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Impurity effects on BCS-BEC crossover in ultracold atomic Fermi gases
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We present a systematic investigation of the effects of “nonmagnetic” impurities on the s-wave BCS-BEC
crossover in atomic Fermi gases within a pairing fluctuation theory. Both pairing and impurity scattering T

matrices are treated self-consistently at the same time. While the system is less sensitive to impurity scattering in
the Born limit, for strong impurity scatterers, both the frequency and the gap function are highly renormalized,
leading to significant suppression of the superfluid Tc, the order parameter, and the superfluid density. We also
find the formation of impurity bands and smearing of coherence peak in the fermion density of states, leading to
a spectrum weight transfer and finite lifetime of Bogoliubov quasiparticles. In the BCS regime, the superfluidity
may be readily destroyed by the impurity of high density, leading to a superfluid-insulator quantum phase
transition at zero temperature. In comparison, the superfluidity in unitary and BEC regimes is relatively more
robust.
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I. INTRODUCTION

Ultracold atomic Fermi gases have been a rapidly growing
field over the past decade, and have attracted enormous at-
tentions from various disciplines including condensed matter,
atomic and molecular physics, nuclear matter, and astro-
physics. Owing to the high tunability of multiple parameters,
atomic Fermi gases have become a prototype for quantum
simulations of a vast range of existing quantum systems in, e.g.,
condensed matter and for engineering highly exotic quantum
states [1]. One such system is superconductors with a tunable
interaction strength. Despite that atomic Fermi gases can be
prepared as a clean system without an impurity, impurities are
hard to avoid in a typical condensed-matter system, including
the most important and widely studied high-Tc cuprate and
Fe-based superconductors. Therefore, study of the impurity
effects on the superfluidity and pairing phenomena using an
atomic Fermi gas is very important.

Associated naturally with a two-component Fermi gas is
the physics of superfluidity and pairing, whose counterpart
condensed-matter system is superconductivity. The related
impurity effects in superconductors have also been an impor-
tant subject, including superconducting alloys [2], disordered
high-Tc superconductors [3,4], disordered superconducting
thin films, and the disorder induced superconductor-insulator
transition [5–8], etc. While the impurity effects in conven-
tional phonon-mediated s-wave superconductors have been
understood fairly well, the pseudogap phenomena in (d-wave)
cuprate superconductors have introduced further complexity
[9]. Unlike a typical superconductor, the pairing interaction
strength in atomic Fermi gases can be tuned via a Feshbach
resonance from weak to strong, effecting a crossover from
BCS superfluidity to Bose-Einstein condensation (BEC).
Pseudogap phenomena have been widely recognized as the
pairing interaction becomes strong. It is thus interesting
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to go beyond weak-coupling BCS theory and study the
impurity effects in the presence of strong pairing. Indeed,
experimentally, impurities can be introduced via doping atoms
of foreign elements [10] or using a random optical potential
[11].

In a conventional s-wave BCS superconductor, weak
impurities renormalize the frequency ω and gap � in the
exact same fashion [12], such that their effects are canceled
out in the gap equation, leading to Anderson’s theorem [13],
with an unchanged superconducting transition temperature
Tc. For a d-wave superconductor, it has been known that
impurities often lead to a quadratic temperature dependence for
the low-temperature London penetration depth or superfluid
density. Chen and Schrieffer [4] have studied the effects of
nonmagnetic impurities for a d-wave superconductor on a
quasi-two-dimensional lattice from the Born to unitary limits
of the impurity scattering strength, and for both weak and
strong pairing strengths. On the other hand, since no strong
pairing s-wave superconductors have been found thus far, there
have been very few studies of the impurity effects in strong
pairing s-wave superconductivity. Orso studied BCS-BEC
crossover in a random external potential [14], based on the
Nozieres and Schmitt-Rink (NSR) theory [15], which has been
known to suffer from inconsistencies between its Tc equation
and fermion number equation in terms of the self-energy
contributions of pairing fluctuations. Han and Sa de Melo [10]
studied the BCS-BEC crossover in the presence of disorder,
using functional integrals and a local-density approximation,
which requires the interaction range of the disorder be much
larger than the pair size. Recently, Strinati and co-workers
[16] studied the impurity effects in the context of BCS-BEC
crossover, but at the lowest order, using a diagrammatic
approach, which does not have a pseudogap in the Tc equation
even in the strong pairing regime, where the presence of a
pseudogap has been established experimentally. At the same
time, higher-order contributions from impurity scattering in
the strong scattering regime are missing in their treatment,
and the impurity and pairing T matrices are not treated in a
self-consistent fashion, either.
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In this paper, we will present a systematic treatment of
the impurity effects on a two-component ultracold atomic
Fermi gas as a function of the impurity strength, impu-
rity concentration, and pairing interaction strength, in the
case of s-wave pairing throughout the BCS-BEC crossover.
We will use the formalism developed in Ref. [4], where
the pairing fluctuations and nonmagnetic impurity T matrix
are treated self-consistently. While the original formalism
was applied to d-wave pairing on a quasi-two-dimensional
lattice, relevant to cuprate superconductors, here we apply it
to s-wave pairing throughout the entire BCS-BEC crossover
in a three dimensional (3D) atomic Fermi gas. Unlike the
nodal p-wave [17] and d-wave cases [4], where the gap
renormalization vanishes, for the s-wave pairing, both the
frequency and gap renormalization induced by impurities are
present. Only for weak impurity scattering (i.e., the Born limit),
where the impurity potential may be treated at the Abrikosov-
Gor’kov (AG) level, the frequency and gap renormalization
factors are exactly the same so that Anderson’s theorem is
valid [12,18].

Our main results are as follows: (a) In the presence of
strong impurity scattering, the frequency and the gap function
are highly renormalized, leading to significant suppression
of the superfluid Tc. (b) In the BCS regime, impurities
induce impurity bands, subgap states, and strong smearing
of the coherence peaks, thus the superfluidity may be readily
destroyed by the impurity, leading to a superfluid-insulator
quantum phase transition at zero T . Besides, we find an
effective power-law dependence of Tc as a function of pairing
strength [19]. (c) Superfluidity in the unitary and BEC regimes
is relatively more robust than in the BCS regime. (d) S-wave
pairing is less sensitive to impurity than its d-wave counterpart
[4]. (e) Strong impurity scatterers are much more effective
than weak scatterers in the Born limit, in suppressing Tc, order
parameter, and the superfluid density.

The rest of this paper is arranged as follows. In Sec. II
we briefly capitulate the theoretical formalism developed in
Ref. [4], with a focus on the main results and the differences
between the s-wave atomic Fermi gases and the d-wave
cuprate superconductors. In Sec. III we numerically solve the
set of equations to get various impurity renormalization effects
on density of states (DOS), Tc, gaps, and superfluid density,
etc., throughout the BCS-BEC crossover. Finally we discuss
the results and experiment related issues.

II. THEORETICAL FORMALISM

A. Frequency and gap renormalizations

The formalism for BCS-BEC crossover at finite tempera-
ture in a clean system can be found in Sec. II A of Ref. [4].
Here for atomic Fermi gases of 6Li or 40K, we take the free
fermion dispersion ε0

k = k2/(2m), and a contact potential for
the s-wave pairing interaction Vk,k′ = gϕkϕk′ , with ϕk = 1,
where m is the atomic mass and we take � = kB = 1 as
usual. The ultraviolet divergence in the gap equation, caused
by the unphysical contact potential, can be regularized in
a standard way so as to replace g with 1/kF a using the

Lippmann-Schwinger equation [1],

m

4πa
= 1

g
+

∑
k

1

2ε0
k

, (1)

where kF is the Fermi wave vector and a is the two-body
s-wave scattering length. Now by solving self-consistently the
gap equation, atomic number equation, and pseudogap equa-
tion, one can study BCS-BEC crossover at finite temperature
in atomic Fermi gases as a function of 1/kF a.

The impurity Hamiltonian is given by

HI =
∑

i

∫
dx ψ†(x)u(x − xi)ψ(x), (2)

with u(x − xi) = uδ(x − xi), where xi denotes independent,
randomly distributed impurity sites. We refer to these impu-
rities as “nonmagnetic” in the sense that they cannot convert
one species of atoms into the other, similar to a superconductor
where a nonmagnetic impurity does not cause spin flips.

At the AG level [2,12], impurities in a s-wave BCS
superconductor only induce frequency and gap function
renormalization, leading to Anderson’s theorem for weak
impurities. In Ref. [4], Chen and Schrieffer went beyond the
AG level, and considered impurities of arbitrary strength and
variable pairing interactions by treating the impurity T -matrix
and pairing fluctuations self-consistently at the same time.
Now we shall present the main results of the formalism, while
detailed derivations can be found in Ref. [4].

The frequency and gap renormalizations now are given in
terms of the impurity T matrices, Tω and T� (and its complex
conjugate), by

iω̃ = iω − 	ω, iω̃ = −iω − 	−ω, (3a)

�̃k = �k + 	�, �̃∗
k = �∗

k + 	�† , (3b)

where �k = �ϕk, 	ω = niTω, and 	� = ni�T�, with ni

being the impurity density. Here ω̃ = (̃−ω). Now except that
iω̃ and �̃k acquire new expressions, the Green’s function G,
Gor’kov function F , and the pair susceptibility χ (Q) remain
formally the same in terms of iω̃ and �̃k. These expressions
reduce to the AG level results in the lowest order (Born limit).

It should be pointed out [4] that here � is the excitation
gap, related to the order parameter �sc and pseudogap �pg

via �2 = �2
sc + �2

pg .
Shown in Fig. 1 are the Feynman diagrams for the impurity

T matrices Tω and T�† , respectively, where T�† is the complex
conjugate of T�. Note that for the impurity potential we use
here, with u(k,k′) = u, the impurity T matrices only acquire
a dynamical structure and are independent of the fermion
momentum. Thus, Tω and T� can be decoupled as

Tω = u(1 − u ¯̄G−ω)

(1 − u ¯̄Gω)(1 − u ¯̄G−ω) + u2 ¯̄Fω
¯̄F †
ω

, (4a)

and

T�† (ω − �,ω|Q) = u2 ∑
k G0(Q − K)�0(K|Q)G(K)

(1 − u ¯̄Gω)(1 − u ¯̄G−ω) + u2 ¯̄Fω
¯̄F †
ω

× 1 − u ¯̄G−ω

1 − u
∑

kG(Q − K)
, (4b)
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FIG. 1. Feynman diagrams for the regular impurity T matrix Tω

and the anomalous impurity T matrix T�† . The crosses denote the
impurities and the dashed lines represent the impurity potential. The
dressed thin solid and thick solid lines represent impurity dressed
noninteracting and interacting fermion propagators, respectively. The
shaded elliptical region denotes self-consistent impurity dressing of
the double pairing vertex structure. See Ref. [4] for details.

where we have used a four-momentum notation, K ≡
(k,iωl),Q ≡ (q,i�n), with ωl and �n being the odd and
even Matsubara frequencies, respectively. Here we have
also defined the impurity averaged Green’s functions ¯̄Gω =∑

k G(K) and ¯̄G−ω = ∑
k G(−K), and the anomalous

Green’s function ¯̄Fω (and its complex conjugate ¯̄F †
ω) as

¯̄F †
ω =

∑
k

F †(K) =
∑

k

��0(K)G0(−K)G(K), (4c)

where �0(K) = �̃k/� is the renormalized pairing vertex
function. For isotropic impurity scattering, Tω and T�† are
independent of momentum.

In the static limit, Q → 0, the expression for T�† becomes

T�† (ω) = u2 ¯̄F †
ω/�

(1 − u ¯̄Gω)(1 − u ¯̄G−ω) + u2 ¯̄Fω
¯̄F †
ω

. (4d)

Unlike the cases of d-wave [4] and p-wave pairing [17]
where ¯̄Fω ≡ 0 so that this gap renormalization vanishes, here
for our s-wave pairing, ϕk = 1, the gap renormalization is
given by

�̃ = � + 	� = ��0(ω), (5)

where

�0(ω) = 1 + niT�(ω). (6)

For the momentum independent vertex function in Eq. (6),
using the expression for T� in Eq. (4d) and the impurity
averaged Gor’kov function in Eq. (4c), �0(ω) can be written
explicitly as

�0(ω) = 1

1 − niu2λ(ω)
, (7)

where

λ(ω) =
∑

k G(−K)G0(K)

Dω

, (8)

with

Dω = (1 − u ¯̄Gω)(1 − u ¯̄G−ω) + u2 ¯̄Fω
¯̄F †
ω. (9)

Finally, the full Green’s function is given by

G(K) = iω̃ − εk

(iω̃ − εk)(iω̃ − εk) + �̃∗
k�̃k

. (10)

B. Analytical continuation and spectral representation

In order to numerically calculate the impurity renormal-
ization functions, the Matsubara frequencies need to be
analytically continued to the real frequencies, iωl −→ ω +
i0+. In general, we have iω̃ �= −iω̃, due to the absence of
the particle-hole symmetry. Therefore, both the positive and
negative frequencies should be analytically continued at the
same time. For l > 0, iω̃l → ωR

+ = ω+ + i	′′
+, and iω̃l →

ωA
− = ω− − i	′′

−. For l′ = −l < 0, iω̃l′ → ωR
− = ω− + i	′′

−
and iω̃l′ → ωA

+ = ω+ − i	′′
+. Here ω± = ±ω − 	′

±, and we
choose ω > 0 and 	′′

± > 0. The superscripts R and A denote
retarded and advanced analytical continuations, respectively.
We obtain

¯̄GR
ω>0 =

∑
k

ω− − i	′′
− − εk

(ω++i	′′+− εk)(ω−−i	′′−− εk)+�2
∣∣�R

0 (ω)
∣∣2 ,

¯̄GR
−ω<0 =

∑
k

ω+ − i	′′
+ − εk

(ω−+i	′′−− εk)(ω+−i	′′+− εk)+�2
∣∣�R

0 (ω)
∣∣2 ,

	R
ω>0 = niu

(
1 − u ¯̄GR

−ω

)
DR

ω

= 	′
+ − i	′′

+,

	R
−ω<0 = niu

(
1 − u ¯̄GR

ω

)
DR

ω

= 	′
− − i	′′

−, (11)

where εk = k2/(2m) − μ with μ being the chemical poten-
tial, and |�R

0 (ω)|2 = �R
0 (ω)�A

0 (ω) = �′2
0 (ω) + �′′2

0 (ω). From
Eq. (7), we have

�R
0 (ω) = �′

0(ω) + i�′′
0 (ω) = 1

1 − niu2λR(ω)
, (12)

where λR(ω) can be calculated from Eqs. (8)–(10). Note
that here the gap renormalization function �0(ω) involves
pairing between four-momenta ±K . Therefore, we have
the symmetry �∗

0 (ω) = �0(−ω). This is different from the
frequency renormalization 	ω.

Equations (11) and (12) form a closed set for solving for
the six variables 	′

±ω,	′′
±ω,�′

0(ω),�′′
0 (ω) as a function of ω.

In comparison with the d-wave case in Ref. [4], here we have
two more extra equations to solve.

For the 3D Fermi gas and the contact impurity potential
we consider here, the real part of ¯̄GR

ω diverges, caused by the
momentum integral over k far away from the Fermi surface.
In the AG theory, this ultraviolet divergence is absorbed into
the chemical potential μ, signifying an additive correction,
δμ, to the chemical potential [12]. Here we adopt a similar
regularization scheme, and replace ¯̄GR

ω with

¯̄GR
ω = ¯̄GR

ω − ¯̄GR
ω=0. (13)

It is easy to show that ¯̄GR
ω=0 is real and thus can be fully

absorbed into a renormalized chemical potential. In the
lowest order (Born limit), Dω ≈ 1 and 	ω ∼ niu

2 ¯̄GR
−ω, so

that our regularization scheme reduces to that of the AG
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theory, with δμ ∼ niu
2 ¯̄GR

ω=0. Beyond the Born limit, the
corrections to 	ω and �0(ω) caused by the regularization are
proportional to 1/ ¯̄GR

ω=0 and 1/( ¯̄GR
ω=0)2, respectively, which are

negligible.
With the renormalization functions 	ω and �0(ω), one can

calculate the pair susceptibility

χ (Q) =
∑
K

�0(K|Q)G(K)G0(Q − K), (14)

whose real and imaginary parts are given respectively by

χ ′(� + i0+,q)

= Im
∑

k

∫ ∞

−∞

dω

2π

{
GR(ω,k)GR

0 (� − ω,q − k)

× [f (ω − �) − f (ω)] + GR(ω,k)GA
0 (� − ω,q − k)

× [1 − f (ω) − f (ω − �)]
}
�R

0 (ω|Q), (15a)

and

χ ′′(� + i0+,q)

=−Im
∑

k

∫ ∞

−∞

dω

2π
GR(ω,k)A0(� − ω,q − k)

× [f (ω − �) − f (ω)]�R
0 (ω|Q), (15b)

where f (ω) is the Fermi distribution function. Here �R
0 (ω|Q)

can be obtained from Eq. (4b) after analytical continuation,
with �R

0 (ω|0) = �R
0 (ω). And A0(ω,k) = −2 Im GR

0 (ω,k) is
the “bare” spectral function.

For Q = 0, we obtain

χ (0) = Im
∑

k

∫ ∞

0

dω

π

[1 − 2f (ω)] �R
0 (ω)

C(ω,k)
, (16)

where C(ω,k) = (ω+ + i	′′
+ − εk)(ω− − i	′′

− − εk) +
�2|�R

0 (ω)|2.
Substituting into the Thouless criterion, 1 + gχ (0) = 0, we

have the gap equation

− m

4πa
=

∑
k

[
Im

∫ ∞

−∞

dω

2π

[1 − 2f (ω)]�R
0 (ω)

C(ω,k)
− 1

2ε0
k

]
,

(17)

where we have used the Lippmann-Schwinger equation (1) to
replace g with scattering length a.

Now the fermion number equation becomes

n = 2
∑

k

∫ ∞

−∞

dω

2π
A(k,ω)f (ω) =

∫ ∞

−∞

dω

π
N (ω)f (ω),

(18)

where A(k,ω) = −2 Im GR(ω,k) is the renormalized spectral
function and

N (ω) =
∑

k

A(k,ω) = −2 Im ¯̄GR
ω (19)

is the density of states. Next we evaluate the pseudogap, which
is given by

�2
pg = −

∑
q

∫ ∞

−∞

d�

π
Im tR(Q) b(�), (20)

where b(x) is the Bose distribution function, and the retarded T

matrix tR(Q) = [χ (� + i0+,q) − χ (0,0)]−1. In actual numer-
ics, we follow Ref. [4] and Taylor expand the inverse T matrix,
t−1(� + i0+,q), which greatly facilitates the computation.

III. NUMERICAL RESULTS

The numerics is done as follows. First, for given (initial)
values of the parameters [μ,Tc,�], the renormalization spec-
trum 	ω and �0(ω) are solved. Next, these renormalization
functions are substituted into the gap, pseudogap, and fermion
number equations and an equation solver is used to obtain
μ(Tc), Tc, and �(Tc) at Tc and gap, order parameter, as
well as μ below Tc. With these newly obtained parameters,
the equation solver will repeat the above process, until self-
consistent solutions are obtained.

A. Impurity renormalization functions and the density of states

In this subsection, we numerically solve the the coupled
equations for [	′

±,	′′
±,�′

0,�
′′
0 ] as a function of ω for given

impurity levels and study the impurity renormalization effects
on the frequency and gap function, as well as the DOS.

We first present in Fig. 2 typical (a) frequency and (b)
gap (pairing vertex) renormalization functions 	ω and �0(ω),
respectively. Shown here are the functions calculated at Tc for a
unitary Fermi gas at an intermediate impurity level ni/n = 5%
and impurity scattering strength u/EF = 20, which is close

0

0.1

Σ ω
 /E

F

-10 -8 -6 -4 -2 0 2 4 6 8 10
ω/Δ

-0.04

-0.02

0

0.02

0.04

Γ 0(
ω

) -
 1

Re

Im

Impurity band

Im
Re

1/kFa = 0
ni/n = 0.05
u/EF = 20

(a)

(b)

FIG. 2. The impurity renormalization functions 	ω and �0(ω) at
Tc, in a unitary Fermi gas at an intermediate impurity scattering level,
with ni = 0.05n, u/EF = 20. Re (Im) denotes the real (imaginary)
part of the functions. There are sharp features near ω = ±�. The
broad peak of 	′′

ω at ω/� ≈ −3 (black curve) indicates the formation
of an impurity band. The horizontal axes are rescaled by the gap �

of a clean system.
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to the unitary scattering limit. The real (Re) and imaginary
(Im) parts of 	ω and �0(ω) are solved at the same time, as
explained above. The frequency axis is plotted in units of the
clean gap � = 0.64EF . From Fig. 2(a), one can easily spot
an impurity band (IB) near ω 
 −3�, which manifests as
a broad peak in 	′′(ω). The peak location is given by the
zero point of ReDω, leading to a peak in �′′

0 (ω) as well,
which shares the same denominator. Interestingly, even for
positive u, the IB may occur on the negative ω side as well,
due to the presence of a nonzero ¯̄Fω in Dω and particle-hole
mixing. Indeed, as one can easily see from Eq. (4a), for large
|u|, the sign of u becomes almost irrelevant. This should be
contrasted to the d-wave case in Ref. [4]. There are sharp
features related to the pairing gap edge at ω = ±�, especially
in the pairing vertex renormalization function �0(ω). With the
impurity configuration in Fig. 2, inside the gap (i.e., |ω| < �),
the imaginary parts of both 	ω and �0(ω) are essentially
zero. In addition, as expected, the impurity renormalization
effects are mostly in the low-frequency regions, and decreases
with a power law of |ω| at sufficient high frequencies. Note
that for clarity, here we plot �0(ω) − 1 in Fig. 2(b), as the
renormalization is small in comparison to its unrenormalized
value, �0(ω) = 1. As a consistency check, we note that
Fig. 2(b) obeys the symmetry �0(−ω) = �∗

0 (ω).
As can be seen from Fig. 2, the real part of the impurity scat-

tering is in general small compared to the unrenormalized part.
For the frequency, 	′

± constitutes only a small perturbation to
ω, so that the main impurity effect resides in the imaginary
parts. Inside the main band (ω > −

√
μ2 + �2), a large 	′′

±
means a large spectral weight loss, whereas outside the main
band, it means a large spectral weight gain. The imaginary
parts increase with the impurity density ni .

For weak scattering in the Born limit, the impurity band
does not exist. Only when the scattering strength |u| becomes
large enough are there significant spectral weight gain outside
the main band. The location of the impurity band (if it exists)
is largely determined by the impurity strength u, whereas the
impurity density ni affects the magnitude of 	′′(ω) and �′′

0 (ω)
and the spectral weight of the impurity band. The impurity
band becomes prominent only when it is located outside the
main band. In the BCS regime, the gap � becomes small. Once
the impurity band is clearly visible, it will appear on the far
left side in a plot such as Fig. 2.

Next we show in Fig. 3 the effects of an increasing impurity
scattering strength u on the DOS N (ω) for 1/kF a = −1.5
in the BCS regime, where the gaps are relatively small,
from the Born limit u/EF = 1 to the unitary scattering limit
u/EF = 100. Here we choose a representative, intermediate
impurity density, ni = 0.05n. We show details of the coherence
peak in the inset. The location ω = −μ indicates roughly the
bottom of the main band. It is evident that weak scatterers
are not effective in destroying the coherence peaks. Indeed,
this is in agreement with the Anderson’s theorem for weak
impurities based on the AG level treatment. However, when the
impurity strength u increases, say, beyond 10, the coherence
peaks become smeared out quickly, and significant spectral
weight is now moved inside the gap. For sufficiently strong u

and high density ni , the coherence peaks will be destroyed, and
the gap will be (partially) filled in so that the superfluidity is
destroyed. This should also be compared with the d-wave case,

-100 -80 -60 -40 -20 0 20 40 60
ω/Δ

0

0.2

0.4

0.6

N
(ω

)
[E
F-1

]

IB ω=-μ

1
2
10
20
50
100

-2 -1 0 1 2
0

0.6

ni = 0.05n
1/kFa = -1.5

u/EF =

FIG. 3. Effects of different impurity scattering strength u, calcu-
lated at Tc, from the Born limit u/EF = 1 to the unitary limit u/EF =
100 on the fermion DOS N (ω) in the BCS regime (1/kF a = −1.5),
with impurity density ni = 0.05n. The impurity band (IB) splits from
the main band (blue curve) for an intermediate value of u/EF = 20.
The inset presents the details of the coherence peaks, sharing the
same axis labels. Here the clean limit gap � ≈ 0.018EF .

where impurities in the Born limit are found to be effective in
smearing out the coherence peaks [4]. Note that as mentioned
earlier, the sign of u is nearly irrelevant for our short-range
s-wave pairing. Therefore, we plot here only curves for
positive u.

One prominent feature in Fig. 3 is the presence of the
impurity band for large u. More interestingly, the location
of the band does not move monotonically to the negative
frequencies with increasing u. In Fig. 3, the IB is well split
from the main band for u = 20 (blue dashed curve), but
partially overlaps with the main band for the larger u = 50
(cyan dot-dashed) and u = 100 (magenta double-dot-dashed
curve). Such a nonmonotonic behavior was not seen for the
d-wave case [4].

Shown in Fig. 4 are the effects of increasing impurity
density ni/n from 0.01 to 0.1 on the DOS N (ω) for 1/kF a =
−1 in the BCS regime, with a fixed u = 10EF . Shown in
the left and right insets are the magnified view of N (ω) for
the coherence peaks and the impurity band below the main
band. Here the IB is well separated from the main band, with
spectral weight given by WIB = 2ni . The increasing impurity
density also serves to smear out and suppress the coherence
peaks. For sufficiently high impurity ni , the superfluidity will
be destroyed. When comparing the coherence peaks for the
ni/n = 0.05 and u/EF = 10 case between Figs. 3 and 4, it
is easy to conclude that a larger gap is more robust against
impurity scattering. Up to ni/n = 0.1, the gap size in Fig. 4 is
roughly unchanged.

As one can easily see, the location of the IB center in Fig. 4
is indeed roughly independent of the impurity density ni .
As mentioned earlier, the location of the IB depends mainly
on u, while ni controls the total weight under the IB. The
dependence on |u| is highly nonlinear. For very small |u|,
	ω ≈ niu, giving the Hartree self-energy. For very large |u|
and � �= 0, Dω = 0 requires ¯̄Gω

¯̄G−ω + ¯̄Fω
¯̄F †
ω = 0, which
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FIG. 4. Effects of impurity scattering on the fermion DOS in the
BCS regime (1/kF a = −1), with impurity scattering strength u =
10EF and impurity density varying from ni = 0.01n to ni = 0.1n.
Detailed structure of N (ω) near the gap edge, and the impurity band
are shown in the left and right insets, respectively. Here � ≈ 0.085EF

is the gap value in the clean limit, and all data were calculated at Tc.

does not seem to have a solution. Therefore, a separate IB
exists only for intermediate values of |u|, which may have to
do with the size of the gap [20].

Given the particle number constraint, Eq. (18), it is easy to
understand that, when an IB exists (below the main band), the
fermion function f (ω) = 1 within the IB, so that WIB = 2ni .
Obviously, this spectral weight comes from the main band.
The IB curves in Fig. 4 suggests that, to the zero-order
approximation, the IB band width grows simultaneously with
the curve height, leaving both proportional to n

1/2
i .

In Fig. 5 we show the effects of varying impurity scattering
strength u on the DOS in the (a) unitary and (b) BEC regimes,
respectively, with impurity density ni/n = 0.05. The curves
shown here were calculated at Tc. With substantially larger
gaps, the DOS in these two regimes are very robust against
impurity effects. Indeed, only minor smearing of coherence
peak can be found in the unitary case in Fig. 5(a). For the
BEC case with 1/kF a = 1 in Fig. 5(b), the chemical potential
μ/EF = −0.80 is negative, so that there exists no underlying
Fermi surface. As a result, there are no coherence peaks in
the clean limit. The spectral weight below the bottom of
the main band is mainly a result of particle-hole mixing in
both cases, with a power-law tail N (ω) ∝ |ω|−3/2 towards
ω → −∞. Nevertheless, signatures of impurity band on top of
this power-law tail can be seen for u/EF = 10 (green dotted)
and 20 (blue dashed curves). In addition, it is clear that a larger
u is more effective in moving the spectral weight to within the
gaps. Though the DOS in these two regimes is not as sensitive
to impurities as in BCS regime, the finite 	(ω) and �0(ω)
as well as the finite fermion pair lifetime (caused by impu-
rities) may also affect the superfluid Tc and other superfluid
properties.

Figures 4 and 5 show that nonmagnetic impurity scattering
is rather ineffective in destroying the excitation gap. It
also means that the broadening of the spectral function
cannot be regarded as a constant. Instead, it has a strong

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

0.6

N
( ω

)
[ E
F-1

] 2
20
100

-6 -4 -2 0 2 4 6
ω/Δ

0

0.1

0.2

0.3

N
(ω

)
[ E
F-1

]
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-4 -2 0
0

0.01

0.02

1/kFa = 0
ni = 0.05n

1/kFa = 1

(a)

(b)

IB

u/EF =

u/EF =

FIG. 5. Effects of impurity scattering on the fermion DOS at
(a) 1/kF a = 0 and (b) 1, corresponding to unitary and BEC cases,
respectively, with the impurity density ni = 0.05n, for different impu-
rity scattering strength u varying from the Born limit u/EF = 2 to the
unitary limit u/EF = 100. Calculated at Tc, here (μ/EF ,�/EF ) =
(0.62,0.64) and (−0.80,1.33), and the main band bottom is located at
ω/� ≈ −1.4 and 1.17 in the clean limit for (a) and (b), respectively.

frequency dependence. Inside the gap, the broadening is
quickly suppressed to zero due to the absence of DOS within
an s-wave gap. This is because the energy conservation for the
impurity scattering process can barely be satisfied within the
gap.

B. Effects of impurities on the behavior of Tc in s-wave
BCS-BEC crossover

In this subsection we present the effects of impurities
on Tc throughout BCS-BEC crossover. Plotted in Fig. 6 is
the behavior of Tc as a function of 1/kF a from the BCS
through BEC regimes. For clarity, here we show only one
case with a representative impurity density ni = 0.05n in the
unitary scattering regime, u/EF = 100 (red solid curve). For
comparison, we also show the Tc curve in the clean system
(black dotted line) as well as the mean-field result (blue dashed
line). As one can expect from previous figures, Tc is suppressed
by impurity scattering. Furthermore, the relative suppression
is much stronger in the BCS regime than in the unitary and
BEC regimes. In the deep BCS regime, Tc is suppressed
down to zero by strong impurities, leading to an effective
power-law dependence of Tc on 1/kF a in the BCS regime
[19]. In the pseudogap or crossover regime, the maximum
Tc now shifts to the BEC side of the Feshbach resonance
(where 1/kF a = 0) [21]. This result is somewhat similar to
the shift of the Tc curve by particle-hole fluctuations, [22]
suggesting that even “nonmagnetic” impurities may to certain
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FIG. 6. Behavior of Tc throughout the BCS-BEC crossover in the
clean limit (black dotted line) and in the presence of strong impurity
scattering with density ni = 0.05n and strength u = 100EF (red solid
line). For comparison, also plotted is the mean field value of Tc with
the impurities (blue dashed line).

extent have a pair-breaking effect. On the other hand, impurity
scattering and particle-hole fluctuations are very different. In
the BCS regime, while the latter simply reduces Tc by a factor
of 0.45, here strong impurities in the unitary regime can destroy
superfluidity completely whereas weak impurities in the Born
limit (not shown) may leave Tc intact. The result shown in
Fig. 6 should be contrasted with the d-wave case [4]. Due to
the sign change of the order parameter across the nodes in the
momentum space, impurity scattering is much more effective
in destroying Tc throughout the entire BCS-BEC crossover.
For example, Anderson’s theorem for weak impurities only
works for s-wave superfluids as we study here.

The complete destruction of superfluidity in the BCS
regime in Fig. 6 may indicate that the ratio 2�(0)/Tc will
diverge where Tc vanishes, if �(0) does not at the same
time. We plot in Fig. 7 this ratio as a function of 1/kF a for
unitary scatterers with u/EF = 100 at a density ni/n = 0.05
in the BCS through unitary regimes. For the entire curve, the
ratio is substantially higher than the clean limit BCS ratio,
3.52. This reflects the fact that the gap does not decrease
as fast as Tc does with impurity scattering. Indeed, when
Tc is suppressed towards zero along the (red) solid line in
Fig. 6 with decreasing interaction strength, the ratio increases
dramatically and eventually diverges when Tc vanishes. It
indicates that the gap does not vanish when this happens. This
should be compared with experimental results in Ref. [5]. To
see this more clearly, we plot in the inset of Fig. 7 the DOS
at 1/kF a = −2.2 (black solid line), which is on the weaker
coupling side of point where Tc vanishes. For comparison,
we also show in the inset the DOS in the corresponding
clean limit (blue dashed line). The inset demonstrates that
the gap does not close even though the coherence peaks are
strongly suppressed, indicative of an insulating state due to
pairing. The presence of such a spectral gap suggests that there
exists a quantum critical superconductor-insulator transition
across the point where Tc changes from a finite value to zero.

-2 -1.5 -1 -0.5 0
1/kFa
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10

15

20

2Δ
(0

)/T
c
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ω/Δ
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)
[E

F-1
]

clean
ni=0.05n u/EF = 100

1/kFa= -2.2

FIG. 7. The ratio 2�(0)/Tc as a function of 1/kF a in the BCS
through unitary regimes with an impurity density ni/n = 0.05.
Plotted in the inset is the zero T DOS in the presence of strong
impurity scattering with density ni = 0.05n and strength u = 100EF

(black solid line) at 1/kF a = −2.2, where Tc already vanishes. For
comparison, also plotted in the inset is the corresponding DOS in
the clean limit (blue dashed line). Here the inset and the main figure
share the same legends.

Therefore, the loss of superfluidity is mainly caused by the
destruction of phase coherence, while the pairing field survives
as the impurity density increases. This is consistent with the
picture of localization of preformed Cooper pairs in disordered
superconductors in Ref. [5].

Next, we study the effects of impurity scattering strength
on Tc. Shown in Fig. 8 is Tc as a function of u/EF , from
−∞ to +∞, for a unitary Fermi gas, with a representative
impurity density ni = 0.05n. Here the impurity strength u

spans from the Born limit to the unitary limit, for both attractive
and repulsive scatterers. The Tc value in the u → 0 limit is
slightly higher than the clean system value, T 0

c /TF ≈ 0.256

-100 -50 0 50 100
u/EF

0.18

0.2

0.22

0.24

0.26

T c
/T
F

Unitary limitUnitary limit

ni = 0.05n

1/kFa = 0

Born limit

FIG. 8. Superfluid transition temperature Tc of a unitary Fermi
gas as a function of impurity scattering strength u, from the Born
limit through the unitary limit, with an impurity density ni = 0.05n.
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[22], due to the subtraction of ¯̄GR
ω=0 from ¯̄GR

ω in Eq. (13). In
the Born regime, Tc decreases slowly with increasing |u|. Once
|u| increases further away from the Born limit, Tc decreases
rapidly (as γ ∝ u2) at first, then slows down and eventually
approaches a constant in the unitary scattering limit. Such
asymptotic behavior is indeed consistent with the expressions
for 	ω and �0(ω) in Eqs. (11) and (12), from which one
can readily show that in the large |u| limit both 	ω and
�0(ω) becomes essentially u independent. The suppression of
superfluidity and Tc by strong impurity scattering is basically
caused by two effects. On the one hand, strong impurity
scattering leads to a finite lifetime of fermionic quasiparticles,
and thus depletes DOS in the coherence peak and transfers
spectral weight to the impurity band and subgap states; such
a spectral weight relocation is detrimental to superfluidity. On
the other hand, the impurity scattering also causes a finite
lifetime of fermion pairs. While the former is dominant in the
BCS regime, the latter dominates the BEC side.

Note that the Tc curve in Fig. 8 is almost symmetric about
u = 0, consistent with Eqs. (4). This should be contrasted to
the case of d-wave superfluidity, where such a symmetry is
clearly absent due to vanishing ¯̄Fω [4]. The small difference in
Tc between u/EF = ±100 indicates that a substantially higher
|u| is needed to approach the actual infinite u limit, which is
not surprising. Nevertheless, the independence of Tc on the
sign and value of u in the infinite |u| limit is guaranteed by
Eqs. (4).

C. Gaps and the superfluid density in the presence of impurities

Now we investigate the transport properties of a Fermi gas
in the presence of impurities. The superfluid density can be
derived using a linear response theory. Following Ref. [4], for
s-wave pairing with ϕk = 1 in three dimensions, we obtain

ns

m
= 4

3
�2

sc

∑
k

∫ ∞

−∞

dω

π
Im(F̃ A(ω,k))2( �∇εk)2

∣∣�R
0 (ω)

∣∣2
f (ω),

(21)

where F̃ A(ω,k) = 1/C∗(ω,k), different from F (K) by a factor
�̃k, and C(ω,k) is given in Sec. II B.

First we plot in Fig. 9(a) the gaps and the order parameter
�sc as a function of T/T 0

c in a unitary Fermi gas, where
T 0

c is the clean system superfluid transition temperature. We
choose strong impurities in the unitary limit, with u = 100EF ,
and calculate for three representative impurity densities of
ni/n = 0 (clean, black solid curve), 0.03 (red dotted curve),
0.05 (blue dashed curve), respectively. For clarity, we show
the pseudogap �pg and the total excitation gap � only for the
ni/n = 0.05 case. It is easy to conclude that unitary impurities
significantly suppresses both Tc and the gaps, including the
order parameter. In addition, the suppression is more effective
for Tc than for the gaps. This can also be seen from the ratio
2�(0)/Tc as a function of ni/n, as shown in the inset; the
ratio initially increases rapidly with ni , and drops slightly after
reaching a maximum. Such a nonmonotonic and nonconstant
behavior signals the breakdown of Anderson’s theorem for
strong impurities. We note here that this ratio is rather different
from the mean-field value of 3.52, due to primarily the presence
of a pseudogap at Tc besides the impurity effects.
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FIG. 9. (a) Superfluid gaps and order parameter �sc and
(b) superfluid density ns/n in a unitary Fermi gas, as a function
of T/T 0

c , for different densities of impurity, including the clean limit
(black solid line) and ni/n = 0.03 (red dotted) and 0.05 (dashed
lines), with scattering strength u/EF = 100. For clarity, we show the
total gap �/EF and the pseudogap �pg/EF only the ni/n = 0.05
case. Shown in the inset is a continuous evolution of the corresponding
ratio 2�(0)/Tc vs ni/n. Here T 0

c /TF = 0.256 is the Tc in the clean
limit.

With the calculated gap parameters, we show the cor-
responding calculated superfluid density as a function of
temperature for the above the three impurity densities in
Fig. 9(b). As with the order parameter, the superfluid density is
suppressed effectively by impurities in the unitary limit. While
the reduction of ns increases with ni , nonlinearity is clearly
present. Detailed study of ns versus ni at zero T is shown in
Fig. 10. Similar to the d-wave case on a lattice [4], here we also
find that for unitary scatterers (u = 100EF ), ns drops initially
very fast with ni and then slows down as ni increases further. In
contrast, for Born scatterers (u = 3EF ), ns decreases roughly
linearly with ni . It should be noted that due to the large gap
size at unitarity, it takes a large ni/n in both cases to destroy
the superfluid completely. While the theory may break down
at such a large impurity density, it does indicate the robustness
of an s-wave unitary Fermi gas against impurity scattering, as
compared to a weak-coupling BCS case (see, e.g., Fig. 6) or
the d-wave case shown in Ref. [4].

Finally, we note that it requires some effort to realize
a homogeneous Fermi gas in the presence of impurities.
First, atomic Fermi gases are always confined in a trapping
potential. The impurities should be confined within this
trapping potential as well. To improve the situation, one may
use a combination of different lasers to create a rather flat
trap to make the system as close to homogeneous as possible.
Fortunately, flat traps have been realized in experiment recently
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FIG. 10. Fractional superfluid density ns/n in a unitary Fermi
gas at T = 0 as a function of the relative impurity density ni/n, for
both unitary (blue solid) and Born (black dashed curves) scatterers.

[23]. Second, while the impurities may be introduced by
doping with heavy atoms, a more elaborate treatment may
need to consider the finite mass of these impurity atoms.
In this way, a different impurity scattering Hamiltonian will
have to be used. Apparently, the impurity strength depends
on the doped atoms, and cannot be easily tuned continuously
[24]. At the same time, one should avoid very high densities
of the doped atoms, for which possible complications such
as interactions between impurities, etc., may arise. Third, an
alternative to realize impurities is to create (pseudo)randomly
distributed optical speckles in the trap [11]. In this case, these
speckles may be regarded as infinitely heavy impurities so that
the scattering of atoms is elastic, as assumed in our theory.
Nevertheless, the present theory can be regarded as a first step

toward a more realistic treatment of a real Fermi gas system
with random impurities [25]. Spin-flip (i.e., “magnetic”)
impurity scattering will also be considered in future works.
Furthermore, we shall also include the particle-hole channel
contributions [22] as well.

IV. SUMMARY

In summary, we have studied the effects of impurities on
the s-wave BCS-BEC crossover in ultracold atomic Fermi
gases, including the impurity effects on frequency and gap
renormalizations, fermion density of states, superfluid Tc,
as well as finite temperature gaps and superfluid density.
Our results reveal that while the system is less sensitive to
impurities in the Born limit, strong impurities in the unitary
scattering regime cause a much stronger renormalization
for both the frequency and the gaps throughout the entire
BCS-BEC crossover, leading to a finite lifetime of Bogoliubov
quasiparticles and fermion pairs, and hence a significant
suppression of the superfluid Tc and superfluid density. The
Anderson’s theorem breaks down except for weak impurities
in the BCS regime. Indeed, in the weak-coupling BCS regime,
where the gap is small, strong impurities at moderately high
densities may readily destroy the superfluidity and suppress Tc

down to zero, leading to an effective power-law dependence on
the pairing strength. Such a BCS-BEC crossover phenomenon
in the presence of impurities may be realized experimentally by
introducing atoms of foreign elements or using optical speck-
les, with Feshbach resonance in Fermi gases of 6Li or 40K.

ACKNOWLEDGMENTS

This work was supported by NSF of China (Grant
No. 11274267), the National Basic Research Program of
China (Grants No. 2011CB921303 and No. 2012CB927404),
and NSF of Zhejiang Province of China (Grant No.
LZ13A040001).

[1] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, Phys. Rep. 412, 1
(2005).

[2] A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 35,
1558 (1958) [Sov. Phys. JETP 35, 1090 (1959)].

[3] S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki,
S. Uchida, and J. C. Davis, Nature (London) 403, 746
(2000).

[4] Q. J. Chen and J. R. Schrieffer, Phys. Rev. B 66, 014512
(2002).
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