of the conventional
TBKT peak, seen in Fig. 1(a). There is a small residual fea-
ture at U ∼ W = 0.035t from the conventional term, which,
however, is invisible in the plot. In this nearly flat band limit,
TBKT is essentially purely geometric for the entire range of U/t
displayed. Notably, even a very small attraction (U/t ≈ 0.3)
puts the system in the BEC regime [40], where nB/n reaches
1/2.

Also plotted in Fig. 2(a) are the pairing onset temperature
T ∗ (dot-dashed) along with the lower bound of TBKT in the
isolated flat band limit (black dotted line), which is obtained
by applying the BKT criterion in Eq. (10) to the r.h.s. of
Eq. (12). Interestingly this bound is almost saturated by our
calculated TBKT when 0.4 � U/t � 2.

Even with the reduction of TBKT relative to the BCS MF
result, in the isolated flat band limit, nB/MB is essentially
equal to its BCS MF counterpart Ds at T = TBKT and even
for higher temperatures, provided T 
 T ∗. This can be seen
through the comparison in Fig. 2(b) between our nB/MB in
Eq. (11) and that of the MF Ds, where for clarity we have
dropped the small but nonzero conventional term [40].

We turn finally to the physical implications of our cal-
culations for a given 2D superconductor. We quantify the
relative size of the geometric terms by use of the dimension-
less ratio T ∗/TBKT which, importantly, has been shown to be
measurable in voltage current (V -I) experiments [39] with
consistency checks from STM data. As shown in Fig. 3(a),
T ∗/TBKT increases monotonically with interaction strength U
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FIG. 3. (a) Calculated T ∗/TBKT as a function of U and (b) rel-
ative magnitude of the geometric terms plotted as (nB/MB)geom over
(nB/MB)tot as a function of T ∗/TBKT, for the topological F = 0.2 and
F = 0.01 cases. Arrows correspond to where T ∗/TBKT = 4, deduced
from the experiments in the inset of (b). (Inset) V -I curves measured
at different T for magic-angle TBLG by Cao et al. [2]

for both the topological F = 0.2 and F = 0.01 cases, with an
even more rapid increase as the system approaches the BEC
regime. The fractional contribution of the geometric terms,
(nB/MB)geom/(nB/MB)tot, is plotted in Fig. 3(b). Once in the
BEC regime, TBKT is dominantly geometric.

To connect to experiments on TBLG, we present the ex-
perimental V -I curves for an optimal example [2], in the inset
of Fig. 3(b). At T = TBKT the V -I curve follows a power law,
V ∝ RNIc(I/Ic)α with α = 3; Ic is the critical current and RN

is the normal state resistance [58–63]. Importantly, when T
reaches T ∗ the V -I curve fully recovers its normal state Ohmic
behavior, V ∝ RNI .

From the V -I characteristics by Cao et al. [2], we estimate
T ∗ ≈ 4 K and TBKT ≈ 1 K [2], which yield T ∗/TBKT = 4.
At this ratio, the normalized geometric contribution is about
70% and 50% for F = 0.01 and 0.2, respectively, in Fig. 3(b).
Which band flatness ratio is more appropriate for magic angle
TBLG depends on one’s estimate of the effective bandwidth
W and band gap Eg. If we take W ≈ 3–5 meV, which is
the energy range where the bare flat band density of states
is appreciable, and Eg ≈ 20 meV [2], then F ≈ 0.15–0.25.
At face value, this suggests that the F = 0.2 case is more
relevant to magic angle TBLG. However, one should keep in
mind that the estimated W here only provides an upper bound,
as the superconductivity in TBLG may be associated with a
renormalized and therefore smaller effective band width W .
In any case, the geometric contribution to TBKT is significant,
(�50%), and the system is in the BCS-BEC crossover regime,
although it has not yet passed into the BEC.

A. Further experimental estimates of T ∗

We stress that the T ∗/TBKT ratio inferred from the V -I char-
acteristics can be quite different from observations in other
experiments and with different samples [64–66]. For example,
for one superconductor studied in Ref. [65], the ratio is only
about 1.4, with TBKT = 710 mK and T ∗ ≈ 1 K. This puts
the corresponding system in the BCS weak-coupling regime
in Fig. 3(a), and consequently the corresponding geometric
contribution to TBKT from Fig. 3(b) is only about 10%–20%.
However, one should also take note that the T ∗ read off from
all the existing V -I curves is subject to uncertainty since
none of the measurements provides a continuous sweep over
closely separated temperature intervals.

0.0
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0 1 2 3 4

TBKT

TBKT

T∗

T∗

0.00
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0.10
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/
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T
∗ /

t
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FIG. 4. Results from the pairing fluctuation theory for TBKT and
T ∗, for both the topological F = 0.2 band (solid blue and dark-green
dash-dotted lines) and F = 0.01 bands (red and violet dashed lines).
For a better comparison to the Monte-Carlo results [26], only data
for U/t up to about 4 are shown. (Inset) Zoomed view of TBKT.

When the V -I measurements are not available, it appears
that T ∗ can be roughly estimated from dc transport. This is
based on a temperature feature in the longitudinal resistivity
ρ(T ), which corresponds to the point where ρ(T ) begins to
drop below its normal state extrapolation.1 For example, in
transport experiments on a TBLG sample with TBKT = 1 K in
Ref. [2], this transport signature yields T ∗ = 4 ∼ 5 K, roughly
consistent with the value obtained from V -I measurements.
While T ∗ identified in this way is necessarily greater than
or equal to TBKT, depending on the carrier density and twist
angle, it can be substantially larger. As seen from transport
studies in Fig. 1 of Ref. [66], the T ∗/TBKT ratio varies from
a number close to 1 to a number much larger than 10 as the
carrier density is tuned from one side of the superconducting
dome to the other in a given sample.2

One can speculate that this wide variation of T ∗/TBKT

obtained from transport, is unlikely to be due to disorder
given that the measurements are on the same sample, though
with different carrier density. Instead, variations in Coulomb
screening, which crucially depends on the carrier density may
play a key role [65–68].

Because of the sensitivity of the effective pairing inter-
action to band filling and Coulomb screening, determining
whether superconducting magic angle TBLG is a weak-
coupling or strong-coupling superconductor remains an open
question. To firmly settle the issue, further V -I experiments
over finely separated temperature intervals in order to estab-
lish the temperature for the Ohmic recovery are much needed.
As in Ref. [39], for corroboration, these should ultimately be
combined with STM measurements of the local pairing gap.
STM experiments [67,69–71] on magic angle TBLG to date

1Similar dc transport signatures of T ∗ have been observed pre-
viously in cuprates [72], although the pseudogap there can have a
completely different origin from preformed Cooper pairs.

2Here we ignore the intervening correlated insulating phase at half
filling of the lower and upper flat bands and view the two supercon-
ducting domes flanking the insulating phase as one.
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tend to be limited to the normal state and have not yet reported
signatures of the pairing gap or of T ∗.

IV. COMPARISON WITH THEORETICAL LITERATURE

Figure 4 makes possible a comparison between our nu-
merical results for T ∗ and TBKT and the Monte-Carlo (MC)
calculations in Ref. [26]. Interestingly, our results are quite
similar to the MC results, both qualitatively and even quan-
titatively. The main difference is a small peak in TBKT at
U/t ≈ 2 for F = 0.2, which derives from the conventional
terms and is absent in the MC results. Instead, the MC TBKT

for F = 0.2 has a U dependence quite similar to that for
F = 0.01, although the magnitude is larger in the former case
(see Fig. 1 of Ref. [26]).3 Taken at face value, this suggests
that our pairing fluctuation theory overestimates the size of
the conventional contribution to TBKT. On the other hand,
the MC results may suffer from finite size effects. In any
event, this comparison indicates that our pairing fluctuation
theory appears to have adequately accounted for the geometric
contributions.

Prior to our work, there have been studies of the geo-
metric contribution to the superfluid instability temperature
that were associated with beyond mean field Gaussian pairing
fluctuations. In a series of papers [34,73], M. Iskin called
attention to the geometric contribution in 2D and 3D spin-
orbit coupled Fermi gases. Notably, for this specific energy
dispersion, the geometric contribution does not play a sig-
nificant role and the conventional contribution dominates,
due to the associated nonflat and unbounded band disper-
sion. It should be noted that within a Gaussian fluctuation
theory, which is most appropriate for 3D superfluids, there
does appear an interband geometric contribution [34] similar
to our Eq. (7).4

Beyond mean field effects and quantum geometry have
also been discussed in Ref. [22] in the context of dynamical
mean field theory (DMFT). There it was similarly observed
that the geometric contribution to the flat band phase stiff-
ness survives, though reduced in magnitude. These DMFT
calculations were shown to agree qualitatively with the results
of strict mean field theory, not in the BCS regime but in
the more strongly correlated BEC limit, where one might
expect a mean field approach to be less appropriate. Fi-
nally, we note that there are other more analytical approaches
which incorporate bosonic fluctuation effects on the super-
fluid phase stiffness across the entire BCS-BEC crossover
[74–76].5 While the role of this additional “collective mode”
bosonic branch is to degrade the superfluid phase stiffness,
as we find here, these schemes have not addressed quantum

3We note that the results presented in Fig. 1 of Ref. [26] are for
electron density n = 0.5 per site; while our results are for n = 0.3
per site. However, we do not expect the qualitative U dependence of
TBKT and T ∗ to change from n = 0.5 to n = 0.3.

4However, the intraband contribution we identified, the term with
α′ = α in Eq. (7), was missing.

5Unfortunately, these calculations lead to an unusual double valued
functional form for the superfluid density.

geometric effects. Further investigations are needed to resolve
these issues.

V. CONCLUSIONS

In summary, we have established the quantum geomet-
ric contribution to superfluidity in a pair-fluctuation theory,
where these contributions modify the pair mass. In general
the geometric contribution dominates in the strong coupling
BEC regime and prevents localization of Cooper pairs. We
further show how to quantify the magnitude of the geo-
metric contributions in a multiorbital 2D superconductor in
terms of the T ∗/TBKT ratio. Our analysis was based on im-
portant experimental observations [39] which have shown
that the two temperature scales (TBKT and T ∗) can be ex-
tracted from V -I plots. Using estimates of T ∗/TBKT from
experiments we have presented speculations on magic angle
TBLG, concerning the size of the geometric terms and the
location of this exotic superconductor within the BCS-BEC
crossover.

The rough comparison between theory and experiment in
this paper is based on the assumption that the simple model
we studied captures some essential features of the band struc-
ture of TBLG. While this sets up the general framework
and identifies the issues, clearly, a calculation using a real-
istic band structure is ultimately needed. In our model, the
band topology comes from a nonzero spin Chern number.
On the other hand, (in the absence of the hBN encapsulating
substrate),6 the relevant topology for the bare flat bands of
TBLG was argued to be different and to correspond to a so
called “fragile topology” [9,13,77–79]. Whether this topology
is associated with the normal state out of which the supercon-
ductivity emerges is still unclear.7 However, as demonstrated
in a BCS mean field calculation [25], this fragile topology
exhibits similar Wannier obstruction effects that can prevent
the localization of Cooper pairs and hence enhance 2D su-
perconductivity for a flat band system. Overall, we expect
most of our qualitative findings to survive in a more realistic
band calculation with fragile topology included. The pairing
fluctuation theory that we presented for our two band model
can be easily generalized to a more-than-two-band structure,
which is more relevant to TBLG. We leave that for future
work.
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FIG. 5. (a) The tight binding model for HK. {A, B} denote two
different sub-lattices, resulting from a staggered π flux. The NN
hopping amplitudes are teiπ/4 for spin ↑ along the direction depicted
by the arrows. Black dashed and blue dotted lines show the second
NN bond with which the associated hopping amplitudes are t2 and
−t2, respectively. There is also a uniform hopping between the fifth
NN sites, which is not shown for clarity. (b) Fermi surfaces (FS), in
blue, for the band flatness ratio F = 0.2 at electron density n = 0.3
per site. The regime bounded by the red dashed lines defines the
reduced Brillouin zone (RBZ). (c) Corresponding band structure for
F = 0.2. In the vertical axis, εk = h0(k) ± |h(k)|. (d) Band structure
for F = 0.01.

APPENDIX A: TIGHT-BINDING MODEL

Our model is defined on a square lattice, with a kinetic
energy contribution to the Hamiltonian, HK, given by

HK =
{[

−t
∑
〈i, j〉

eiφσ
i j c†

i,σ c j,σ − t2
∑

〈i, j〉2,σ

s〈i, j〉2 c†
i,σ c j,σ

− t5
∑

〈i, j〉5,σ

c†
i,σ c j,σ

]
+ h.c.

}
− μF

∑
i

ni. (A1)

Here c†
i,σ (ci,σ ) are electron creation (annihilation) operators

at site i for spin σ . (t, t2, t5) are the magnitudes of the hopping
integrals defined for the nearest neighbor (NN), second NN,
and the fifth NN bond on the square lattice, respectively. μF

is the fermionic chemical potential, and ni = ∑
σ=↑,↓ c†

i,σ ci,σ

is the electron number at site i. The NN hopping amplitude
is modulated by the phase eiφσ

i j , where φσ
i j = sσ (π/4) if the

hopping is along the direction of the arrows depicted in Fig. 5.
sσ = +1 (−1) for spin ↑ (↓). Because of φσ

i j there is a net ±π

flux through each square plaquette for given spin. This flux is
staggered from one plaquette to the next (see Fig. 5), which
breaks the original lattice translational symmetry and leads to
two different sublattices {A, B}. However, time reversal sym-
metry is still preserved, because φσ

i j are opposite for opposite
spin σ so that the total flux through each plaquette is zero. The
sign of the second NN hopping amplitudes, s〈i, j〉2 = ±, is also
staggered, as shown in Fig. 5.

Fourier transforming HK to k space one finds the following
block-diagonal Hamiltonian

HK(k) =
(

H↑(k) 0
0 H↓(k)

)
, (A2)

in the basis (c†
A,↑(k), c†

B,↑(k), c†
A,↓(k), c†

B,↓(k)). The diago-
nal block operating on the same spin is

Hσ (k) = h0(k) + h(k, φσ ) · s − μF, (A3)

where s = (sx, sy, sz ) are the three Pauli matrices defined for
the sublattice space and

h0(k) = −2t5[cos 2(kx + ky) + cos 2(kx − ky)], (A4a)

hz(k) = −2t2 [cos(kx + ky) − cos(kx − ky)], (A4b)

hx(k, φσ ) + i hy(k, φσ )

= −2t ei(−φσ −ky ) cos ky − 2t ei(φσ −ky ) cos kx. (A4c)

φσ = sσ (π/4). Diagonalizing HK(k) gives two energy bands,
ξ±(k) = h0(k) ± |h(k, φσ )| − μF, each of which are twofold
degenerate due to the spin. The two bands have a nonzero spin
dependent Chern number Cασ = −αsσ , where α = ±.

Although Hσ (k) depends on spin due to φσ , the final
result of the time reversal invariant quantity, nB/MB which
determines the temperature, TBKT, in our theory, is spin in-
dependent (see the following Appendix B). Therefore, in the
main text, we drop the spin and keep only the spin ↑ block
Hamiltonian, i.e., HN ≡ H↑ in Eq. (1).

1. Nontopological model Hamiltonian

In Fig. 1(d) of the main text, we also considered a topo-
logically trivial band structure with zero Chern number. The
corresponding trivial Hamiltonian is obtained from HK(k) by
adding a staggered on-site potential term

H trivial
K (k) = HK(k) + mzsz ⊗ σ0, (A5)

where σ0 is the identity matrix in the spin space. The re-
sultant bands from H trivial

K (k) are trivial if |mz| > 4t2. Using
(t, t2, t5, mz ) = (1, 0.02, 0,−3) gives a two-band model with
W ≈ 1.2 t and Eg ≈ 5.8 t , corresponding to F = 0.2. W and
Eg are comparable to those of the topological F = 0.2 band.

2. Attractive interaction

For the interaction we choose a local attractive Hubbard
model

V = −U
∑

i

ni,↑ni,↓, (A6)

where U > 0. We do not discuss the possible origin of this
attractive interaction in TBLG, which is not important for our
purposes.

APPENDIX B: MULTIORBITAL BCS-BASED PAIRING
FLUCTUATION THEORY

In the main text, we have sketched the derivation of our
pairing fluctuation theory and outlined the main equations
used. In this section, we present the details. We first derive the
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expression for our pairing susceptibility and the correspond-
ing many-body T matrix. From the two we then obtain the
two central quantities for our calculation of TBKT, nB and MB

of the preformed pairs.

1. Pairing susceptibility and many-body T matrix tpg(Q)

Our pairing fluctuation theory is one type of the many
BCS-BEC crossover theories. The central assumption behind
most of these theories is that even though the original BCS
theory is a weak coupling one, the variational BCS ground
state wave function has a wider applicability that goes beyond
weak coupling [33]. Our theoretical framework is designed
such that the T = 0 ground state in this theory is identical
to the BCS ground state and at the same time it includes
pairing fluctuation effects at finite T . Therefore, to derive
such a theory for our multiorbital system, we first consider
the corresponding BCS mean field problem.

Within the BCS mean field, the Cooper pairing instability
can be derived from the pairing vertex function �(Q). Assum-
ing a local s-wave singlet pairing order parameter �̂sc(k) =
�sc iσy, one can show that [29]

1

�(Q)
= − 1

U
+ χ0(Q), (B1)

χ0(Q) = T

2

∑
K

Tr[G0(K )iσyG̃0(K − Q)(−iσy)]. (B2)

χ0(Q) is the bare pairing susceptibility. K = (ωn, k) with
ωn = (2n + 1)πT is the fermionic Matsubara frequency. The
summation over k should be restricted to the reduced Brillouin
zone due to the unit cell doubling in real space. The trace is
with respect to both sublattice and spin. G0(K ) and G̃0(K ) are
the normal state electronic and hole Green’s function matrices,
whose definitions are

G0(K ) = 1/(iωn − HK (k)), (B3)

G̃0(K ) ≡ −[G0(−K )]T . (B4)

1/�(Q = 0) = 0 defines the BCS mean field Tc, BCS, which
will be taken as an estimate for the pairing onset temperature
T ∗ in our theory, i.e., T ∗ = Tc, BCS.

Correspondingly, the mean field BCS gap equation for �sc

is given by

− 1

U
+ T

2

∑
K

Tr[G(K )iσyG̃0(K )(−iσy)] = 0, (B5)

where G(K ) is the electron Green’s function with the super-
conducting pairing self-energy �sc(K ) included

[G(K )]−1 = [G0(K )]−1 − �sc(K ), (B6)

�sc(K ) = �2
scG̃0(K ). (B7)

The zero temperature solution of �sc to the above gap equa-
tion gives the BCS ground state.

Now we construct the pairing fluctuation theory. To ac-
count for the effects of scattering from noncondensed pairs
on fermions, we include another pairing self-energy, � pg, into
the dressed electronic Green’s function G

[G(K )]−1 = [G0(K )]−1 − �pg(K ). (B8)

� pg results from scatterings of electrons from noncondensed
pairs, to be distinguished from �sc which represents a true
condensate. In three dimension (3D) we should include �sc as
in the BCS mean field theory. In 2D and at finite temperature,
which is what we focus on, �sc ≡ 0 since there is no true long
range superconducting order parameter.

�pg(K ) is related to the many-body T matrix tpg(Q) by

�pg(K ) = −T
∑
Q �=0

tpg(Q)G̃0(K − Q). (B9)

All pair scattering effects are encapsulated in tpg(Q). Under
the T -matrix approximation that has been widely used to
understand BCS-BEC crossovers [44,56]

1

tpg(Q)
= − 1

U
+ χ (Q), (B10)

where

χ (Q) = T

2

∑
K

Tr[G(K )iσyG̃0(K − Q)(−iσy)]. (B11)

In the course of the developments of BCS-BEC crossover the-
ories, there was a debate on whether the two Green’s functions
used in the expression of χ (Q) should be G0G̃0, or GG̃, or GG̃0.
We choose the asymmetric form, GG̃0, so that in 3D, when the
superconducting transition is interpreted as a BEC of Cooper
pairs, the ground state of this pairing fluctuation theory is
given by the BCS wave function [44]. This is reflected in the
pole structure of the T matrix, determined by 1/tpg(0) = 0
which yields the usual BCS gap equation for �pg. It should
be noted that the asymmetric form GG̃0 can in fact be derived
within the equation of motion approach [43,84].

To proceed further, we note that for small pair chemical
potential we may approximate tpg(Q), noting that it is sharply
peaked near Q = 0 so that Eq. (B9) can be written as

�pg(K ) ≈ �2
pgG̃0(K ), (B12)

�2
pg ≡ −T

∑
Q �=0

tpg(Q). (B13)

We refer to this as the “pg approximation,” which (near the
superconducting instability) is supported by numerical evi-
dence [42]. Equation (B12) is an analog to the BCS pairing
self-energy given in Eq. (B7). Just as in the BCS mean
field theory, the above form of �pg(K ) leads to a pseudogap
�pg in the fermionic excitation energy spectrum E±(k) =√

ξ±(k)2 + �2
pg, which reflects the binding strength of non-

condensed Cooper pairs.
For the Hamiltonian that is block diagonal in Eq. (A2), we

can carry out the spin trace in Eq. (B11) and write

χ (Q) = 1
2 [χ↑↓(Q) + χ↓↑(Q)], (B14)

where

χσσ̄ (Q) = T
∑

K

Tr[Gσ (K )G̃0,σ̄ (K − Q)]. (B15)

σ̄ =↑ (↓) if σ =↓ (↑). Gσ and G̃0,σ̄ are the spin σ block
of G and the spin σ̄ block of G̃0, respectively. Substituting
the definitions of Gσ (K ) and G0,σ̄ (K ) into the expression for
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χσσ̄ (Q) and completing the fermionic Matsubara sum, one
gets

χσσ̄ (Q) =
∑

k∈ RBZ

∑
{α,α′,η}=±

1

2

[
1 + η

ξα (k)

Eα (k)

]

× nF (ηEα (k)) − nF ( − ξα′ (k − q))
i�m − ηEα (k) − ξα′ (k − q)

× Tr[P̂α,σ (k)P̂α′,σ (k − q)], (B16)

where nF(x) = 1/(eβx + 1) with β = 1/T is the Fermi-Dirac
distribution function and Tr[· · · ] is with respect to the sublat-
tice subspace.

P̂α,σ (k) ≡ 1
2 [1 + α ĥ(k, φσ ) · s] (B17)

is the projection operator defined for the normal
state band with energy ξα (k) and spin σ . ĥ(k, φσ ) ≡
h(k, φσ )/|h(k, φσ )|. Carrying out the trace in Eq. (B16)
leads to

Tr[P̂α,σ (k)P̂α′,σ (k − q)] = 1 + αα′ĥ(k, φσ ) · ĥ(k − q, φσ )

2
.

(B18)

2. Small Q expansion of χ(Q)

Within the “pg approximation,” one can make the the fol-
lowing small Q expansion for χ (Q) [17,44,47],

χ (Q) ≈ χ (0) + b i�m − c q2, (B19)

where �m = 2mπT is the bosonic Matsubara frequency, and

χ (0) =
∑

k∈ RBZ

∑
α=±

1 − 2nF (Eα )

2Eα

, (B20a)

b = −
∑

k∈ RBZ

∑
{α,η}=±

η

2Eα

nF (ηEα ) − nF (−ξα )

ηEα + ξα

,

(B20b)

c = −1

2

∂2

∂q2
x

χ (Q)

∣∣∣∣
Q=0

≡ Tconv + Tgeom. (B20c)

Here to determine the coefficient c, we use only the q2
x

component of the χ (Q) expansion, since the system possesses
a C4 rotational symmetry.

For our later discussion on quantum geometry we have
broken up c into two separate terms,

Tconv =
∑

k∈ RBZ

∑
{α,η}=±

η

4Eα

{
(∂xξα )2 2

[
nF (ηEα ) − nF (−ξα )

(ηEα + ξα )2
+ βnF (ξα )nF (−ξα )

ηEα + ξα

]
− ∂2

x ξα

nF (ηEα ) − nF (−ξα )

ηEα + ξα

}
, (B21a)

Tgeom =
∑

k∈ RBZ

∑
{α,α′η}=±

1

4

[
1 + η

ξα

Eα

]
nF (ηEα ) − nF (−ξα′ )

ηEα + ξα′
(−αα′)

1

2
∂xĥ · ∂xĥ, (B21b)

where ∂x ≡ ∂kx , and, for brevity, we have suppressed the k dependence. The conventional term, Tconv, is derived from the qx

derivative of the factors other than Tr[· · · ] in Eq. (B16); while the geometric term, Tgeom, comes solely from that of the trace
factor,

∂2
qx

Tr[P̂α,σ (k)P̂α′,σ (k − q)]|q=0 = (−αα′) 1
2∂kx ĥ(k, φσ ) · ∂kx ĥ(k, φσ ). (B22)

Tgeom depends on not only the normal state energy dispersion but also its wave functions, through the projection operators in
the trace factor. This is in sharp contrast to Tconv. The scalar product, 1

2∂xĥ · ∂xĥ, can be identified with the xx component of the
quantum metric tensor which will be defined and discussed in detail in Appendix C.

We note that although ĥ(k, φσ ) depends on spin due to φσ , 1
2∂xĥ · ∂xĥ does not because it is even in the sign of φσ . As a result,

{χ (0), b, c} are all spin independent. So are the characteristic parameters for the noncondensed bosons such as nB and MB.

3. nB and MB

Next we calculate nB and MB from {χ (0), b, c}. Substitut-
ing Eq. (B19) into Eq. (B10) leads to

tpg(Q) ≈ Z
i�m − q2/(2MB) + μB

, (B23)

with

Z = 1/b, (B24a)

μB = −1/U + χ (0)

b
, (B24b)

MB = b/(2c). (B24c)

The quantity tpg(Q) in Eq. (B23) can be interpreted as
the propagator for noncondensed pairs with an energy dis-
persion EB = q2/2MB − μB, with MB the effective pair mass
and μB the corresponding bosonic chemical potential. Then
from Eqs. (B13) and (B23) one can relate the areal density of

noncondensed pairs, nB, to �2
pg by

nB ≡
∑

q

fB(EB) = �2
pg

Z = MB

2πβ
{− ln[1 − eβμB ]}, (B25)

where fB(x) = 1/(eβx − 1) is the Bose-Einstein distribution.
To obtain the r.h.s. of the last equality we have neglected
the upper bound in the q summation which is associated
with a lattice. This is consistent with the pg approximation
which implies, near the instability, a fast decrease of tpg(Q) at
large Q.

Equations (B24) and (B25) combined together yield one
independent nonlinear equation for two unknowns, �pg and
μF, in terms of {T, n,U }. The other independent equation
comes from the electron density constraint [17,44,47]

n =
∑

k∈ RBZ

∑
α=±

[
1 − ξα (k)

Eα (k)
tanh

βEα (k)

2

]
. (B26)
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Solving the combined Eqs. (B24) to (B26) for given {T, n,U }
numerically we are able to compute �pg and μF, from which
nB and MB can be determined. We then apply the BKT crite-
rion, nB(T )/MB(T ) = (Dcrit

B /2π )T , to determine TBKT.
Using Eq. (B26) one can also rewrite the bosonic density

as [28]

nB = n

2
−

∑
k∈ RBZ

∑
α=±

nF(ξα (k)). (B27)

This equation shows that nB increases with U for given tem-
perature since μF decreases with U . As U increases, the zero
temperature μF becomes negative, i.e., lower than the conduc-
tion band bottom, at a certain value of U . Beyond this value
nB saturates to n/2 at T = 0 since nF(ξα (k)) = 0 for all k. The
saturation defines the entrance to the BEC regime. However,
we notice that at finite T , the point where μF becomes nega-
tive and the saturation onset of nB do not occur concomitantly
at the same U as nF(ξα (k)) �= 0 even if μF is negative.

To see clearly where the quantum metric enters the bosonic
parameters, we combine nB and MB and write the ratio as

nB/MB = 2 �2
pg c = 2 �2

pg(Tconv + Tgeom), (B28)

where Eqs. (B25), (B24), and (B20c) have been used. This
equation shows explicitly that the quantum metric affects TBKT

through the ratio nB/MB, or 1/MB in the BEC regime, where
nB = n/2 = const.

4. Large U limit of nB/MB at T = TBKT

In the U � Eg limit, Tconv 
 Tgeom so that one can neglect
Tconv in Eq. (B28). Also in this case, μF is large negative and
TBKT is much smaller than |ξα| and Eα so that one can take
T ≈ 0 in evaluating Tgeom in Eq. (B21b). All Fermi functions
nF (x) become either 0 or 1, so that one can simplify Tgeom and
rewrite Eq. (B28) as

nB

MB
≈

(∑
k

1

2
∂xĥ · ∂xĥ

)
2|μF| + |μF|2/E0 − E0

2E2
0 (E0 + |μF|)2

�2
pgE2

g ,

(B29)

where E0 ≡
√

μ2
F + �2

pg. Because both �pg and |μF| are pro-
portional to U at U � Eg, we conclude that in the large U
limit nB/MB ∝ E2

g /U .

APPENDIX C: QUANTUM GEOMETRY
AND THE PAIR MASS

Equation (B28) suggests that the quantum metric can play
an important role in determining TBKT through the Tgeom term
in nB/MB, if the conventional contribution is small. In this
section we introduce the definition for the quantum metric,
discuss the physical picture behind its interplay with delocal-
ization of noncondensed pairs, and elucidate the role of the
normal state band topology in such an interplay. The latter
becomes most clear in the isolated flat band limit, where we
show nB/MB is lower bounded by the nontrivial band topol-
ogy.

The quantum metric tensor, gασ
μν (k) with {μ, ν} = {x, y},

is defined for each ασ normal state band. It represents a
distance in the projective Hilbert space between two states

ψασ (k) and ψασ (k + dk): ds2 ≡ 1 − |〈ψασ (k)|ψασ (k +
dk)〉|2 = 1

2 gασ
μν (k)dkμdkν + O((dk)3) [48,85]. Here ψασ (k)

is an eigenstate of HK(k) in Eq. (A2) with the quantum num-
ber α = ± and σ = {↑,↓}. Note that gασ

μν (k) is independent
of the arbitrary U(1) phase of ψασ (k), and is therefore gauge
invariant. By definition it is also positive definite.

The quantum metric tensor can be combined with the
Berry curvature, Fασ

μν , to define a quantum geometric tensor
Rασ

μν [48]:

Rασ
μν ≡ 2 Tr

[
P̂α,σ ∂kμ

P̂α,σ ∂kν
P̂α,σ

] = gασ
μν + iFασ

μν /2. (C1a)

Both gασ
μν and Fασ

μν are real. Using the definition of P̂α,σ in
Eq. (B17), one obtains

gασ
μν (k) = 1

2∂μĥ(k, φσ ) · ∂ν ĥ(k, φσ ), (C2a)

Fασ
μν (k) = α εμν ĥ(k, φσ ) · [∂μĥ(k, φσ ) × ∂ν ĥ(k, φσ )],

(C2b)

where εμν = −ενμ is the Levi-Civita symbol. gασ
μν is even

under time reversal, and therefore independent of the spin
σ . In contrast, Fασ

μν is odd under time reversal, and therefore
opposite for opposite spin. As a result, gασ

μν in Eq. (C2a) is
independent of {ασ } for our model.

From its definition one can prove that Rασ
μν is positive

definite [21,25], resulting an inequality between gασ
μν and Fασ

μν :
gασ

xx gασ
yy � (Fασ

xy )2/4. The inequality implies

Tr
[
gασ

μν

]
� 2

√
gασ

xx gασ
yy �

∣∣Fασ
xy

∣∣. (C3)

Here Tr is with respect to {μν}. Equation (C3) shows that in
general a nonzero Chern number, which necessarily implies
a nonzero |Fασ

xy |, enhances the magnitude of the quantum
metric tensor. The physics behind this can be understood in
terms of the “Wannier obstruction.” Normal state Wannier
functions |ψασ (R)〉 can be constructed from the Bloch wave
function |ψασ (k)〉. |ψασ (R)〉 is in general not gauge invariant
because of the U (1) phase ambiguity in defining |ψασ (k)〉.
Consequently, the spatial spread of |ψασ (R)〉 contains both a
gauge invariant and noninvariant part [37,38]. Interestingly,
the former is equal to

∑
k Tr[gασ

μν]. If the ασ band is topo-
logically trivial, then an exponentially localized |ψασ (R)〉 can
be constructed by choosing a proper gauge. On the other
hand, if the ασ band is nontrivial, then this is impossible.
This is known as the “Wannier obstruction” [37,38], which
implies a larger Wannier function spread, and therefore a
larger

∑
k Tr[gασ

μν].
The enhancement of Tr[gασ

μν] due to nontrivial band topol-
ogy also affects the pairing state through nB/MB. The latter
reflects the degree of delocalization of the noncondensed
pairs. Both a larger nB and smaller MB imply a larger over-
lap between individual pair wave functions, and therefore
more delocalized pairs. How delocalized the pairs are must
be connected to how delocalized the normal state Wannier
orbitals are. Therefore it is not surprising that gασ

μν , which
provides a measure of how delocalized the normal states are,
enters the expression of nB/MB through Tgeom in Eq. (B21b).
However, gασ

μν appears in a complicated way because both
the two normal bands can contribute, and because both intra-
and interband processes matter. Interestingly, the inter- and
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intraband contributions in Eq. (B21b) carry opposite signs; the
former partially cancels the latter which is positive.

The above qualitative discussion suggests that in general, a
nontrivial band topology enhances the quantum metric, which
in turn increases nB/MB. This emerges most clearly in the
isolated flat band limit, which was also heavily discussed
in the literature addressing the superfluid phase stiffness Ds

[21,22,24,25], where a lower bound for the mean field Ds was
found. In the following, we show that a similar bound exists
for nB/MB in this limit.

1. Isolated flat band limit

The isolated flat band limit for the Hamiltonian in Ap-
pendix B is defined at U such that W 
 U 
 Eg. This regime
corresponds to a BEC superconductor. In this limit, supercon-
ductivity mainly occurs in the lower flat energy band while the
upper one is inactive. As a consequence, all terms involving
the upper energy band in the equations for {Tconv, Tgeom} drop
out. Also, the lower flat band term in Tconv can be neglected
because the band is flat. The only remaining term comes
from Tgeom, which involves the lower flat band. Then from
Eq. (B28), one finds

nB

MB
= �2

pg

∑
k∈ RBZ

tanh (βE−(k)/2)
2E−(k)

gxx(k), (C4)

where we have left the band dependence of gασ
μν unspecified

since it is the same for different bands.

Interestingly, this expression for nB/MB is almost identical
to that of the BCS mean field Ds in the same limit (see
Eq. (D6) of Appendix D and also Ref. [22]). The only dif-
ference is that the gap parameter in nB/MB is the pseudogap
�pg while that in Ds is the BCS mean field superconducting
order parameter.

Using Eq. (C3) and gxx = gyy, one can derive the following
lower bound for nB/MB

nB

MB
� �2

pg
tanh(βE−/2)

4E−

∑
k∈ RBZ

|Fxy(k)|

� �2
pg

tanh(βE−/2)

4E−

∣∣∣∣∣ ∑
k∈ RBZ

Fxy(k)

∣∣∣∣∣
= �2

pg
tanh(βE−/2)

4E−

|C|
π

. (C5)

E− is k independent since the band is flat. We dropped the
band dependence of the Berry curvature Fασ

xy (k) and also
that of the Chern number Cασ , since their absolute values are
the same for all bands. To obtain the last line we have used
Eq. (C2b). This line clearly shows that nB/MB is bounded
below when the flat band has a nonzero Chern number, i.e.,
it is topologically nontrivial.

APPENDIX D: MEAN FIELD CALCULATION OF Ds(T ) and TBKT

In Figs. 1 and 2 of the main text, we have included the mean field results of Ds and TBKT for comparison. This section gives a
summary of the main equations used.

We start with the BCS mean field gap equation

1

U
=

∑
k∈ RBZ

∑
α=±

1

2Eα (k)
tanh

(
βEα (k)

2

)
, (D1)

where Eα ≡ √
ξ 2
α + �2

sc with �sc the BCS mean field superconducting gap. This equation is derived from Eq. (B5). The electron
density equation is the same as in Eq. (B26). Solving the two equations for given T and U , one obtains �sc and μF.

From the mean field �sc and μF, we calculate the mean field Ds by (for derivations see Refs. [22,24])

Ds = 1

4

∑
k∈ RBZ

∑
{i, j}={1,2,3,4}

nF (E j ) − nF (Ei )

Ei − E j
{〈�i| ∂xHBdG[�sc = 0]|� j〉〈� j |∂xHBdG|�i〉 − 〈�i| j†

x |� j〉〈� j | jx |�i〉}, (D2)

where Ei = ±E± and |�i〉 are eigenenergies and eigenvectors of the following 4 × 4 mean field BdG Hamiltonian matrix

HBdG(k) =
(

H↑(k) �scs0

−�scs0 −HT
↓ (−k)

)
. (D3)

In the curly brace in Eq. (D2), the first term is diamagnetic, while the second term is paramagnetic. jx(k) = (∂xHBdG(k))τz is the
electric current operator, where τz is the z-component Pauli matrix defined for the Nambu space. Following Ref. [22], one can
separate Ds into the conventional and geometric contributions, Ds = Dconv

s + Dgeom
s . Their expressions are [22]

Dconv
s = 1

4

∑
k∈ RBZ

∑
α=±

[
− β

2 cosh2 (βEα (k)/2)
+ tanh (βEα (k)/2)

Eα (k)

] |�sc|2
Eα (k)2

(
∂ξα (k)

∂kx

)2

, (D4)

Dgeom
s = 1

4

∑
k∈ RBZ

∑
α=±

[
tanh (βEα (k)/2)

Eα (k)
− tanh (βE−α (k)/2)

E−α (k)

]
ξ−α (k) − ξα (k)

ξ−α (k) + ξα (k)

∣∣�2
sc

∣∣ gxx(k). (D5)

The prefactor 1/4 comes from our different definition of Ds from the one used in Ref. [22]: for the London equation under the
Coulomb gauge we use J = −4DsA, instead of J = −DsA.
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In the isolated flat band limit, Dconv
s ≈ 0. Also, because ξ+ � ξ− and E+ � E−, the geometric term becomes [22]

Dgeom
s ≈ |�sc|2

∑
k∈ RBZ

tanh (βE−(k)/2)
2 E−(k)

gxx(k). (D6)

From Ds(T ), we determine the mean field TBKT using the universal relation

TBKT = π

2
Ds(TBKT). (D7)

APPENDIX E: ADDITIONAL NUMERICAL RESULTS

1. F = 0.2

In Fig. 1 of the main text, we have decomposed our pairing
fluctuation theory TBKT into the conventional and geometric
contributions. Here we make the same decomposition for the
corresponding BCS MF theory TBKT in Fig. 6. Comparing the
pairing fluctuation theory and MF results we see that the con-
ventional term in both theories has a dome shape dependence
on U with its maximum at U ∼ W . However, the decrease of
the mean field conventional TBKT at large U is much slower
and follows a t2/U asymptote. In contrast, the corresponding
pairing fluctuation result falls precipitously to almost zero at
U/t ≈ 3 and remains extremely small at larger U .

The plummet of the pairing fluctuation theory TBKT occurs
near the point where μF becomes negative. It is associated
with a rapid decrease of a term in Tconv in Eq. (B21a), (the sec-
ond one in the square bracket), which is ∝ [∂ξα

nF(ξα )](∂xξα )2.
This term vanishes at T = 0 when μF drops below the band
bottom since [∂ξα

nF(ξα )](∂xξα )2 = δ(ξα )(∂xξα )2 ≡ 0 for any
k. The remaining two terms in Eq. (B21a) cancel each other
almost completely at T = 0 when μF is negative, leading
to the extremely small TBKT at U/t � 3. The near-complete
cancellation does not occur when the electron density n is
small so that the conduction band is much less than half-filled
[17], i.e., when the preformed pairs in the BEC regime are
dilute. It suggests that the cancellation is a consequence of
a competition between pair hopping and intersite pair repul-
sion [57], the latter of which originates from Pauli exclusion
that prevents two pairs from occupying the same site. The
repulsion becomes more important as the density of the pairs,
which is equal to n/2 in the BEC regime, increases, and it
can severely restrict the motion of the pairs at high density
[57], leading to almost zero TBKT. This effect of the repulsion

0.00

0.03

0.06

0.09

0.12

0 2 4 6 8 10

Tot.
Conv.
Geom.

T
B

K
T
/
t

U/t

FIG. 6. Decomposition of the BCS MF TBKT into the con-
ventional (“Conv”) and geometric (“Geom”) contributions for the
topological F = 0.2 band. n = 0.3.

is naturally not included in the calculated mean field Ds,
even when the pair density is high and when U is very large
[86]. To incorporate the inter-site pair repulsion effect into Ds

one needs to include beyond mean field corrections [74,87],
in particular quantum fluctuation effects. On the other hand,
numerical studies [88–90] on a simple 2D attractive (single-
orbital) Hubbard model on a square lattice do not seem to
indicate a dramatic effect of the repulsion on TBKT. Of course,
the numerical studies can be subject to finite size effects. At
present, it is unclear if our calculated conventional nB/MB has
overestimated the pair repulsion effect or not. Further studies
are needed to resolve this issue.

The geometric contribution behaves similarly in the two
theories. At small U, it increases roughly linearly with U
except where U is very small. At U/t � 7, it begins to de-
crease, which comes from a cancellation between the inter-
and intraband contributions to Tgeom in Eq. (B21b). The net
result at large enough U is T geom

BKT ∝ (nB/MB)geom ∝ E2
g /U , as

discussed in Appendix B 4.

2. F = 0.01

Figure 7 illustrates some additional numerical results for
the F = 0.01 flat band. In Fig. 7(a). we present a zoomed

FIG. 7. Results for the topological F = 0.01 band.
(a) {TBKT, T ∗} and (b) {nB/n, MB} plotted as a function of
U/t . “Iso. Flat. Lim.” stands for the lower bound on TBKT calculated
from the lower bound of nB/MB in the isolated flat band limit, given
by the last line of Eq. (C5). Inset in (b): zoomed view of {nB/n, MB}
at small U/t . MB is plotted in units of t a2

L, where aL is the square
lattice spacing. [(c) and (d)] nB/MB and BCS MF Ds plotted as
a function of T/t for U/t = 0.5. (c) and (d) show the total and
conventional contributions, respectively.
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view of the TBKT results at small U . One sees that there is
a remnant TBKT peak at U/t ∼ 0.1, due to the small but still
finite conventional contribution to nB/MB. The latter comes
from the fact that the conduction band is not completely flat.
From Fig. 7(a). one also sees that the pairing fluctuation the-
ory TBKT almost saturates its lower bound in the isolated flat
band limit regime, i.e., at W 
 U 
 Eg where W ≈ 0.035t is
the lower conduction band width. The near saturation comes
from the fact that in the summation of the Berry curvature
Fxy(k) in Eq. (C5), Fxy(k) is dominated by one sign with large
weight at most k so that the difference between

∑
k |Fxy(k)|

and | ∑k Fxy(k)| is roughly 10%. This suggests that, if the
conduction band were trivial with zero Chern number, the
resulting nB/MB and TBKT would be reduced by about 90%.
Stated alternatively, for a flat band system, nontrivial band
topology can significantly boost the two dimensional super-
conductivity via the quantum metric effect.

Figure 7(b) illustrates that, because of the extremely flat
conduction band, even a small attractive interaction U/t ≈ 0.3
already puts the system in the BEC regime where nB/n satu-
rates to 1/2. Upon entering into the BEC regime, MB exhibits
a sharp peak, reflecting the strong localization tendency of
the Cooper pairs due to the extremely small conventional
contribution to 1/MB in Eq. (B21a). Note that MB plotted in
Fig. 7(b) has been rescaled by a factor of 1/50.

In Figs. 7(c) and 7(d), we give a comparison between the
total (conventional) nB/MB and that of the BCS MF Ds for
U/t = 0.5. As shown in Fig. 2(b) of the main text, the corre-
sponding geometric contributions to nB/MB and Ds are almost
identical at low temperatures, even though the corresponding
two TBKT are different, as seen from Fig. 7(a). Mathematically,

the near coincidence derives from the fact that the expression
for nB/MB in this limit, given in Eq. (C4), is identical to that of
Ds, given in Eq. (D6), except that the gap parameters � in the
two are different: � = �pg in the former while � = �sc in
the latter case. However, at low temperatures, �pg and �sc in
the two approaches (which are based on the same mean field
equations) are essentially equal, explaining why nB/MB and
Ds are nearly the same.

On the other hand, the conventional, as well as the to-
tal, contributions to nB/MB and Ds behave quite differently.
From Fig. 7(c) we see that, in contrast to the monotonic
Ds(T ), the total nB/MB has a small bump at T ∼ T ∗/2,
which comes from the small conventional nB/MB. The latter
depends on T nonmonotonically, as shown in Fig. 7(d). In-
terestingly, similar nonmonotonic behavior has been observed
in the phase stiffness of some 2D Josephson-junction arrays
where quantum fluctuations play an important role [91,92].
The nonmonotonicity comes from a competition between two
physical processes. Near T = 0, (nB/MB)conv is almost zero,
a consequence of the competition between pair hopping and
inter-pair repulsion, as explained in Appendix E 1. Increasing
T tends to enhance the pair hopping via an ionization process
[56], which becomes thermally more accessible. On the other
hand, a large temperature also tends to dissociate the Cooper
pairs, leading to a decrease of (nB/MB)conv as T increases
towards T ∗. Mathematically, the competition is between dif-
ferent temperature dependencies of nB and (1/MB)conv. The
net result is a peak of (nB/MB)conv near T ∼ T ∗/2. However,
we should note that our results of nB/MB become unreliable
at T ∼ T ∗/2 � TBKT where the “pg approximation” breaks
down.
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