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It is often claimed that among the strongest evidence for preformed-pair physics in the cuprates are the
experimentally observed large values for the diamagnetic susceptibility and Nernst coefficient. These findings are
most apparent in the underdoped regime, where a pseudogap is also evident. While the conventional (Gaussian)
fluctuation picture has been applied to address these results, this preformed-pair approach omits the crucial
effects of a pseudogap. In this paper we remedy this omission by computing the diamagnetic susceptibility and
Nernst coefficient in the presence of a normal state gap. We find a large diamagnetic response for a range of
temperatures much higher than the transition temperature. In particular, we report semiquantitative agreement
with the measured diamagnetic susceptibility onset temperatures, over the entire range of hole dopings. Notable
is the fact that at the lower critical doping of the superconducting dome, where the transition temperature vanishes
and the pseudogap onset temperature remains large, the onset temperature for both diamagnetic and transverse
thermoelectric transport coefficients tends to zero. Due to the importance attributed to the cuprate diamagnetic
susceptibility and Nernst coefficient, this work helps to clarify the extent to which pairing fluctuations are a

component of the cuprate pseudogap.
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I. INTRODUCTION AND OVERVIEW OF RESULTS

Establishing the origin of the cuprate pseudogap is a long-
standing problem in the field of high-7, superconductivity [1].
Atits heart is the central issue of whether this pseudogap arises
from precursor superconductivity or from an alternative order
parameter. In support of this latter viewpoint is an increasing
number of experiments showing evidence for (finite-range)
charge-density-wave order [2,3]. With the application of a
magnetic field this order appears to be stabilized [4], although
there is evidence the pseudogap itself remains intact.

On the other hand, there is also mounting support for
the first viewpoint: the origin of the cuprate pseudogap is
a precursor-pairing scenario. The conventional fluctuation
formalism [5], used to support preformed-pair physics in the
cuprates, provides a natural explanation for the anomalously
large diamagnetic susceptibility and large Nernst coefficient
observed above T, [6,7]. However, this standard fluctuation
theory is a weak-fluctuation approach that largely ignores the
substantial normal state gap, which is of fundamental interest
here and observed in a variety of experiments. As a result it is
not expected to be valid in the doping regimes where such a
gap is present.

This leads to the challenge addressed in this paper of going
beyond the weak-fluctuation formalism within a precursor-
pairing approach. Here we compute the diamagnetic suscepti-
bility and transverse thermoelectric coefficient by applying a
BCS-BEC crossover [8—10] scheme above T,. This crossover
scenario, built on a natural generalization [11] of the BCS
ground state, incorporates the variation from weak to strong
attractive interactions between the underlying fermionic con-
stituents. In this context, Leggett [12] states in his summary
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article about the copper oxide superconductors, “The small size
of the cuprate pairs puts us in the intermediate regime of the
so-called BEC-BCS crossover.” It is important to emphasize at
the outset that the pseudogap phase for the d-wave cuprates is
also well outside the BEC regime [8,13]. Rather, the pseudogap
phase represents an intermediate state between the BCS and
BEC regimes.

There is a substantial body of literature on the diamagnetic
susceptibility and Nernst coefficient in the cuprates. The early
seminal experiments [6,14] first associated the Nernst response
with vortex excitations. The diamagnetic susceptibility [7] was
similarly interpreted as reflecting some form of normal state
Cooper pairing. More recent experimental emphasis has been
on the interplay of vortex excitations with charge-density-wave
order [15,16]. While other alternatives have been contemplated
[17], a large number of theories addressing these experi-
ments have been based on a preformed-pair formalism. This
preformed-pair approach is associated with superconducting
fluctuation contributions [5] to the diamagnetic [18] and Nernst
[19] responses.

However, in the context of transport the preformed-pair sce-
nario has dealt almost exclusively with a weak-fluctuation for-
malism [5], considering only the lowest order fluctuation con-
tributions to the electromagnetic (EM) response. In the absence
of impurities, these consist of two density of states (DOS), one
Maki-Thompson (MT) and two identical Aslamazov-Larkin
(AL) diagrams. For the diamagnetic susceptibility and the
Nernst coefficient, it is found that the singular contribution
arises from the Aslamazov-Larkin diagrams [5,20,21]. These
results can be equivalently derived from Gaussian-fluctuation
theory, which is associated with time-dependent Ginzburg-
Landau theory [22].
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There is also related work based on phase-only fluctuations
[23] within a two-dimensional BKT-like theory; phase fluctu-
ations are thought to dominate their amplitude counterparts in
the vicinity of 7, [24], and one presumes here that mobile vor-
tices are the fundamental constituents. Another preformed pair
approach [25], based on the so-called “Hartree” approximation
to Ginzburg-Landau theory, has been used with some success to
address diamagnetism in the cuprates. It should be noted there
is an established relation [26] between this phenomenological
Hartree scheme and the present microscopic approach in the
limit that the pairing gap at the transition is small.

Stronger pairing effects in transport have been included in
differing contexts [28—30], all of which build on a fluctuation
scenario. The authors of Ref. [28] introduced pseudogap self-
energy effects in the standard Aslamazov-Larkin diagrams by
correcting the so-called EM “triangle” vertex, which represents
an effective bosonic EM vertex. In Secs. V and VI of the paper
this approach is discussed in more detail, where it is noted
that correcting this vertex without simultaneously correcting
the pair propagator is inconsistent. An alternative diagram-
matic approach was studied in Ref. [29], which investigated
the diamagnetic susceptibility associated with the fermionic
quasiparticles in the presence of a pseudogap. This approach
misses the essential physics of the bosonic fluctuations which,
as Sec. V shows, are found to be the singular contribution.

Finally, the authors of Ref. [30] introduced an extension
of the Gaussian-fluctuation formalism [22] by computing the
transport properties of independent, noncondensed bosons in
contact with a Leggett-Caldeira particle bath. This bath leads
to an interconversion with the bosons so that the boson number
is no longer fixed. The bath approach is a phenomenological
treatment of transport in which the reservoir yields finite-
lifetime effects, and simulates the role of paired fermions or
composite bosons.

In contrast, in this paper we present a microscopic theory
of electromagnetic and thermoelectric transport, based on
a fluctuation formalism which more naturally includes the
contribution of a pseudogap associated with fermion pairs.
While the standard weak-fluctuation formalism relates in some
ways to the physics of the present paper, we emphasize that
widespread pseudogap effects are absent in the associated
correlation functions; this is because they involve only non-
interacting fermionic Green’s functions.

These observations are illustrated in the top row of Fig. 1,
which provides a more graphic physical picture of the
fluctuation-BCS, the pseudogap, and the BEC regimes. Below
we refer to the fluctuation-BCS limit as the “BCS limit.”
Strictly speaking, it goes beyond mean-field BCS theory and
serves as the basis for the conventional fluctuation picture.
In the intermediate, or pseudogap, regime, the system is
fermionic with a positive chemical potential u > (Ag,T,),
where A is the fermionic excitation gap at 7 =0. An
important fact, however, is that at the onset of condensation
there is a nonzero gap (pseudogap) in the fermionic excitation
spectrum. The distinction between BCS and BEC leads to
different behavior of the pair propagator (or ¢ matrix) [27],
t(g), associated with composite bosons. Plotted in row (a)
of Fig. 1 is —Im #(€2,q = 0) slightly above T, illustrating
the differences in the composite boson propagator in these
regimes.
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FIG. 1. Evolution from the weak-coupling BCS through the
pseudogap to the strong-coupling BEC regimes for the excitations.
The figure shows the corresponding [row (a)] pair excitation spec-
trum —Im#(Q2,q = 0), [row (b)] imaginary part of the fermionic
self-energy —Im X (w,k), and [row (c)] fermionic spectral function
A(w,k) at the Fermi level for T slightly above T,. This figure is taken
from Ref. [27].

Atsmall four-vector g* = (£2,q), the inverse (retarded) pair

propagator can be generically written as

17 (q) ~ ZIkQ — ¢ /2Mpair) — |ppair] +i0Q1. (1.1)
Here the coefficients x and I' are real and dimensionless.
The real part defines an effective pair mass, M., and a
pair chemical potential, f4y,ir o 71(0), whereas the imaginary
part, o I'Q2, represents the diffusive contribution to the inverse
pair propagator [31]. Our final results show that the overall
coefficient of proportionality, Z, is irrelevant; only the ratio
between 1/Mp,ir and fipqir (as well as the ratio «/I') appear.
In the BCS (BEC) limit the parameter I', which reflects the
damping of the pairs, is very large (small) compared to «.
Here we presume this damping derives from interactions with
the fermions. In the conventional fluctuation literature [5] the
fluctuating Cooper pairs are diffusive with a purely imaginary
dispersion, so that x = 0 and I" o< 7 /(87T,). In general, k # 0
reflects particle-hole asymmetry.

From a microscopic point of view the pair propagator of
the weak-fluctuation theory depends on two bare Green’s
functions. However, in the presence of a pseudogap one or
more dressed Green’s functions, which contain the pairing
self-energy associated with the pseudogap, enters into the
pair propagator. This leads to a different pair lifetime, mass,
and chemical potential compared to the weak-fluctuation case.
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These distinctions then appear in response functions and in the
associated transport coefficients.

It is useful in this overview section to present the central
results of this paper for the diamagnetic susceptibility, Xgi,:

_ kB T(2€)2 l/(szair)
0= " 24 h | Tl

and similarly the transverse thermoelectric coefficient (related
to the Nernst coefficient), &y:

~  BkpTé® |1/Q2Mpyir) (3;<2 + F2>
Qyy = .
YUo2akte\ |itparl r?

These expressions, obtained for three-dimensional (3D) clean
systems, are valid in the small |ppaic| limit: (| pepair] <K T¢).
The size of the diamagnetic susceptibility and transverse ther-
moelectric coefficient are determined by two key parameters:
the pair mass M, (related to the inverse coherence length,
often appearing as an inverse diffusion coefficient in the weak-
fluctuation literature) and the pair chemical potential f4pqir-

The rest of this paper is organized as follows. In Sec. II
the pair propagator and associated properties of the normal
state are characterized as the pairing varies from weak to
strong attraction. Sections III and IV show how our pseudo-
gap formalism is implemented in the diamagnetic response,
while in Sec. V the diamagnetic susceptibility is calculated
in the small-|ftpai| limit. The analogous calculations for the
transverse thermoelectric coefficient are discussed in Sec. VI.
Our numerical results for the phase diagram and diamagnetic
susceptibility onset temperature are then presented in Sec. VII
along with a comparison with experiment. Finally in Sec. VIII
our conclusions are outlined.

(1.2)

(1.3)

II. PAIR-PROPAGATOR FORMALISM

In this section we give a brief overview of the pair-
fluctuation formalism underlying the work in this paper. For
a more extensive and thorough review, see Refs. [9,10]. At
the heart of any calculation incorporating bosonic degrees of
freedom into diamagnetic susceptibility and general electro-
magnetic transport is the explicit form of the pair propagator.
We emphasize that the BCS mean-field gap equation provides
important intuition about the form this fluctuation propagator
should take. In the standard BCS mean-field theory the pairing
gap parameter is exactly equal to the order parameter. More
generally, a nonzero pairing gap will be present at the onset
of condensation. Importantly, this pairing gap A must be
continuous across 7, in order to properly describe a second-
order phase transition. This normal state, in which the pairing
gap persists, represents the pseudogap phase.

We begin with a generic system of electrons characterized
by an effective, short-range pairing interaction with a grand
canonical Hamiltonian

H — I‘LN ZZEkCltaCka
ko

P
D Vi Cra1 ka2 Cokera2i st
kk'q

2.1)

where cla (¢y,) creates (annihilates) an electron in the momen-
tum state k with spin o, and & is the energy dispersion mea-
sured with respect to the fermion chemical potential i. For the
cuprates, &g = 21(2 — cosky — cosky) + 2t,(1 — cosk;) — u,
where ¢ and ¢, are the in-plane and out-of-plane hopping
matrix elements, respectively, with #, < t. The d-wave pairing
interaction is given by Vi x = g, ¢, With g < 0 and ¢ =
cos ky — cos k, with lattice constant @ = 1. In the continuum
case, & = k?/(2m) — u with m as the fermion mass. We
set i = ¢ = kp = 1 and restore these units at the end of the
calculation. In what follows below, it is convenient to introduce
the four-vector k* = (iw,,K), where w, is a fermionic Matsub-
ara frequency. Similarly, we define a generalized four-vector
summation ), =T Y, > .

The bare (inverse) single-particle Green’s function, G, L),
is given by G, 1(k) = iw, — &. The full Green’s function,
G(k), is determined from the bare Green’s function and self-
energy, 2 (k), through Dyson’s equation: G (k) = G, 1(k) —
% (k). In BCS mean-field theory, the self-energy has the form

T(k) = —A*Go(—h)gy = Ay [(iw, + &). (2.2)

Important here is the value of the pairing gap A which
is constrained by the BCS mean-field gap equation. In the
condensed phase [9] this can be written in a suggestive way as

g+ ) GWGo(—kpi=0. T<T. (23
k

Thus the gap equation in Eq. (2.3) can be viewed as a
generalized Thouless criterion [32] for a pairing instability

of the type t~!(¢ — 0) = 0. This implies that the (inverse)
¢ matrix appropriate to BCS theory is

@ =g" + ) GhGo(—k + 9)pi_g -
k

2.4

Here g = g* = (i2,,,q) (before analytic continuation), where
2,, is a bosonic Matsubara frequency.

It follows directly from the gap equation in Eq. (2.3) that
the ¢ matrix associated with BCS theory involves one bare and
one dressed Green’s function. This asymmetric form, while
perhaps surprising, has been derived in the literature [33]
from a microscopic approach. The method implemented by
Kadanoff and Martin was to study the equations of motion of
the correlation functions, and use these to set up integral con-
straints on the many-particle Green’s functions. The equation
of motion for the single-particle Green’s function depends on
the two-particle Green’s function, which in turn depends on
the three-particle Green’s function and so forth.

In order to truncate this infinite series of equations,
Kadanoff and Martin considered a particular pairing scheme
that approximates the three-particle correlation function solely
in terms of the single-particle and two-particle Green’s func-
tions. In this approximation the relevant contributions are
pairing interactions between fermions of opposite spins and
momenta. From the integral equation for the two-particle
Green'’s function, one can then derive the form of the r matrix
given above. It is important to emphasize that the asymmetric
combination of Gy and G in the ¢ matrix is essential to
reproduce BCS theory. This shows that the presence of one
dressed and one bare Green’s function follows naturally from
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this methodology. It is not an arbitrary choice. A review of
the Kadanoff and Martin method can be found in Appendix A.
Further details can also be found in Refs. [27,34].

We emphasize that this  matrix should be interpreted as the
propagator for noncondensed fermion pairs associated with
q # 0. At and below the condensation temperature the low-
momentum noncondensed pairs become gapless [35] and thus
acquire zero chemical potential. Since (g = 0) x Mpair» it
follows that

tgq=0)=o00, T <T.. (2.5)
Thus the gap equation [Eq. (2.3)] can be equivalently written
as a BEC condition:

Mpair = 0, TLT, (26)
provided the self-energy appearing in G(k) is given by the
usual BCS form [Eq. (2.2)]. All of this general formalism is
consistent with the generic form for the pair propagator in
Eq. (1.1).

Now we connect the physics below T, to that above 7. In
most #-matrix theories the associated fermionic self-energy is

(k) =Y _H@)Go(—k + Q)pp_y)n- 2.7)
q

The quantity #(q) is strongly peaked about g =0 as the
transition is approached from above because |itpair| is small;
this allows the normal state self-energy to be written as X (k) ~
—AZGO(—k)goﬁ, with

AP==31g). T>T.
q

2.8)

With this result, the transition temperature 7, can then be
computed. This is determined as the temperature at which the
normal state value of A, given in Eq. (2.8), intersects with its
value obtained at or below 7, found from Eq. (2.3).

This physical picture is more complicated than in BCS
mean-field theory because of the presence of a nonzero
pseudogap at T,, which must be continuous at a second-order
phase transition. The parameters appearing in Eq. (1.1), such
as the pair mass My, pair chemical potential ftp,;r, and pair
damping o I', can then be deduced from Eq. (2.4). It is crucial
to include a self-consistently determined fermionic chemical
potential using the number equation n = 2) ", G(k). One can
also define the pairing onset temperature 7* most naturally
as the temperature at which A vanishes, as determined, for
example, from the mean-field gap equation. In this way a phase
diagram for 7, and T*, as a function of band structure and inter-
action strength g, can be computed. This simultaneously yields
the diamagnetic susceptibility and transverse thermoelectric
coefficient via Egs. (1.2) and (1.3). These limiting forms are
derived in Secs. V and VI, while in Sec. VII of the paper the
complete diamagnetic susceptibility expression is numerically
calculated.

Finally, it is useful to contrast these pseudogap effects with
the pair propagator for the more conventional weak-fluctuation
theory. Aslamazov and Larkin [20] have written down the
counterpart to Eq. (2.4) for the weak-fluctuation case, which

in the d-wave limit is given by

(@ =8"+ ) Gol)Go(—k + Qig_q 2
k

(2.9)

In the pair propagator all fermionic Green’s functions are bare
and no pseudogap is present. In contrast to the strong-pairing
limit, the above ¢ matrix is associated with diffusive rather than
propagating dynamics. Referring to Eq. (1.1), the parameter
k=0, |ppair]| (T = T¢), T o w/(BT), and 1/2Mpyir) x D
(the diffusion constant).

Inthe x — 0limit, instead of weakly damped and propagat-
ing noncondensed pairs, one has diffusive pair dynamics. This
weak-attraction case, and its consequences for the fermionic
properties [via Eq. (2.7)], is presented in the first column in
Fig. 1. One can contrast the difference in behavior with that
for the pseudogap case shown in the second column. Here the
pairing strength has been increased relative to the first column
and the associated ¢ matrix acquires a significant propagating
term (second row) with broken particle-hole symmetry.

The third row of the second column shows that the fermionic
self-energy, deduced from Eq. (2.7), is reasonably well de-
scribed by Eq. (2.2). Furthermore, the fermionic spectral func-
tion in the last row now has a double-peaked form associated
with the presence of a normal state gap. The third column
in Fig. 1 is appropriate to the strong-attraction case, I’ < «,
where the system is in the BEC regime. We reiterate that this is
well outside [8] the physical parameter range associated with
the d-wave paired cuprates.

To maintain clarity in the equations, in the following
sections we present our theoretical derivations for short-range
s-wave pairing in the 3D continuum with g, = 1. However,
our numerical results are for the quasi-2D d-wave case.

III. ELECTROMAGNETIC RESPONSE

We begin with a discussion of diamagnetic susceptibility,
which represents the orbital current response to an external
magnetic field. Here we use linear response theory to derive
its Kubo formula. In the presence of a weak and externally
applied EM vector potential, A*(g), the EM currentis j*(g) =
K" (q)A,(g). The response kernel is K*"(q) = P"*"(q) +
(n/m)é*(1 — §,,0), with 1 and v not summed over. Here n
is the particle number, determined from n = 2 Zk G(k), and
P*(q) are the EM response functions given by [36]

PY(q) =2¢* ) Gk (ki k)G )y (k- ky). (B.1)
k

Here e is the fermion charge. The bare EM vertex is i, (k4 ,k—)
and the full EM vertex is rg (ky,k_)[37],whereky =k £ q/2.
The prefactor of 2 arises due to spin degeneracy for a spin-%
system of fermions.

An important relation between the full Green’s function and
the full EM vertex is the Ward-Takahashi identity (WTI) [38]:

quTh ks ko) = G (ky) — G (ko)
= quythi k) + S(k_) — (k).

The bare WTI, g, v (ky,k ) = Gy (k) — Gy ' (k_), is sat-
isfied by the bare EM vertex yj (k4,k—) = (1,k/m). For a
neutral (charged) system with a global U(1) symmetry, the

3.2)
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corresponding conservation law is particle number (charge)
conservation. The analysis here is for neutral superfluids.
Satisfying the WTI is thus an important constraint which
enforces conservation of global particle number. Applying the
WTTI to the response kernel K*"(g) yields g, K*"(g) = 0; this
is the statement of “gauge invariance.”

In the ¢ — O limit, the WTI implies that 'y (k.k) =
Ve (k,k) — 3% (k)/dk,. Diagrammatically this relation asserts
that the full EM vertex is determined by performing all bare
EM vertex insertions in the self-energy diagram. In terms of
components this expression becomes I" g(k,k) =30G(k)/dw
and T'L(k,k) = —0G~1(k)/ak.

It is straightforward to derive the diamagnetic suscepti-
bility from these response functions. In the presence of a
static external vector potential the magnetic field is B =
iq x A. Similarly the current can be written in terms of a
divergence-free (orbital) magnetization by j = iq x M. For
convenience, q is directed along the y axis: q = ¢”§. Using
the definition of the EM current, and by taking the g¥ — 0
limit in this expression, we then obtain M(qg” — 0) =
—[P™(g”) —i—n/m]/(qy)z|q_v_>0B(qy — 0). From the defini-
tion of diamagnetic susceptibility, xgi, = —(9M*/dB%)|5:_, 0,
we then have the following Kubo formula [39]:

P (2, = 0,
[ (520 = 0.0 +n/m] s
q q":q«':()

Diamagnetic susceptibility is a transverse response to an
applied vector potential; that is, by taking the zero-frequency
limit first, and then the momentum limits in the appropriate
order, there is no longitudinal contribution to the diamagnetic
susceptibility of a uniform Fermi superfluid. Moreover, the
Kubo formula in Eq. (3.3) also applies in the condensed
phase of a uniform Fermi superfluid. This is because the
collective mode contribution to response in a uniform system
is purely longitudinal in the zero-frequency, zero-momentum
limit, and therefore it gives no contribution to diamagnetic
susceptibility. Above the superfluid phase transition temper-
ature, P**(0) = —n/m; this identity enforces the physical
constraint that there is no Meissner effect. As a conse-
quence, the Kubo formula can then be written as ygi, =
—limg_o[P**(iQ = 0,q) = P (0)]/q?|;x—y:—o-

Another important contribution to magnetic susceptibility
is the paramagnetic susceptibility. Paramagnetism is the spin
polarization response due to a spin imbalance caused by an
external magnetic field. For a system of spin-% fermions, the
Kubo formula for paramagnetic susceptibility is [32]

Xdia = —lim
q—0

(3.4
|

Xpauti = —lim ug PP, = 0,q),
q—0

MTg (kg ko) = Y t(p)Golp — kv (p — k—.p — k)Go(p — k),

p

ALY (kiko) = =33 t(p0)i(p)Go(p — KGo(p — DGUTE (4. 1)G L),

p 1

ALE (ke k) = =Y 3 tp)t(p)Golp — K)G(p — DGol v (141 )Go(l-).

p 1

where pp is the Bohr magneton. In a noninteracting fermionic
system, the resulting (Pauli) paramagnetic susceptibility and
(Landau) diamagnetic susceptibility satisfy the well-known
relation xgia = _%XPauli-

IV. DIAGRAMMATIC ANALYSIS OF RESPONSE
FUNCTIONS IN PAIR-FLUCTUATION THEORY

We now build on our discussion in the introduction to
incorporate strong-pairing fluctuations. There we motivated a
specific choice for the composite boson propagator associated
with noncondensed pairs. This is referred to below as the GGy
pair-fluctuation theory. The self-energy for this theory is

Z(k) =Y t(p)Go(p—k) =Y tip+k)Go(p).

P p

“.1)

The inverse ¢ matrix is given by t~!(p) = g~! + I1(p), with
the pair susceptibility I1(p) defined by

M(p) =Y Golp—DHGW) =Y _G(p—DGo(l). (42)
l l

Throughout this paper k* = (iw,,k), I* = (i€,,1) denote
fermionic four-vectors, while p* =(iw,,,p) and ¢* = (i2,,,q)
denote bosonic four-vectors.

In order to derive the full EM vertex, all bare EM vertex
insertions in the self-energy diagram must be performed [38].
After summing all these bare EM vertex insertions, there are in
total three possible vertex insertions in the self-energy diagram:
(1) a bare EM vertex can be inserted in the bare Green’s
function Go(p — k), (2) a full EM vertex can be inserted in
the full Green’s function in the pair susceptibility I1(p + k),
and (3) a bare EM vertex can be inserted in the bare Green’s
function in the pair susceptibility I1(p + k). Thus the full EM
vertex can be written schematically as

Th(ky k) = y& (ky k) + MTE(ky k)
+ALg (ki ko) + ALg 5 (ki ko). (4.3)

The full EM vertex consists of the bare EM vertex, a Maki-
Thompson-like vertex, and two distinct Aslamazov-Larkin-
like vertices. These Feynman diagrams are analogous to those
in the standard weak-fluctuation theory [5] except that here, as
appropriate, there are full rather than bare Green’s functions.
Note that these vertex corrections appear after making the
above diagrammatic insertions: the MT diagram arises from a
bare EM vertex insertion in the bare Green’s function appearing
in the self-energy, while the two AL diagrams enter due to
inserting bare or full EM vertices in the appropriate bare or full
Green'’s functions in the pair susceptibility. In Appendix B an
explicit derivation of these MT and AL diagrams is presented;
their exact forms are given by

4.4)
(4.5)

(4.6)
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One can explicitly check that the full EM ver-
tex satisfies the WTIL To do this, note that the MT
and AL diagrams satisfy the following important ident-
ity: qu[2MTp (k4 .k-) + ALg,l(h,k,) + ALE,Z(k+,k,)] =0.
This identity is proved in Appendix B, where it is de-
rived from the definitions of the MT and AL diagrams
in Eqs. (4.4)-(4.6). Using this identity, it follows that
qulTh ks ko) — yi ks k)] = —quMTg(ky,k_). From the
MT vertex given in Eq. (4.4), along with the bare WTI, we
then have g, [Tk (k+,k—) — y (k4 ,k_)] = B(k_) — Z(ky), s0
thatq, 't (ky,k_) = G~'(k;) — G~!(k_) and thus the full EM
vertex satisfies the WTL.

While the formal expression for the full EM vertex can be
written down, it is not in closed form due to the fact that this
vertex itself appears in the ALS’l diagram. We note that the
lowest order MT and AL diagrams, which are obtained by
setting 'y — ¥4, G — Gy, and t — 1o, in Egs. (4.4)—(4.6),
are consistent with those diagrams which have appeared
extensively in the weak-fluctuation literature [20,40,41].

The other important contribution to the lowest order EM
response functions are the density of states (DOS) diagrams.
These diagrams arise from substituting the bare EM vertex
part of the full EM vertex into the total response functions.
Indeed, the bare EM vertex term in Eq. (4.3) gives a “bub-
ble” contribution to the total response functions in the form
2¢% 30 Gl (ky k)G (k) yg (ki k).

By expanding the full Green’s functions to second
order in Dyson’s equation—G(k) &~ Go(k) + Go(k)X (k)
Go(k)—the “bubble” contribution becomes 2e2 >
[Golkp )y (ky,k)Go(k-) + Golkp)y " (ki k_)Go(k-)E(k-)
Gok-) + Golkp) E(k)Go(k)y (ki k_)Golk_)]y " (k- k),
which gives the lowest order diagram for noninteracting
fermions, plus two additional DOS diagrams. Note that this
lowest order set of Feynman diagrams (the noninteracting
response plus two DOS, one MT, and two AL diagrams) is not
gauge-invariant. These diagrams satisfy the WTIto O(X), but
violate it at O(X?). The exact gauge-invariant full EM vertex,
which satisfies the WTIL, is given in Eqgs. (4.3)—(4.6) [42].

For an exact treatment of the EM response, at all temper-
atures, all diagrams must be considered. In order to make
progress in computing the diamagnetic susceptibility for the
GGy pair-fluctuation theory, certain assumptions must be
made and their validity correspondingly needs to be scruti-
nized. The following sections outline a set of approximations
enabling the diamagnetic susceptibility to be calculated analyt-
ically. The small parameter controlling these approximations
will be discussed in further detail below.

V. APPROXIMATE CALCULATION OF DIAMAGNETIC
SUSCEPTIBILITY IN THE SMALL-| ;| LIMIT

This section derives the diamagnetic susceptibility for the
GG pair-fluctuation theory in the fairly extended regime
above T., where the bosonic chemical potential fipur iS
small. The phase transition temperature, 7., occurs when
the pair chemical potential vanishes: ppi(7;) = 0. Thus the
restriction to the regime where |fipqr| < 7. is what governs
the various approximations made within this calculation. In the
typical weak-fluctuation physics [5], this parameter becomes
e=In(T/T,)~ (T —T,)/T,. This perturbative regime is

necessarily limited to temperatures in close proximity to 7.
By contrast, the constraint associated with the pseudogap
state (|fpair] K T¢) is less restrictive; it is found to apply to
considerably higher temperatures, as is discussed in Sec. VII.
As a consequence of this result, the temperature range where
the diamagnetic susceptibility in the GGy pair-fluctuation
theory is nearly singular is larger than the corresponding range
in the usual weak-fluctuation theory.

It should be noted that near condensation the pair propagator
is not so different from a modified free boson propagator,
except that there is no fixed number of (composite) boson
particles. The propagator depends on the bosonic mass my =
M and bosonic chemical potential pp = fipair, Which are
determined self-consistently from the underlying fermionic
interactions. The pair chemical potential acts as an infrared
regulator and the singular nature of the diamagnetic suscepti-
bility is encapsulated by the limit |t paic| <K Te.

At g =0, the full response function satisfies P**(0) =
—n/m. To compute the diamagnetic susceptibility from
Eq. (3.3), the response function P**(0,q) must then be ex-
panded to O(q?). Atall temperatures there will be contributions
from the “bubble,” Maki-Thompson, and Aslamazov-Larkin
diagrams. However, the AL diagrams have one more pair
propagator than the MT diagram (without expanding out the
full Green’s functions or full vertices that is). As discussed
in the preceding paragraph, the near-singular nature of the
diamagnetic susceptibility arises due to the vanishing of the
pair chemical potential. Since the AL diagrams contain one
more pair propagator than the MT diagram, the degree of the
singularity of the AL contribution to diamagnetic suscepti-
bility (in 3D) is of a higher order than the MT contribution.
Indeed, power counting arguments [5,20,21] indicate that near
the condensation temperature the AL diagrams give singular
contributions to diamagnetic susceptibility, whereas the MT
diagram gives a nonsingular diamagnetic response. For this
reason, we omit calculating the “bubble” and MT contributions
to diamagnetic susceptibility [43]. In the weak-fluctuation
theory the contribution to diamagnetic susceptibility from
the Aslamazov-Larkin diagrams is also all that needs to be
considered [20] near the condensation temperature.

After ignoring the “bubble” and MT contributions, the
response function of interest now becomes

P¥(0,q) ~ 2¢° Z Gk )[ALY | (kg ko)
k

+ ALE (ki k)| GhO)yE (k- ky).  (5.1)

To contrast the GG pair-fluctuation theory from the weak-
fluctuation theory [5,20,41], in Fig. 2 the Aslamazov-Larkin
diagrams for both of these theories are shown. Of interest
to note is that the weak-fluctuation theory has two identical
AL diagrams, containing only bare Green’s functions and
thus no signature of a normal state pairing gap. In the GGy
pair-fluctuation theory, however, for the ALg; diagram the
leftmost triangle vertex contains two full Green’s functions
and one full EM vertex, while for the ALg, diagram this
same triangle vertex contains one full Green’s function. As
a result, the GGy pair-fluctuation theory contains dressed
Green’s functions which depend on the normal state pairing

gap.
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Go(ky)

A/’]‘E/)(kfﬁ k+)
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FIG. 2. Comparison of the Aslamazov-Larkin diagrams in (a) GG pair-fluctuation theory and (b) weak-fluctuation theory. These are the
dominant diagrams that contribute to diamagnetic susceptibility, near the condensation regime. Of importance is that it is the G G pair-fluctuation
theory whose Aslamazov-Larkin diagrams contain full Green’s functions depending on the normal state pairing gap, whereas the weak-fluctuation

theory contains only bare Green’s functions.

The presence of these full Green’s functions in the triangle
vertex is intimately connected to the form of the r matrix. We
emphasize (and discuss in more detail below) that choosing a
particular form for the pair-propagator constrains where bare
and dressed Green’s functions can appear in the Aslamazov-
Larkin diagram. All of this is fundamental to the goal of this
paper, which is to include pseudogap effects (as incorporated
in dressed Green’s functions) in a consistent manner in the
diamagnetic susceptibility.

Calculating diamagnetic susceptibility requires expanding
the response function to O(q?), and in the regime where | pair |
is small it is only the q dependence of the pair propagator which
is important. As a consequence, we ignore the q dependence
of all the Green’s functions appearing in the approximate
response function. The remaining q dependence occurring in
ALE ,(ky,k-)is then due to the two pair propagators in this ver-
tex. The remaining q dependence occurring in ALg, | (k4 ,k-)
arises from two contributions: the two pair propagators that
explicitly appear and the full EM vertex occurring in the
leftmost triangle vertex. (See Fig. 2 for reference.)

In expanding the full EM vertex in AL | to O(q%), we
ignore the MT contribution and only expand to quadratic
order the ALg, and ALg, terms. Thus, all pairs of pair
propagators (¢ matrices) are expanded to quadratic order.
Finally, the structure of the AL§; ; and AL , vertices at ¢ = 0
is needed. By differentiating the two equivalent expressions for
the self-energy appearing in Eq. (4.1) with respect to k*, the
following identities are obtained: AL, | (k,k) = ALg ,(k.k) =
—MT% (k k). Therefore, at ¢ =0, the full EM vertex is
gk, k) = yg (k,k) + ALg (k. k).

By iterating this relation in the full EM vertices appearing
in ALg; and ALg, diagrams, and expanding all pairs of ¢
matrices to O(q?), the net result is a symmetric product of

two bosonic vertices with two pair propagators expanded to
quadratic order. The diamagnetic susceptibility thus becomes

3t(p)  [or(m7
Xaia = € Z (P, )] {t(p)a(p})2 —[ o } }

(5.2)

Here we have defined the bosonic EM vertex Ag ((p,p) =
>, Golp — l)Gz(l)FE(l,l). In this form it is clear that the
response function for the AL diagrams reduces to a bosonic
response function, with bosonic EM vertices Ag ;(p, p) which
are modified from a bosonic bare EM vertex due to the
underlying fermionic interactions.

Using the WTI the bosonic EM vertex Ay (p,p) can be
written in terms of derivatives of the pair susceptibility I1(p)
as

oll(p)
ap*

=Y Go(p — DGOT* (L) = —Af ,(p.p). (5.3)
1

An equivalent expression is Ag(p,p) = — >, G(p—
l)G Dy*,l) = Af E.2(p, p). Further details on this derivation
are given in Appendlx E2. Inserting this result into Eq. (5.2)
then gives the diamagnetic susceptibility as

9Tl 92 9 2
Xdia = € ZZ[ (p)]{ )M—[M} } (5.4)

a(p?)? ap*

In the small-|upqir| limit, when performing the Matsubara
frequency summation only the lowest order term in the fre-
quency integral with bosonic frequency equal to zero needs to
be retained [20]. In Appendix C, the Matsubara frequency sum-
mation is carried out analytically and the preceding assumption
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is validated. Thus, we now have

AP [, 0% [arp)]’
xdia=TeZZ[ K ] {r(p) - —[ } } (5.5)
L op A(pY)? ap>

Here I'(p) = I1(0,p) and ¢(p) = #(0,p). To evaluate the form
of the vertices involving the derivatives of the susceptibility,
we use the definition t~'(p) = g~! + I1(p), along with the
approximate form of the pair propagator given in Eq. (1.1), to
obtain dT1(p)/dp* = dt~'(p)/dp* = —Zp* | My The result
for the bosonic EM vertex Ag | is of the same form as one
would expect for actual bosons, but with a modified mass.

We emphasize again that the composite boson EM vertex
appearing in the diamagnetic susceptibility is tightly con-
strained by the form of the # matrix. Thus, one cannot assume a
fixed form for the pair propagator, and then modify the Green’s
functions in the triangle vertex appearing in the AL diagram
[28], without also modifying the pair propagator.

Using the form of the bosonic EM vertex computed above,
along with the approximate form of the ¢ matrix in Eq. (1.1),
and after performing integration by parts, the diamagnetic
susceptibility reduces to

2T e? ( p*
3Mpair Mpair

Xdia =

2
) [Zt(0,p)]?

p

4Te* [ p*

=_Wf Pt Mty O
—00 pair | Mpair
Note that ppair = —|paic| 1S negative, while My, is positive;
this allows the spatial integral in the above expression to be
computed. The p integration is easily performed using a closed
contour integration in the upper half plane and evaluating the
residue at the pole p = i (2 Mg I,upairl)l/ 2. This gives the result
presented in Eq. (1.2) above:

) __kBT(2€)2 1/(2Mpair)
00 =T 0am e\ el

Here the constants 7, kg, and ¢ have been restored to ensure
that xq4i» is dimensionless. The diamagnetic susceptibility
has been written in this form to allow direct comparison
with free bosonic transport. In Appendix D it is shown that,
for free bosons, the diamagnetic susceptibility in the small

. . . . . *)2 .
chemical potential limit is x, = — %) \/ % Thus, in

(5.7

245 hic?
the small-|fipq;| limit the diamagnetic susceptibility for the
GGy pair-fluctuation theory behaves like free bosons, but
with effective charge e* = 2e, mass m, = My, and chemical
potential (tp, = fpair. The factor of 2 in the charge reflects the
underlying internal fermionic constituents of these composite
bosons.

VI. THERMOELECTRIC RESPONSE

In this section we investigate thermoelectric response and
the Nernst coefficient in the presence of a normal state pseudo-
gap. Here we follow the framework introduced in the previous
sections in the analysis of the diamagnetic susceptibility. In
contrast to the rather precise statements that were made about
diamagnetic susceptibility in the pseudogap regime, for the
Nernst response the situation is far more complex. Indeed, there

is extensive controversy in the literature about this response
function, even in the weak-fluctuation limit [21,44-46]. There
have also been attempts to study this quantity beyond the
weak-fluctuation limit [23,28,30]. To make progress, it will be
useful to build on the more detailed and solid understanding of
diamagnetic susceptibility presented in the preceding sections.
By again focusing on the central bosonic physics it is possible
to express the Nernst coefficient in terms of bosonic response
functions, with the parameters fip,; and My, encapsulating
pseudogap effects. The Nernst response in the weak-fluctuation
limit will serve as a point of comparison.

The Nernst coefficient arises in transport by applying a tem-
perature gradient (—VT), in the presence of a magnetic field
B = B2 and subsequently measuring the electric field response
E = E¥ (in the absence of a transport electric current). This
transport coefficient is defined by [21]

E I 0yyOry — QxxOxy

~(“V1).,B B

vy 6.1)

2 2
Osx + Oxy

For a particle-hole symmetric system (defined to mean a
constant density of states near the Fermi surface), o,, = 0, so
that vy = o, /(Boy,). The Nernst coefficient is then reduced
to calculating the transverse thermoelectric coefficient o, and
electrical conductivity o, . For the G G pair-fluctuation theory
there is no particle-hole symmetry except in the BCS regime.
Nevertheless, here we study only oy, as an indication of the
more complicated Nernst coefficient.

The Kubo formalism for thermal response is not as straight-
forward as it is for electric response. Indeed, the formulation
of equilibrium linear response to a temperature change causes
conceptual difficulties [32]. One issue is that there is no unique
definition of the heat-current vertex. Formally, the flow of
heat corresponds to the flow of energy in the absence of the
flow of matter [32,33]. The heat current is thus equivalent to
the energy current, and to derive the form of the heat vertex
we must investigate the consequences of energy conservation.
As discussed in Sec. III, the global U(1) particle number
symmetry leads to a corresponding WTI. The same is true
for energy conservation. Indeed, this conservation law arises
from the invariance of the Lagrangian of a theory under
time translations. The corresponding WTI, which reflects the
law of conservation of energy in terms of Green’s functions,
is [47]

quThke ko) = 0-G7 (k) — 0,G7 ko), (62)
where wy = w + Q/2. Here I'j; is the full heat vertex. This
form of the WTI is not unique, and alternative forms can
be derived by using the equations of motion; for further
details see Ref. [47]. The bare WTI for energy conserva-
tion, g, i (ks k) = w_Gy'(ky) — w Gyl (ko), is satisfied
by the bare heat vertex yjj (k4.,k_) = (yI({)(kJr,k_), y}il(k+,k_)),
where y}?(k+,k,) =(ky-k.)/2m—pu and y]g(k+,k,) =
[wik’ + w_k'1/(2m). The bare heat vertex y{j(k + q.k) =
liw, (k' + g") + (iw, +iQ,)k]/(2m) agrees with Ref. [33].

As in Sec. IV, the full heat vertex is found by performing
all possible bare heat vertex insertions in the self-energy
diagram. However, an additional vertex insertion arises from
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inserting the energy-momentum tensor interaction directly into the # matrix. The final result is that the full heat vertex is

Thky ko) =y (kg ko) + MTg (ko ko) + Mk ko) + ALY (ky ko) + ALY (kg ko).

(6.3)

The Maki-Thompson, Aslamazov-Larkin, and )»l’j heat-current vertices are

MT} (ki ko) =Y 1(p)Go(p — k)i (p — k-, p — k)Go(p — ky),

p

ALy (ky ko) = — ZZt(p 1(pHGo(p — )Go(p — HGAHTHATIHGA),
ALy, (ky ko) = — ZZr(p ) (pT)Go(p — K)G(p — DGo( MW A .17)Go(l7),

Milkeko) =D 8718 (p I (pTIGo(p — k).

p

Here “° is the Kronecker delta function, equal to unity
only for the time component (1 = 0) and zero otherwise. In
Appendix E1 an explicit calculation is presented which shows
that the full heat vertex, as determined by Eqgs. (6.3)—(6.7),
satisfies the WTI in Eq. (6.2).

Following Ref. [21], we consider the heat-current re-
sponse to an applied electric field. The applied electric and
magnetic fields are in the ¥ and Z directions, respectively,
and the heat-current response is considered in the y di-
rection. The correlation function of interest is then a heat
current-electric current correlation function: Pip(Q,,0) =
2e Y, Glk)Tiylky k)G (k- )yg(k_,k+) where q = 0. The
full heat vertex is determined in Egs. (6.3)—(6.7), and since
only the § component is of interest, the vertex in Eq. (6.7)
gives zero contribution.

Here we calculate the transverse thermoelectric coefficient
only to linear order in magnetic field. This linearization results
in performing all possible (§ component) electromagnetic
vertex insertions in the heat current—electric current correlation
function [48]. The resulting correlation function s a three-point
correlation function: A**(i$2,,, Q), where Q = QX represents
the momentum inserted into the heat current—electric current
correlation function. The transverse thermoelectric response,
Oy, can then be computed to linear order in magnetic field B
using the definition &xy = Blcxagia/h — jy/(EB)], where the
second term is determined from the Kubo formula [21]:

i 1

5= —lim o G RN (2. Olig, i ]
The order of limits is crucial: first Q — 0, and then Q2 — 0.
The need for including the magnetization current in the
above definition [49] is because they contribute to the total
microscopic current, and therefore must be subtracted to obtain
the transport current [21]. The parameter «,, appearing in the
Nernst coefficient is then determined by oy, = @y, /T

The total number of EM vertex insertions is quite
formidable, and an exact theoretical treatment is challenging.
In principle, if one inserts the full EM vertex into all the
full Green’s functions, the bare EM vertex into all the bare
Green'’s functions, and the appropriate triangle vertices into all
the t matrices appearing in Pjj;(i2,,0), then the full set of
Feynman diagrams for the heat-current response to an applied
electric and magnetic field will be obtained. For the GGy

(6.8)

(6.4)

(6.5)

(6.6)

6.7)

(

pair-correlation theory in particular, the various full Green’s
functions and full vertices present in the response function
means there will be a large number of diagrams to consider,
more so than in the weak-fluctuation case.

However, on the basis of the analysis performed in the previ-
ous section, and also from the near-condensation calculations
for the weak-fluctuation theory [21], it is expected that only the
AL diagrams with EM vertices inserted into the ¢ matrix give
singular contributions. This is because such diagrams contain
three ¢-matrix propagators, and thus in the small-| i pg;| limit
they have a higher order in their degree of singularity than any
other diagrams. See Ref. [21] for the subtleties involved in the
power counting arguments related to the Nernst response.

Therefore, as an approximate calculation, we consider only
the EM vertex insertions in the ¢ matrices appearing in the two
AL diagrams that contribute to the heat current—electric current
correlation function. There are two EM triangle vertices that
can be inserted into each of the # matrices appearing in both
ALy and ALy . These arise from the G G Green’s functions
appearing in the pair susceptibility, and thus either the full or
bare EM vertex can be inserted into the corresponding Green’s
function, which results in the two different types of EM triangle
vertices.

Since the bosonic EM vertex Ag; = Ag, is the same
for both EM triangle vertices appearing in ALg; and ALg
diagrams, this results in a symmetry factor of two. (For
further details see Appendix E2.) In addition there is an-
other factor of two due to spin degeneracy for a system
of spm-— fermions. Thus, the Nernst calculation is effec-
tively reduced to calculating two AL diagrams, plus their
mirror images, with one corresponding bosonic heat vertex
(Ajy, or Ay, depending on the diagram) and two bosonic
EM vertices (Ag ;, Ag,), multiplied by a symmetry factor
of four.

There is extensive debate in the literature about the correct
gauge-invariant approach to heat response [45,50]. Part of the
issue concerns the appropriate diagrams to include, and how to
ensure that gauge invariance is satisfied. For further discussion
see also Refs. [51-53]. Here we note that the full heat vertex
presented in Eqgs. (6.3)—(6.7) is consistent with the WTI for
energy conservation in Eq. (6.2).

Another issue under debate is the role of particle-hole
asymmetry. In Ref. [45] it is claimed that the Nernst
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response vanishes without particle-hole asymmetry. However,
in Ref. [54] this claim is refuted. Indeed, for a normal
Fermi metal that possesses particle-hole symmetry the Nernst
coefficient is (approximately) zero [46,51,54]. In the weak-
fluctuation case, however, the bosonic contribution to Nernst
response from the AL diagrams is found to be significant
[21,46,51], even in the absence of particle-hole asymmetry.

There is also contention in the Nernst literature [21,28,44—
46] concerning the specific form of the heat vertex appearing
in the AL diagrams. This uncertainty is in contrast to the
bosonic EM vertex, given in Eq. (5.3). Following the EM
vertex calculation, a similar analysis can be performed for
the heat vertex. Since it is more involved, the derivation is
presented in Appendix E3. The result is that the sum of
the heat triangle vertices for AL}y, and ALj, reduces to
a bosonic heat vertex, defined by A{Ll(p,p) + A}ym(p,p) =
Ay(p.p) = —w@[3t7'(p)/dp*].

For comparison, the fermionic heat vertex obeys
I'y(k,k) = —w[d0G ™ (k)/3k*]. Note, there is an additional
factor of two compared to the EM case, which obeys

J

AP (iR, 0) = —4e? Z[ (
palr

Zp* (Zpy
Mpair Mpair

palr

where p. = p + Q/2.

Performing the Matsubara frequency summation, and then
taking the limits Q — 0, followed by 2 — 0 in the Kubo
formula given in Eq. (6.8), we obtain

Jy _ ksTe? 1/(2Mpair)(;c2 +F2)
EB B 47Th2C |Mpair| r2 .

Here the constants 7, kg, and ¢ have been restored. For
further details of the calculation see Appendix E4. The
transverse thermoelectric coefficient, 5xy, is then found by
combining Eqs. (5.7) and (6.10) and using the definition
&xy = Blcxdgia/h — j7/(EB)]; this gives the result stated in
Eq. (1.3) at the beginning of the paper:

- BkpTe* [1/(2Myyir) (3/(2 + r2>
Oy = .
Y 12nh2c |Mpair| r2

Similar results can be obtained from Ref. [30]. Just as for
the diamagnetic susceptibility, the transverse thermoelectric
coefficient in Eq. (6.11) is large when |upair| < 7. In the
k — 0 limit, Eq. (6.11) reproduces the result in the weak-
fluctuation literature [21]. It is of interest to note that whereas
diamagnetic susceptibility is insensitive to the parameter I,
the transverse thermoelectric coefficient depends crucially on
this parameter. The parameter I" serves as a regularization
for the transverse thermoelectric coefficient in the BEC limit,
whereas for diamagnetic susceptibility such a regularization is
not required.

The ratio of the absolute magnetization to the transverse
thermoelectric coefficient has received a lot of interest [23];

(6.10)

6.11)

) (iwm - lQm/z)t(lw_m - iQm/zvp—)t(iwmvp+)t(iw_m’p—)],

AL, (p.p) + AL, (p.p) = AL(p.p) = 2[9t 7 (p)/dp’]. The
Nernst literature [21,28,44—-46] debates this factor of two; in
Appendix E3 we provide our own interpretation which makes
the result less ambiguous. The point is that the heat and EM
vertices, for fermions and bosons, are related by Ty (k, k)
(w/e)Tx(k,k) and Aj(p,p) = (@ /e*)Ax(p,p), where e*

2e [37]. Independent work [55] has also arrived at the same
conclusion, based on a similar derivation using the Ward-
Takahashi identity.

Now we return to the calculation of the transverse thermo-
electric coefficient. The previous analysis of the heat vertex
means that the Nernst response is reduced to calculating
one Aslamazov-Larkin diagram, plus its mirror image, with
one bosonic heat vertex (Aﬂ) and two bosonic EM vertices
(AE 1»Ag ), multiplied by a symmetry factor of four. It is
important to note that in combining the two heat vertices
Ajp; and Ay, into one bosonic heat vertex Aj; the number
of dlagrams that need to be computed has effectlvely been
reduced by a factor of two. Thus, the three-point correlation
function that needs to be computed is

) (om + i /2Dty + 2, /2, p)t (@, Pt D0, P+)

(6.9)

(

in the weak-fluctuation limit this ratio is exactly 2(%/c):
| B¢ xdial /(B0xy) = 2, and in the phase-only fluctuation picture
this ratio is obtained in the large-temperature limit [23].
From the results in Egs. (5.7) and (6.11), we find this ra-
tio to be |Bcxdial/(hdyy) = 2[1 — 3k%/(3k> + T'?)]. In the
weak-fluctuation limit « = 0, and we recover the standard
result. More generally, the BCS limit is I" > «, so that
| B¢ Xdial /(A0lxy) — 2; however, the BEC limit is I' < «,
so that |Bcygial/(ROyy) — (2/3)(F/K)2. In the intermediate
pseudogap regime, where both x,I" 0, the ratio is in between
these two limits; it decreases as the pairing strength increases.
In summary, the singular nature of the diamagnetic sus-
ceptibility and transverse thermoelectric coefficient shows
the importance of including fluctuating bosonic degrees of
freedom. The next section presents numerical results for the
diamagnetic susceptibility, which depends on the effects of
the normal state gap through the parameters M, and fpqi;-

VII. NUMERICAL RESULTS

We now present the results of our numerical calculations
of the cuprate diamagnetic susceptibility, along with a com-
parison to experimental data. To compare between theory and
experiment, it is first necessary to start with a semiquantitative
understanding of the phase diagram. Section II outlined a
procedure to compute both 7, and T* using the ¢ matrix of
Eq. (2.4). The resulting phase diagram is shown in Fig. 3,
which plots both T, (blue) and T* (red) curves as functions of
doping concentration, x. Qualitatively the horizontal axis is a
measure of the dimensionless interaction strength with stronger
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FIG. 3. Theoretically calculated cuprate phase diagram. Plotted
are T, and T*, in units of 7y, as functions of doping concentration x.

(weaker) interaction effects on the left (right) side, reflecting
underdoped (overdoped) cuprates. This figure generically indi-
cates what occurs in the weak-interaction regime (on the right),
where T, &~ T*, and the strong-interaction regime (on the left),
where T. and T* are anticorrelated.

This anticorrelation can be understood from the early
work of Nozieres and Schmitt-Rink [56] who showed that,
on a lattice, as the attraction becomes stronger it becomes
increasingly difficult for pairs to hop, since they first need
to unbind. This is responsible for the large pair mass. In the
d-wave case the effects are more extreme [8] as the pairs
are more extended in size. At sufficiently strong attraction a
superconductor-insulator transition is observed. This explains
the behavior at the lower critical doping of the 7, dome.

The phase diagram in Fig. 3 is based on a nearest-
neighbor quasi-two-dimensional tight-binding band structure.
The cuprate half bandwidth 4¢ for the in-plane dispersion sets
the scale for the units of energy. The anisotropy parameter is
takenast,/t = 0.003, in agreement with estimates for BSCCO
and LSCO superconductors. Note that the 7, curve depends
on t,/t only logarithmically. Details of the band parameters
are not particularly important, provided they are chosen to
capture the generic effect that 7* increases with under doping.
Our calculations have included the doping concentration x and
doping-independent interaction strength g. The x dependence
is included in the hopping integral ¢ in the form ¢ & fox, where
to is an energy scale characteristic of the parent compound. We
choose the dimensionless ratio —g /4ty = 0.04725 to optimize
the fit to 7*. For the moment only the single parameter f; is
left unspecified.

The plot in Fig. 3 shows that 7, vanishes at a lower
critical doping of x = 0.025, which is slightly less than the
experimental value of x = 0.05 [7]. Nevertheless the overall
shape as compared with experiment, shown below in Fig. 6, for
T. (and T*), is reasonable. While not shown in Fig. 3, at each
value of x the magnitude of the pairing gap A (or pseudogap),
at T, for example, shows an approximate proportionality to 7*.

The diamagnetic susceptibility has a singular inverse square
root dependence on the bosonic chemical potential, ftpair, as
derived in Eq. (5.7). This pair chemical potential itself varies

0.08

)

0.2

Weak fluctuation

= F ==t -—=F ==

-

0 0.2 0.4 0.6 0.8
In(7/T,)

FIG. 4. The product —#yZ iy as a function of € =1In(T/T,)
for various doping concentrations x from overdoped (x = 0.25) to
underdoped (x = 0.05). For comparison, the result from the weak-
fluctuation formalism (blue dashed straight line) is also plotted.

with temperature and doping concentration. It is useful, then,
to first study f4p,ir and compare with the weak-fluctuation limit.
The combination —Z tip,i; in the strong-pairing theory can be
viewed as equivalent to Noe in the weak-fluctuation theory,
where N, is the fermionic density of states at the Fermi surface
and € = In(T/T,). The parameter Z, which is the prefactor of
proportionality in the # matrix defined in Eq. (1.1), is associated
with the linear frequency contribution to the inverse ¢ matrix.

In Fig. 4 we plot the product —#Z ttpair, as a function of
In(T'/ T,), for different doping concentrations as labeled, from
the overdoped (x = 0.25) to the strongly underdoped (x =
0.05) limit. The blue dashed straight line is Nye in the weak-
fluctuation theory. To make this comparison we have estimated
the fermion mass on a quasi-2D lattice at the Fermi level using
an in-plane Fermi wave vector k = 0.9(xr/2,7/2) along the
nodal direction, which yields an effective fermion mass m =
1/(0.31¢). This leads to the association tg Ny = to(m/m) = 4.1
(for x = 0.25), which sets the slope of the blue dashed line.

It is evident from Fig. 4 that, as the magnitude of the pseu-
dogap increases from the overdoped to underdoped regime,
—10Z ppair decreases rapidly for a given €. This means that
in the underdoped regime there is a larger range of tempera-
tures where |ppai| is effectively “small.” As a consequence,
the strong-pairing fluctuation theory has a large diamagnetic
susceptibility at temperatures higher than is the case for the
diffusive, weak-fluctuation theory.

Now we are in a position to study the behavior of the normal
state diamagnetic susceptibility. In order to calculate yg, for
the quasi-2D cuprates, in an extended range of temperatures
above T,, we use Eq. (5.4) supplemented by Eq. (D9) in
Appendix D, with e* = 2e, my, replaced by the in-plane pair
mass M), and &, replaced by the appropriate anisotropic pair
dispersion €2, [31]. Of particular importance is the onset
temperature [7], T,. This is the temperature at which the
total magnetic susceptibility departs from the background
contribution. We consider the background contribution to
the total magnetic susceptibility as arising from the (Pauli)
paramagnetic [57] contribution, xpaui, associated with the

064503-11



RUFUS BOYACK, QUIN CHEN, A. A. VARLAMOV, AND K. LEVIN

PHYSICAL REVIEW B 97, 064503 (2018)

(=]
T

1
[\
T

Magnetic susceptibility
A
T

1
(o)
T

Il Il
0 0.02 0.04

T/,

FIG. 5. Magnetic susceptibility above T, at optimal doping x =
0.15 (black) and underdoping x = 0.05 (blue). The dashed lines
are the Pauli paramagnetic susceptibility and the solid lines are the
sum of the paramagnetic and diamagnetic contributions to magnetic
susceptibility. The solid dots indicate the temperature, 7,, at which
the onset of diamagnetic susceptibility occurs. For the underdoped
case, the red dotted line is a linear fit to the high-temperature data.

fermionic quasiparticles. The crucial contribution in this anal-
ysis is the diamagnetic susceptibility, xqia, Which is dominated
by the bosonic pairing fluctuations. The total magnetic suscep-
tlblhty is then x = xpaui + Xdia-

From a theoretical point of view it is reasonable to view
the dominant background contribution to be based on xpayi.
The experimental background [7], however, indicates that the
Pauli contribution is relatively insignificant compared to a
much larger Van Vleck paramagnetic term, yxyy. This Van
Vleck contribution is difficult to theoretically calculate from
first principles. The experimental data suggests that yyv is
approximately 1-2 orders of magnitude larger than yp,yj-
Accordingly we adjust the vertical scale of our total magnetic
susceptibility to give an analogous effect to the experimentally
measured background term.

In Fig. 5 we indicate this procedure. We focus on two
representative examples for the optimal doping case x = 0.15
(black curves) and the underdoped case x = 0.05 (blue curves)
to illustrate how the diamagnetic onset temperatures are deter-
mined. This onset is indicated in the figure by the colored dot.
For the former case, the onset is simply given by the departure
temperature of the total susceptibility (solid curve) from the
Pauli background (dashed curve). For the strongly underdoped
(blue curve) case, there is a large temperature regime above T
where xgi, is small but nonzero. In such cases, for example
x = 0.05, we closely follow the experimental procedure by
fitting x in this regime with a (red dotted) straight line and
then determine 7, by where x departs from this line.

Summarizing our results, the extracted diamagnetic sus-
ceptibility onset temperature, T,, is plotted in Fig. 6 as
the open black circles, while the experimental data from
Ref. [7] is shown in the open red squares. The theoretical
and experimental transition temperatures are also plotted. We
determine the previously unspecified energy scale £, by fitting

0.04 - / _
3 | i
3
<
o |
g L _
(]
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0.02 _
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0 0.1 0.2 0.3

Doping concentration x

FIG. 6. Doping dependence of the calculated diamagnetic sus-
ceptibility onset temperature 7, (black) and 7, (blue), along with
corresponding experimental data from Ref. [7] for T, (red squares)
and T, (green discs). For both cases, the maximum of 7, is skewed
towards the underdoped regime.

the theoretical 7, curve to the experimentally measured 7, near
optimal doping (x = 0.15).

Our theoretically calculated diamagnetic susceptibility on-
set temperatures are found to be in reasonable agreement
with the experimental data in the underdoped and overdoped
cases. The theoretical plot has a peak in T, which is skew-
symmetric towards the underdoped regime; this is a feature
also exhibited in the experimental data. The experimentally
observed decrease in 7, in the underdoped regime is a
feature which is captured in the theoretical plot. This is an
important theoretical finding because this regime is outside the
applicability of the weak-fluctuation theory. The theoretical 7,
vanishes simultaneously with 7, as the doping concentration
approaches its lower critical value [58].

The peak in T in the experimental data is, however, slightly
higher than the peak in the theoretically predicted values. More
experimental data and a better theoretical treatment of the
background contribution would aid in this regard. Nonetheless,
the prediction that there is a significant high-temperature
contribution to diamagnetic susceptibility due to strong pair
fluctuations, as expressed in Eq. (5.7), is captured in the
theoretical figures.

While a comparison between the theoretical and experi-
mental Nernst coefficient has not been presented, it should
be pointed out that the onset temperature of the transverse
thermoelectric response is expected to be roughly the same
as T,. This follows from the simple proportionality between
absolute magnetization and transverse thermoelectric coeffi-
cient: oc 2I'? /(3«2 + I'?). We note that the parameters « and
I" are weakly temperature dependent, so that 7 is a reasonable
estimate for this thermoelectric onset temperature. This obser-
vation appears consistent with experimental claims in Ref. [7].

VIII. CONCLUSIONS

In this paper we have studied the effects of a normal state
pseudogap on the diamagnetic susceptibility and transverse
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thermoelectric coefficient, as applied to the hole-doped
cuprates. Strong support for a cuprate pseudogap deriving
from a “preformed-pair” scenario comes from the anomalous
enhancement in both these quantities. An essential addition
to the literature then is a calculation of these transport co-
efficients, which incorporates into the underlying response
theory the presence of a pseudogap itself. This paper achieves
this goal, by using a strong-pairing fluctuation theory in
which the dominant contributions to the diamagnetic suscep-
tibility and transverse thermoelectric coefficient come from
modified Aslamazov-Larkin diagrams. This differs from the
conventional weak-pairing fluctuation theory in which these
two transport coefficients were derived in the absence of a
normal state gap. By incorporating longer-lived and more sta-
ble fermion pairs, we find our calculations compare favorably
with their experimental counterparts over the broad range of
hole-doping concentrations.

These results are obtained through detailed diagrammatic
calculations which are tightly constrained by the Ward-
Takahashi identity. They depend importantly on the associated
form of the pair propagator, which differs from its weak-
fluctuation analog in large part because the pairs have prop-
agating rather than diffusive dynamics. We have emphasized
in this paper that the calculation related to the thermoelectric
coefficient is not at the same level of rigor as that for dia-
magnetic susceptibility, which from our perspective is quite
precise. Nevertheless there is a fair degree of confidence
that, just as for the diamagnetic susceptibility, the important
parameter controlling the singular behavior in the transverse
thermoelectric coefficient is of the form \/1/(2Mpair | thpair])-

More generally we note the similarity between the trans-
verse thermoelectric coefficient in Eq. (6.11) and the diamag-
netic susceptibility in Eq. (5.7). The first of these also depends
on additional parameters I" and «; while the former reflects the
pair damping, the latter reflects the particle-hole asymmetry
which accompanies long-lived pairs. It is clear from the
expressions in Egs. (5.7) and (6.11) that the simple ratio
of 271/c between the absolute magnetization and transverse
thermoelectric coefficient, in the linear magnetic field regime,
is only expected to be correct in the weak-fluctuation limit.
As pairing becomes stronger, the transverse thermoelectric
response becomes progressively larger than its diamagnetic
counterpart. This is because the pairs become longer lived so
that I' becomes much smaller than «.

The diamagnetic susceptibility and transverse thermo-
electric coefficient are dependent on two key parameters:
the pair mass Mp,;; and the pair chemical potential iy, In
the cuprates we find both parameters vary with hole-doping
concentration, x. They also both reflect, in slightly different
ways, the two important temperatures 7" (pairing onset
temperature) and 7, (phase transition temperature). In the
simplest terms, My, (T,x) is more directly reflective of
T,.(x) since we find the phase transition temperature vanishes

J

L>(12;1'2) m’/deiéou —DHV(A -2)G2 —2)G,(12;1'2).

The Feynman diagrams for this expression are shown in Fig. 7.

when M,,;; diverges. By contrast pip,i(7T,x) is more directly
reflective of 7*(x) since (as we have shown) a higher pairing
onset temperature leads to a stabilization of the pairs and
to a reduction in their chemical potential. In this way, both
temperature scales play an important role in establishing
the behavior of the diamagnetic susceptibility and Nernst
coefficient in the high-temperature superconductors.

Note added. Recently, we became aware of Ref. [59] which
interprets the onset temperature differently from Refs. [7,14].
However, since the experimental results are in rough agreement
with one another, the comparison to our theoretical onset
temperatures, as would be obtained following the alternative
procedure [59], is expected to again be reasonable.
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APPENDIX A: PAIR-PROPAGATOR DERIVATION

This section provides a brief derivation of the GGyp-
fluctuation-theory pair propagator introduced in Eq. (2.4). The
approach closely follows that of Kadanoff and Martin [33];
for further details see Ref. [27] or Ref. [34]. The four-vector
notation 1 = (ry,#), etc., is used throughout. The starting point
is the equation of motion for the full single-particle Green’s
function:

G —1) =Gyl — 1’)—i/de§50(1 -1

x V(I —2)L,(12;127), (A1)
where V is the four-body interaction term and G is the single-
particle Green’s function with the Hartree term included. Here
the two-particle correlation function, L, is related to the two-

particle Green’s function, G,, by
Ly(12;1'2)=G,(12;1'2) = G(1 - 1N"G2 =2). (A2)

Note that L, and G, correspond to LT~ and G*~ in the
notation of Ref. [33]. The equation of motion for G, can also
be constructed, and it will in turn depend on the three-particle
Green’s function G3. Continuing in this manner leads to an
infinite system of equations for all n-particle Green’s functions.
To make progress, the system of equations is truncated in such
a way that G is expressed solely in terms of G and G,. This
means only two equations of motion, one for G and one for
G, are needed to determine the form of G. The particular
approach for decoupling G5 in terms of G and G is known as
the pairing approximation [33]. The approximate equation of
motion for G,, with only the ladder diagrams retained, is then

(A3)
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L= 0 o+ 0+ i+ i e

FIG. 7. Diagrams for the two-point correlation function L, (L*
in the notation of Ref. [33]). The solid (thin) line is the full (bare)
Green'’s function, where the “bare” Green’s function 50 includes the
Hartree self-energy. The dashed line is the interaction V. This figure
is taken from Ref. [34].

These equations are equivalent to Egs. (2.6)—(2.8) in
Ref. [33], which then makes a further assumption in Eq. (2.29)
of their paper. Kadanoff and Martin used the above equations
to provide a systematic formulation of BCS theory. The
asymmetric form in which the Green’s functions G and G
enter Egs. (A1) and (A3) is a consequence of the equations
of motion and the pairing approximation [33]; this structure is
necessary in order to reproduce the BCS limit. The correlation
function L; can be easily determined in the weak-coupling (or
BCS) limit. In the corresponding superconducting state, L, can
be factorized into the standard Gorkov Green’s functions; see
Eq. (2.35) of Ref. [33].

To generalize the above formulation of BCS (weak-pairing)
theory and allow for arbitrary coupling strengths, we self-
consistently solve Egs. (A1)—(A3) for both G and L,. This
procedure naturally leads to a nonvanishing L, in the normal
state, and is suitable for describing noncondensed pairing
fluctuations. For convenience we convert to momentum space
and ignore the explicit arguments in the Green’s functions.
Define the pair susceptibility, IT, by

M=—-iGyVG. (A4)

Using this definition in Eqgs. (A2) and (A3), it follows that

GoVGGG

L, = A5
211+H (A5)

In this expression note that 50 and G are external legs, hence
the reason why IT is not written in the numerator. An additional
approximation is now made; the GG pair in the numerator
is replaced by G(G. Since the superconducting instability is
determined by the pole in the two-particle Green’s function
L,, this represents a rather benign assumption. Inserting the
resulting expression for L; into Eq. (A1), we obtain

G = Go+iGoV GoG. A6
0+iGo e (A6)
The self-energy, ¥ = 551 — G, is thus
s—; 1 & (A7)
=i .
1+ °

To simplify the above expression, instead of including the
Hartree self-energy in a modified “bare” Green’s function Gy,
we add the lowest order Hartree self—ql}ergy term, —i V Gy,
to Eq. (A7) and everywhere replace Gy by Gy. Since the
Hartree self-energy corresponds to a small change in chemical
potential, this assumption does not modify the central physics.
With this assumption the self-energy now becomes
—iVGy —iV

Y = =1Gy, t= .
1+11 1+11

(A8)

Q+(\:+:::+::::+m

t = 4+ o4+ T e

FIG. 8. Diagrams for the self-energy (X) and ¢ matrix (¢) of the
GG pair-fluctuation theory. The external legs have been removed
in both diagrams. The solid (thin) line is the full (bare) Green’s
function, where the “bare” Green’s function 6() includes the Hartree
self-energy. The dashed line is the interaction vertex V. This figure is
taken from Ref. [34].

In the imaginary-time formalism the above equation becomes

Y =1Gy, t IT=VGoG. (A9)

Tl
For a separable potential, V (k,k") = ggxok, g can be factored
out of IT to give

(q) =Y GK)Go(—k + )py_q)2- (A10)
k

Here g is the total momentum, while k and —k + ¢ are the
momenta of each propagator in the particle-particle ladder.
Similarly, the ¢ matrix now becomes t(k,k’;q) = 1(q)@kPx -
This allows #(¢q), which depends only on the bosonic momen-
tum ¢, to be used as the new definition of the ¢t matrix. As a
result, the self-energy is

(k) =Y H@Go(—k + 9ei_g)n- (A11)
q
and the ¢ matrix is
8
P T e

With IT determined in Eq. (A10), this now reproduces the
definition of the ¢ matrix given in Eq. (2.4). The Feynman
diagrams for the self-energy and # matrix are shown in Fig. 8.

APPENDIX B: OBTAINING THE FULL EM VERTEX
USING THE WARD-TAKAHASHI IDENTITY

1. GG pair-fluctuation theory

In this section the Ward-Takahashi identity (WTI) is used
to derive the full electromagnetic (EM) vertex for the GGy
pair-fluctuation theory, which appears in Eqs. (4.3)-(4.6) of
the main text. The WTI for the full EM vertex is [38]

quTE (ke k) = G (k) — G (k2)
= quyi (ky ko) + S(ko) — B(ky). (B

Here ki =k +¢q/2. The self-energy for the GG, pair-
fluctuation theory is (k) = Zp t(p)Go(p — k) = Zp t(p +
k)Go(p), where the t matrix is defined through the pair suscep-
tibility by t~'(p) = g~' + I(p), with TI(p) = Y, Go(p —
DG =Y, G(p — Go(l) the definition of the pair suscep-
tibility. Throughout this paper k,! denote fermionic four-
momenta: k* = (iw,,k), I* = (i¢,,1), where w, and ¢, are
fermionic Matsubara frequencies, whereas p,g denote bosonic
four-momenta: p* = (iw,,,p), ¢* = (i2,,q), where @, and
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2,, are bosonic Matsubara frequencies. Using the two equivalent forms of the self-energy given above, the self-energy difference
appearing in Eq. (B1) becomes

S(k-) = Tlky) = Y 1(p)Golp — k)[Gg'(p — k-) — G5 ' (p — k)] Go(p — ks)
P

+ 2 Go(p)(p+ kIt~ (p+ k) — 17 (p +k)e(p + ko). (B2)

p

By using the bare WTI, the term in square brackets on the first line is given by the contraction g, s (p — k—, p — k). From
the definition of the ¢ matrix, the difference of the two inverse ¢ matrices is

T pt+k) =t (p+ko)=T(p + ki) — (p + ko). (B3)

Using the two equivalent forms of the pair susceptibility, the pair susceptibility difference becomes

2AT(p + ki) = T(p + k)] = = D Go(DG(p +ky = DIGT (P + ki =)= G (p + ko = DIG(p + k- —1)
[

— Z G)Go(p +ky —D[Gy'(p+ ke = 1) = Gy (p+ k- = D]|Go(p + k- —1). (B4
!

From the WTI, the first term in square brackets is the contraction ¢, (p + ky — [,p + k_ — [); similarly the second term in
square brackets is the contraction g, ¥ (p + k4 — I, p + k— — [). Inserting these results into Eqs. (B2) and (B3) then gives

(k) = T(ks) = Y HPIGo(p = k)t (p = k-.p = k)Golp — k)

P

=Y Gopt(p+ k)Y GoG(p + ki —DguTE(p+ ke —Lp+k_ = DG(p+ k- —Dr(p + k)
p l

=Y GPip+k) Y GOGo(p+ky =Dt (p + ks —1,p + k- = DGo(p + k- = Di(p + k).
p I

(B5)

In the second and third lines, firstlet p — p — k, and then after thatlet/ — p — [. Inserting the resulting expression into Eq. (B1),
and solving for the full EM vertex, then gives the following result:

TE ks ko) = v (k) + D 1(p)Golp — kW (p — k. p = k)Go(p — ky)
p

= DY tp (P )Go(p — kGo(p — DGU)TE LG
p 1

= Y tpH(p)Go(p — G(p — DGol )W (U4, 1)Go(l-). (B6)
1

This reproduces the full EM vertex given in Egs. (4.3)—(4.6) of the main text. The first term in the first line is the bare EM vertex
)/E , the second term in the first line is the Maki-Thompson vertex MTg, the second line is the Aslamazov-Larkin vertex ALFf 1

and the third line is the other Aslamazov-Larkin vertex ALY - The Feynman diagrams for the full EM vertex are given in Fig. 9.

An important identity mentioned in Sec. IV of the main text, which relates the Maki-Thompson vertex to the Aslamazov-Larkin
vertices, is g, [2MTg(k*,k~) + ALg NG s ALE g2(k™,k7)] = 0. This is proved directly as follows. By applying the bare
WTI to the MT vertex in Eq. (B6), 1t follows that

guMTE(K k) =Y t(p)Golp — ky) = Go(p — k)] = E(ky) — T(k-). B7)

p

Similarly, by applying the bare and full WTIs to the AL vertices in Eq. (B6), it follows that

qu[ALE (ke k) + ALE (ki kO)] = = D 1(p0)1(p)Go(p — k) Y Go(p = DIGU-) — G(L)]
P 1

— Y tp(p)Golp =) Y G(p = DIGo(I-) — Go(l1)]
p !

= =2 " tlp)(p)Go(p — BIT(p-) — T(p4)]
p
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= =2 [t(py) — t(p)Go(p — k)
P

= —2[Z(ky) — T(k)]. (B8)

From Egs. (B7) and (B8) the desired result follows: qu[ZMTg(k+,k’) + ALgyl(kJr,k’) + ALgi(k*,k*)] =0.
Once the full EM vertex has been determined, the exact EM response functions can be computed via

P (g) =2 Gk)TE (ks k)G k_)y (k- k). (B9)
k

The Feynman diagrams for the exact EM response functions are given in Fig. 10. Since the full EM vertex itself appears in the
first Aslamazov-Larkin diagram (ALg ;), the explicit closed form of the full EM vertex for the G G pair-fluctuation theory cannot
be obtained. The result is a complicated integral equation that is theoretically intractable.

2. GGy pair-fluctuation theory

The previous section derived the full EM response for the G G pair-fluctuation theory. A similar derivation can be performed
for the GG pair-fluctuation theory. Since the calculation is almost identical to the one performed in the previous section, only the
final results are given. The self-energy for the GG pair-fluctuation theory is £ (k) = ) » Hp)Golp —k)=>_ » t(p + k)Go(p),
where the ¢t matrix is defined through the pair susceptibility by t~(p) = g~ + (p), with TI(p) = >, Go(p — DGo(l) the pair
susceptibility. The pair susceptibility in this theory has two identical bare Green’s functions. This means that when all possible
vertex insertions in the self-energy are performed, two identical Aslamazov-Larkin diagrams will arise from the two bare vertex
insertions in the Green’s functions in the pair susceptibility. Following the same procedure as in the previous section, the full EM
vertex is given by

PE ks ko) =yl (ki k) + Y 1(p)Golp — kW (p —k—,p — k)Go(p — ky)
V4

=23 3 tp)tp)Go(p — Go(p — DGol )y (s 1)Go(l-).

P 1

(B10)

(

The Feynman diagrams for the exact EM response functions
are given in Fig. 11. Notice that, in contrast to the GG pair-
fluctuation theory, the full EM vertex itself does not appear
in either the Maki-Thompson or Aslamazov-Larkin diagrams.
Therefore, provided the # matrix is known exactly, in principle

FIG. 9. Feynman diagrams for the full EM vertex in the GG,
pair-fluctuation theory.

the explicit closed form of the full EM vertex for the GoGy
pair-fluctuation theory can be obtained.

Note the distinction between Figs. 10 and 11; the GGy
pair-fluctuation theory contains dressed ¢ matrices, and the
Aslamazov-Larkin diagrams ALg; and ALg, have two and
one dressed Green’s functions, respectively, appearing in the
leftmost triangle vertex. In contrast the GoG¢ pair-fluctuation
theory has ¢ matrices constructed solely of bare Green’s
functions, and two identical Aslamazov-Larkin diagrams with
only bare Green’s functions and bare vertices in the leftmost
triangle vertex.

The standard response functions considered in the weak-
fluctuation literature arise by expanding the diagrams in Fig. 11
to lowest order, that is, by expanding the Green’s functions ac-
cording to a truncated Dyson’s equation: G = Gy + Gy X Gy.
Performing this expansion on the diagrams in Fig. 11, the
result is the normal state “bubble,” two density of states,
one Maki-Thompson, and two identical Aslamazov-Larkin
diagrams, all with bare Green’s functions and bare vertices.
This reproduces the Feynman diagrams in Ref. [20]. However,
it is not a gauge-invariant set of diagrams, and only satisfies
the WTI to O(X) [42]. These diagrams are shown in Fig. 12.

APPENDIX C: DIAMAGNETIC SUSCEPTIBILITY
IN THE SMALL-| pt i | LIMIT

In Sec. V of the main text, the contribution to diamag-
netic susceptibility from the Aslamazov-Larkin diagrams was
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Go(p— k) G(ky)
Yo —k—,p—ky) Ak, ky)
+ --<<-- --<---
Go(p— k-) G(k_)

FIG. 10. Feynman diagrams for the exact EM response functions in the GG pair-fluctuation theory. In order from left to right, and top
to bottom, there is one “bubble,” one Maki-Thompson, one Aslamazov-Larkin (ALg ;), and another (nonidentical) Aslamazov-Larkin (ALg )

diagram.

obtained in the small-|gtpq;r| limit. The calculation was sim-
plified by ignoring the Matsubara frequency summation and
just treating the integrand with zero bosonic Matsubara fre-
quency. This is justified in the small-|iip | limit, and was
also performed in the seminal paper [20] of Aslamazov and
Larkin. In this appendix the Matsubara frequency summation
is performed, and a complete calculation of diamagnetic
susceptibility in the small-| 4 p; | limitis presented. The starting

point is Eq. (5.4) of the main text:
ar(p) 7T
3 [ (p)} } 1)

aM(p) ] 9?
Xdia =€) [ﬂ] {t(l?) 1) o
p

ap* I(pY)?

The ¢ matrix is related to the pair susceptibility by t~!(p) =
g '+ TI(p); thus it follows that 3t(p)/dp’ = —t*(p)
(8~ (p)/3p”] = —1*(p)[T1(p)/dp”].  Similarly 9°1(p)/
Ap*y = 20(pBI(pP)/Ip’ — (PP TL(p)/d(p*)].

G(ky)

/‘/E(k+7 k*)

Vi (k= k)

Prg) = --- ----

Therefore, using these identities gives

aM(p) T a(p) 9211
s = ezz[ (p)} {t4(p)[ (p)} T (p)}'
P

op* opY d(p»)?
(€2)

The term that is quartic in the # matrix can be simplified as
follows:

aM(p)]? aM(p)]?
Z[ a(f)} t4(p)[ (p)]
—~L ap’

B ATI(p) > dT1(p) 31(p) ,
- _Z ap* , “(p)
> P op» opY
G()(p - /ﬁ+> G(k+)
V(P —k—,p —ky) A4k, ky)
__.<.__ P —_——
Go(p—k-) G(k-)

to(p+)

FIG. 11. Feynman diagrams for the exact EM response functions in the GG pair-fluctuation theory. In order from left to right, and top to
bottom, there is one “bubble,” one Maki-Thompson, and two identical Aslamazov-Larkin diagrams.
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Go(ky)

o

Go(p —k4) Go(ky)
Yelp—k_.p—ky) ’7E(k k)
+ ----- -<---

Go(p —k-) Go(k-)

Go(ky)
(ky, k) Ve (k- by
+ --<-- B
Go(k_) g X" Go(k_)
Go(p — k-)
to(p+)
G()(kpr)
"/E(kka+)
-

Go(k-)

FIG. 12. Lowest order Feynman diagrams for the EM response functions in the GG pair-fluctuation theory. In order from left to right,

and top to bottom, there is a normal state “bubble,” one Maki-Thompson
dT1(p) 31°(p)

-]y
o222

A(p)?
T1(p) IT1(p) 9°TI(p)
opy  dp* apYap* |’
Inserting this result into Eq. (C2) and then simplifying gives
the diamagnetic susceptibility as

Xdia = ——— Z 3( ){[an(p)]

_ 0II(p) 8I1(p) 321'1(17)}

ap»  dp* dprapr ]

This is a general expression for the diamagnetic susceptibility

due to the dominant contribution in the Aslamazov-Larkin

diagrams. Note that for the case of the weak-fluctuation theory,

where the pair susceptibility is IT1(p) = >, Go(p — DGo(D),

Eq. (C4) is equivalent to Eq. (17) of the Aslamazov-Larkin
paper [20].

To obtain the diamagnetic susceptibility in the small-| it pair|
limit, we now use the small-momentum form of the pair
propagator, as defined in Eq. (1.1) of the main text: 5 Yw,p) =
Zlkw — p2/(2Mpair) — |Mpair] +iT'ww], and the definition
t~'(p) = g7' + II(p). Evaluating the spatial derivatives in
Eq. (C4) gives 9l1(p)/ap* = 3t~ (p)/dp* = —Zp* | Mpuir,

9°T(p)/d(p*)* = —Z/Mpir, and 8*T1(p)/dp*dp* = 0. In-
serting these results into Eq. (C4) then gives the first line of

3*T(p)

+ 2 (C3)

9°T1(p)
A(p?)?

(C4)

064503-

, two density of states, and two identical Aslamazov-Larkin diagrams.

Eq. (5.6) of the main text, where the Matsubara frequency
summation has been restored:

2¢? ;(

3prair
To simplify this expression, note that 3t~'(p)/dp* =
—Zp*/Mpie  and  31(p)/dp* = —1*(p)[dt~ ' (p)/dp*] =
Zt*(p)p* | Mpair. Using these identities, along with performing
integration by parts, the diamagnetic susceptibility becomes

X

P
M pair

2
Xdia = ) (Zt(p)]. (C5)

Xdia = 2¢2 Zszt(p)at(p)
" 3jupair Mpair 8px
_ e’ Z2p* 3t3(p)
31‘4pair Mpair 3Px
= 3M2 Z[Zr(pn (C6)

pair

To perform the Matsubara frequency summation, we use
the Eliashberg contour [5] and the identity (valid for bosonic
Matsubara frequencies) [5,32]

Ty flw,) = ?{dz coth (%ﬁz)f(z), ()

iwy,

where 8 = 1/(kpT) and we set kg = 1. Here C is a closed
contour enclosing the poles of coth(8z/2), which occur at
the bosonic Matsubara frequencies z = iw,, = 2wimT, where
m € Z. Since the semicircle contribution to the integral in
Eq. (C6) vanishes, the contour integral can be deformed to an

18
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integral above and below the real axis. Thus the diamagnetic susceptibility becomes

Z2e
S 3M2

pair

Xdia =

= Z f dx coth (%,Bx)Re[tR(x,p)]Im[tR(x,p)].

pair p

247” / dx coth( ﬂx)[tR(x p) — (x,p)]

(C8)

Here g and 7 denote the retarded and advanced propagators, which are related by 7(z,p) = fr(z,p)*.
In the small-|ptpqir| limit the main contribution to the integral occurs when Bx < 1, which allows the coth function to be

expanded as coth(B8x/2) ~ 2T /x. Inserting the retarded propagator, defined by f Yx,p) =

into the above expression then gives

2¢’TT >
e I

pair

_ 4@2T Z 1
3 P (P2 + 2]‘4pair|:u'pair|)2

Zlkx — pz/(ZMpair) - |Mpair| +ilx],
KX — P /(2Mpalr) |/1«pair|
00 [(,ex — 2/(2Mpalr) |//Lpa1r|)2 + (FX)Z]Z
(€9

2T p
= B dp 3 PR
3 — 00 (p + 2Mpair|,upair|)

The remaining p integration is easily performed using a closed
contour integral in the upper half plane and evaluating the
residue at the pole p =i (2Mpairlupair|)1/ 2. This gives, after
restoring the constants 7, kg, and c,

kpT(2e)* |1/(2Mpair)
Xdia = — .
247 hc? |I‘Lpair|

The diamagnetic susceptibility is written in this form to
compare with the free boson result, which is derived in the
next section. The above expression reproduces Eq. (5.7) of
the main text, and validates the approximation made there
concerning setting the bosonic Matsubara frequency to zero
in the integrand.

(C10)

APPENDIX D: FREE BOSON DIAMAGNETIC
SUSCEPTIBILITY

This section derives the diamagnetic susceptibility for free
bosons and also gives the limiting form when the chemical
potential tends to zero. While the free boson diamagnetic
susceptibility is well known, the aim here is to express it in
an identical form to the Aslamazov-Larkin contribution to
diamagnetic susceptibility for the G G pair-fluctuation theory.

The Kubo formula for diamagnetic susceptibility, xgia, 1S
given in Eq. (3.3) of the main text:

[P’”‘(iQm =0,q)+n/m} ®1)
Q q*=q*=0

Recall that P**(0) = —n/m above T,. The response function
for spin-0 free bosons is given by

Xdia = —lim
q—0

P (g) = —(e*) Y Go(p)vi (p+.p)Go(p-)¥is (p—. 1),
P

(D2)

where the bare Green’s function is G, ' (p) = i@, — &, with

& = p>/(2my,) — uy, the free particle dispersion, and the bare
vertex is yg(p4,p-) = p*/my. Here my and pp are the

(

free boson mass and chemical potential, respectively. The
four-vectors p*,q* are p* = (iw,,,p), ¢"* = (i2,,q), where
@, 2, are both bosonic Matsubara frequencies, and py =
p £ q/2. The four-vector summation is defined by ) »=
T i, 2p> Where T is the temperature. Note the relative
sign difference compared to the fermionic response function
in Eq. (3.1) of the main text.

Expanding out the Green’s functions in Eq. (D2) to O(q?)
and then using Eq. (D1), the free boson diamagnetic suscepti-
bility becomes

(@) PGo(p)  [IG (P
r ;{G() 9P [ o’ “(m?)

(D3)

Comparing this expression with that appearing in Eq. (5.4) of
the main text proves the claim at the beginning of this section,
namely that the Aslamazov-Larkin contribution to diamagnetic
susceptibility is of the free boson form but with modified
vertices and propagators. Now perform integration by parts
on the first term to obtain

@ [3Gom P
w50 (R)

Another expression involving the product of four Green’s
functions, which has occurred in the fermion literature [60],
can also be obtained:

(@ [3Gm (P
w=- 5  (5)

(e%)? 5, 3Gy (p) g
Sy e e (2]

p

- Zen() (7).

(D4)

(D5)
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The analogous formula for spin—% fermions agrees with Ref. [60]. Another equivalent expression for the free boson diamagnetic
susceptibility can also be obtained, which is identical in form to the Aslamazov-Larkin contribution found in Eq. (5.6) of the
main text. By performing integration by parts on the second term in Eq. (D3), the diamagnetic susceptibility can be expressed as

follows:
*\2 aZG X\ 2
o = (e%) ZGO(P) 0(P)<p_>
p

2 A(p)* \my

(@) PN AT
== ;cow)@[co(p)m—b](m—b)

2

2

*\2
- (62) Y Gyp
P

Equating this expression with Eq. (D5) then gives

X = 6mb 7 My, 0ip)-

Comparison of this equation with that appearing in the first
line of Eq. (5.6) of the main text shows that the Aslamazov-
Larkin contribution to diamagnetic susceptibility is equivalent
to the free boson diamagnetic susceptibility with free boson
charge e* = 2e,massmy, = M, and chemical potential u, =
Mpair- This shows that in the small-|ftpi| limit, the underlying
effect of the fermionic interactions in the G G pair-fluctuation
theory is to modify the free boson parameters. Such an effect
is intuitive in the deep BEC regime, where the paired degrees
of freedom behave as fluctuating bosons.
The expression in Eq. (D7) can be simplified as follows:

B (6‘*)2 px 2 3
Xo = G > ) Go®)
P
_ (e P dGo(p)
= o 2 () 50055
(")

= > Gip). (D8)
P

12m2

After performing the Matsubara frequency summation, and
then integrating by parts, the free boson diamagnetic suscep-

J

)2 (1 3Go(p) P ( P*\
IR SNt oG (p) +2Go(p) olp ”’—](”—)
- I

*)2 M1 3G, " 1/ \°
€ S Gop) m—bG3<p>—2G3<p>M”—}<p—>
p

op¥  my | \my

apY  my | \my

1 » 2 P 2
e (2) (2. (D6)
L7 ny my,

(

tibility becomes

(€  9b(&p)

Xb =

12m? & 3¢,

__ ) / " dp bi&,) (DY)
= T 24ntmy ), PP

Here b(x) = [exp(Bx) — 1]~ is the Bose-Einstein distribution
function. In the limit that |u|/T < 1, the above expression

reduces to
kT [1/2my)
=" umne el

The constants 7, kg, and ¢ have been restored to render ¥,
dimensionless. Comparison of Eqgs. (D10) and (5.7) of the
main text proves the result stated in the main text, namely that
the small-|ppqir| limit of the Aslamazov-Larkin contribution
to diamagnetic susceptibility is equivalent to the free boson
diamagnetic susceptibility, but with bosonic charge ¢* = 2e,
mass my = Mpqir, and chemical potential (y, = fpair-

(D10)

APPENDIX E: THERMOELECTRIC RESPONSE
1. Ward-Takahashi identity for energy conservation

In Sec. VI of the main text the full heat vertex was presented
along with a discussion of the WTI for energy conservation.
Here we explicitly prove that the full heat vertex satisfies the
WTI for energy conservation. The full heat vertex, as given in
Eqgs. (6.3)-(6.7) of the main text, is

Fﬁ(k-ﬁ-’k—) = VIfIL(k+ak—) + MTﬁ(k+7k—) + )‘-ﬁ(k-‘rﬂk—) + ALﬁql(k-ﬁ-’k—) + ALﬁ’Q(k+7k—)a (El)

where the Maki-Thompson, Aslamazov-Larkin, and kﬁ heat vertices are

MT} (ki ko) =Y t(p)Go(p — kWi (p — k—.p —k)Go(p — ky), (E2)

p
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ALY (ki ko) = = " t(p)t(p)Go(p — k)Go(p — DGA)T}(y 1 )G(L), (E3)
V4 1

ALY (ki ko) = = " t(p)t(p)Go(p — G(p — DGoll )y Ly 1-)Go(l-), (E4)
V4 l

Mk ko) =Y g8 1(pi(p)Golp — k). (ES)

P
The WTI for energy conservation is expressed as
auThky k) = 0 G~ (k) — 0 G (ko). (E6)

For convenience, this can be equivalently written as g, 'y (k4 ,k—) = (k_ G (ky) — (k4 )°G~1(k_), where k° denotes the time
component of the four-vector £* = (w,k).

The contractions of the vertices in Eqs. (E2)—(E5) are computed as follows. Using the bare WTI for energy conservation, the
contraction of the MT vertex is

auMTh (ks ko) =Y 1(p)Go(p — k)[(p —k)°G ' (p — k) — (p — k)G (p — k)] Go(p — k)
p

=Y 1(P(p —k)°Go(p —ks) = (p = k)’ Go(p — k) = D _(p —K)’Go(p — Bt(ps) — 1(p)]. (BT
p P

The contraction of the AL vertices is

qu[ ALY (kg ko) + ALY (ki k)] = =YY " tp )t(p)Golp — K)Go(p — DGUNIA-) G Uy) — 1)°G ' 1)IGA-)
V4 l

= > tpI(p)Go(p — G (p — DGo)II-)’Gy ' (Uy) — (14)° G U)1Go(l-)

p l

==Y ") tp)t(p)Go(p — K)Go(p — DIU-Y’G(-) — (11)°G(I,)]
V4 1

= > tpIp)Go(p — G (p — DIA-)Go(l-) — ()" Go(l)]. (E8)
P l

Now consider Eq. (E8). In the first term, on the first line, let/ — p, — [, and in the second term, on the first line, let! — p_ — 1,
to obtain

au[ ALY (kg ko) + ALG (ki k)] = =YY " t(p )t (p4)Go(p — K)Gol)G(p — D(p-)°
p 1

+ YD tp)tp)Golp — HGo(l)G(p — D(p+)’- (E9)

)4 1

The sum over / can be computed, using the definition of the pair susceptibility: I[T(p+) = Y, Go(I+)G(p — ). Performing the /
summation, then using the definition ¢ ~'(p) = g~! + I1(p) and simplifying, it follows that

@u[ALE (ki ko) + ALY (kg k)]

==Y tpI)t(p)Go(p — OT(p-)(p-)" + > t(p)t(p)Golp — TP )(ps)°
P p

==Y tp)Golp =) (P)" + D t(p)Go(p —k)(p)° —q°8™ Y tp I(p)Go(p — k). (E10)
14 14 4

The contraction of the Aj; vertex is easily computed to give

Guritks k) =g Y tp )t (p)Golp — ), (E11)
p

Combining Eqgs. (E10) and (E11) then produces

qu[ ALY (kg ko) + ALY (kg ko) + Ak k)] = D Golp = BIE(p-)(p4)° — t(p)(p-)°l. (E12)
p
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Adding Eq. (E7) together with Eq. (E12) and simplifying gives
u[MTE k) + ALE (ko) + ALE (ko) + Aty k)] =

The contraction of the full heat vertex is thus

quThky ko) = q.[ vy

D Golp — B(p)ky)® — t(p)(k-)°]
p

= (k)" S (k-) — (k-)°2 (k). (E13)
b (ky ko) + MTy(kp ko) + ALY (kg ko) + ALY 5 (ki ko) 4 Agylkg ko) ]
= (k)°Gy ' (ky) — (k)G (ko) + (k) S (ko) — (k) (ky)
ky) — k)’ G (K2). (E14)

= k)G~

As claimed in Sec. VI of the main text, the full heat vertex in Eq. (E1) satisfies the WTI for energy conservation [Eq. (E6)]. Note
that it is crucial to include the vertex Ay (ks ,k_) to satisfy the WTL

2. Bosonic electromagnetic vertex

This section presents a derivation of the bosonic electromag-
netic vertex appearing in the Aslamazov-Larkin diagrams. The
derivation is based solely on the form of the “triangle” vertices
appearing in these diagrams, along with the constraint imposed
by the Ward-Takahashi identity. Without loss of generality,
consider the X component. Equivalent results hold for the § and
Z components. This vertex appears in Eq. (5.2) of the main text.

The electromagnetic “triangle” vertex appearing in the
ALg , diagram is shown in Fig. 13. Mathematically this is
given by

Ag1(p.p) == _ Go(p —DGIOTEA,DG(). (E15)
l

The minus sign arises from the fermion loop in the Aslamazov-
Larkin triangle vertex. The WTI for global particle number
conservation is ¢, g (ky.k_) = G '(ky) — G7'(k_). In the
g — 0 limit, this produces the Ward identity: Fg (k,k) =
G (k) /0k,,. For the £ component, it follows that I'g(/,/) =
—3G~!(1)/a1*. Inserting this into Eq. (E15) and then perform-
ing integration by parts gives

_'(l)

Z Go(p — DG G(l)

Ag,(p.p) =

_ IG(l)
= —;G()(p -D—5

p

FIG. 13. The electromagnetic “triangle” vertex appearing in the
ALg | Aslamazov-Larkin diagram. The external momentum p is the
momentum of the pair propagators. The triangle vertex represents a
bosonic electromagnetic vertex, Ag (p, p), which is computed in the
text.

(

dGo(p —
Z o D6

—DG). (E16)

By definition, the pair susceptibility is IT(p) = >, Go(p —
DG =t~ p) — g~ . Therefore, it follows that the bosonic
electromagnetic vertex for ALg | is

dIl(p) 3t~ (p)
Af (p,p) = — =— . E17
£1(P.P) op* i (EL7)
For comparison, the fermionic electromagnetic vertex, derived
above, is 't (k,k) = —0G~!(k)/dk*.
The electromagnetic vertex appearing in the AL , diagram
is derived in exactly the same manner. This diagram is shown

in Fig. 14. Mathematically this is given by
- Z G(p —DGo(Dyg (1.DGoD).
1

Ag,(p.p) = (E18)
The minus sign arises from the fermion loop in the Aslamazov-
Larkin triangle vertex. Following the same steps as before, this
vertex can be simplified as follows:

Afo(p.p) = Z G(p — G S o d )Go(l)
. Z G BGO(Z)
p
NN
Go(l)
- _lﬁ(ii) | Xel'm)
Go(l)
NN
p

FIG. 14. The electromagnetic “triangle” vertex appearing in the
ALg , Aslamazov-Larkin diagram. The external momentum p is the
momentum of the pair propagators. The triangle vertex represents a
bosonic electromagnetic vertex, Ag ,(p, p), which is computed in the
text.
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3. Bosonic heat vertex

The form of the bosonic heat vertex requires a more lengthy
analysis, which is presented in what follows. Without loss of
generality, consider the ¥ component. Equivalent results hold
for the $ and Z components. The heat “triangle” vertex for
the ALf;; Aslamazov-Larkin diagram is shown in Fig. 15.
Mathematically this is given by

p A i(p.p) ==Y _ Golp = DGOTHADGD). (E22)
l

FIG. 15. The heat “triangle” vertex appearing in the ALj
Aslamazov-Larkin diagram. The external momentum p is the momen-
tum of the pair propagators. The triangle vertex represents a bosonic
heat vertex Aj (P, p)s which is computed in the text.

The minus sign arises from the fermion loop in the Aslamazov-
Larkin triangle vertex. The WTI for global spacetime trans-
lation symmetry (conservation of energy) is g, f;(ks.,k_) =
_ Z AG(p — Z)G 0 w_G7 ' (ky) — 0, G7(k_). In the ¢ — 0 limit, this gives the
- PYES 0 heat vertex analog of the EM Ward identity. For the £ compo-

! nent, it follows that I'jj(/,) = —e[aG’l(l)/BlX]. Inserting this

— DGo(D). (E19) into Eq. (E22), and then performing integration by parts, gives
: . : : 3G~ (D)
The pair susceptibility can also be written as II(p) = Ay (p.p) = Z i€,Go(p —DG() —G(0)
>, Gp—DGo() = t~!(p) — g~ . Therefore, it follows that | dl
the bosonic electromagnetic vertex for AL , is AG(0)
: M) =~ 2O =D
Afo(p.p) = — =- . (E20)
op* op* B Z aGo(p 0Gop =)
Thus, the bosonic electromagnetic vertex appearing in ALg
and ALE , isidentical: Ag | (p,p) = Ag ,(p, p). Itfollows that 9
the bosonic EM vertex for the combination of ALg | + ALg ,is - _ Z ie,Go(p —DG(). (E23)
ap*
!
Ag1(p.p) + Ago(p.p) = Ag(p.p) = o 2P) o . .
’ ' ap* Now write this in a symmetric form, by letting [ — [ + p/2,
at1(p) and also/ — —I 4+ p/2, and summing one half of each of the
= —28—. (E21) resulting expressions; this produces
pX
|
Niapp) = =355 Z (i€n +iw/2)Go(p/2 = DG + p/2)
1
+iwn/2)Go(p/2 +DG(=L + p/2). (E24)

28p

The heat “triangle” vertex for the AL{; , Aslamazov-Larkin diagram is shown in Fig. 16. Mathematically this is given by
Af2(p.p) = — Z G(p —DGo(DriL.DHGoD). (E25)
!

The minus sign arises from the fermion loop in the Aslamazov-Larkin triangle vertex. Following the same steps as before, this
vertex can be simplified as follows:

3G,

Afo(p.p) = i€, G(p — DGo(l) a‘}x( Got)
1

aGo(l)

alx

=-> iaGp -1
l

0G(p —1
Y e, 96¢ =D g
. alx

G(p —DGo(). (E26)
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Now write this in a symmetric form, by letting [ — [ 4+ p/2, and also | — —/ + p/2, and summing one half of each of the

resulting expressions; this produces

. 1
Niia(pop) = =35 Z(zen +iw,/2)G(p/2 = DGo(l + p/2)
1 0
—5 i —i€, +iw,/2)G(p/2 + DGo(—1 + p/2). (E27)
[
Adding the results in Eqs. (E24) and (E27) together and The bosonic heat vertex Ay is defined by

simplifying then produces

Ay (P, p) + Afio(psp)
i@y,

2 ap~

= AL(p.p) = — Z Go(p/2 —G(+p/2)

iy,

2 9p*

ZGo<p/2+l>G( I+p/2)

=—iw,— Go(p — DG(). E28
lwax;o(l? )G(1) (E28)
Using the definition of the pair susceptibility, I1(p) =
> Golp —DG() = t~1(p) — g~!, it follows that the bosonic

heat vertex for the combination of ALy | + ALy, is
TI(p)
(24
8 X

1
= P (g
ap*

Aj(p,p) = —

Ay (p,p) + Afa(p.p) =

For comparison, the fermionic full heat vertex, derived above,
is T'y(k,k) = —a)[BG’l(k)/E)kx]. Notice that it is the sum of
two heat triangle vertices which produces a bosonic heat vertex
in a form similar to its fermionic counterpart. This factor of two
has caused a lot of controversy in the literature [21,28,44-46].
The factor of two difference between the fermionic and bosonic
result is due to charge, as will be explained in detail in the next
paragraph.

If we restore the electric charge e appearing in the EM
vertex, then the relation between the fermionic heat and EM
vertices is

w
k) = STEk.K). (E30)
e
p
NAAAAAN
Go(l)
(L)
- Y G-
Go(l)
AANAAAN
P
FIG. 16. The heat “triangle” vertex for the AL}, Aslamazov-

Larkin diagram. The external momentum p is the momentum of the
pair propagators. The triangle vertex represents a bosonic heat vertex
Afp»(p, p), which is computed in the text.

Aq1(p,p) + Afa(p.p) = Ax(p, p) = w[dll(p)/dp*] =
@ [0t~ (p)/dp*]. Similarly the bosonic EM vertex A} obeys
Ag(p.p) + Agy(p.p) = Ag(p.p) = 2[8H(p)/8p =
2[3t~( p)/dp*]. Thus, the relation between the bosonic heat
and EM vertices is

Aq(p.p) = —AE(P p)= —Aﬁ(p p). (E31)

Here e¢* = 2e, and the factor of two appears due to the
composite bosons comprising of paired fermions. Thus, the
fundamental relation between the heat and EM vertices is
that the heat vertex equals the matter current multiplied by
energy (frequency) whereas the EM vertex equals the matter
current multiplied by charge; thus the heat vertex equals the
EM vertex multiplied by the ratio of frequency to charge. The
normalization by the corresponding charge (e for fermions and
e* for bosons) causes there to be a factor of two difference
between microscopic fermions and composite bosons, because
the composite bosons are formed from the pairing of two
fermions and thus have charge e* = 2¢ [37]. This result has
also been derived independently in Ref. [55].

4. Transverse thermoelectric coefficient

The result for the transverse thermoelectric coefficient is
given in Eq. (6.11) of the main text. Here further details of
the calculation are presented. As stated in Sec. VI of the main
text, the transverse thermoelectric coefficient is computed by
performing all possible electromagnetic vertex insertions in
the heat current—electric current correlation function. In the
small-|ftpair | limit, only the electromagnetic vertex insertions in
the Aslamazov-Larkin diagram contribution to this correlation
function are of interest [21]. The reason for this is similar to
what occurs in the case of the diamagnetic susceptibility, which
in the small-|fpy;;| limit has a singular contribution arising
from only the Aslamazov-Larkin diagrams. Finally, only the
electromagnetic vertex insertions in the pair propagator need
to be considered. Again, the resulting correlation function
gives the most singular contribution because it contains three
pair propagators [21]. For a given pair propagator, there are
two electromagnetic triangle vertices that can be inserted into
the propagator. Since the ALy ; and ALg , electromagnetic
vertices are equivalent to the bosonic electromagnetic vertex
Afﬁ:y | [see Egs. (E17) and (E20)], these two insertions give a
symmetry factor of two. There is also the symmetry factor
of two arising from spin degeneracy for a spin—% system
of fermions. Finally, the heat vertex for the combination of
ALy, and ALy}, reduces to the bosonic heat vertex Aj.
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t(?:wm + 7:9777,7 p+)

AVVE (iQnu (2) =

FIG. 17. The Aslamazov-Larkin diagrams that give the singular contribution to the transverse thermoelectric coefficient. The vertices Ag
and Ay represent bosonic electromagnetic and heat vertices, respectively. The bosonic vertices have been computed in Appendix E2 and
Appendix E3 from the triangle vertices in the Aslamazov-Larkin diagrams.

Thus, the bosonic three-point correlation function has a total be absorbed into the EM vertices using Ag = 2Ag,;. The
symmetry factor of four. This symmetry factor of four can  correlation function now becomes

J

Ayyx(iQm’ Q) = - 62 Z [Al‘-[(lwm + ierp-‘r; lwmap—)AE(lme’—, lwm’pﬂ’)AE(lw_m?p-ﬁ-? lwm + lQmap+)

X t(lwm + iQm»P+)t(iwm,P—)l(i?D'm,p+)
+ A]\-[(lw_m - iQm»p lw_mser)AE(lwm,er’lwm’p )A (lwm:P lwm - lQmaIL)
X (i@ — iQ, Py, P (T, P-) ] (E32)

Here the vertex notation is defined by A“(p + Q + i, p) = A (iwy, +i2,,p + Q; iw,,,p), and p+ = p £ Q/2. The vector
Q is along the * direction: Q = QX. The diagrams for this bosonic three-point correlation function are shown in Fig. 17.

The bosonic electromagnetic and heat vertices are given in Eqs. (E21) and (E29), respectively. Using these results to express
the bosonic vertices in Eq. (E32) then gives

2
AV (i, Q) = —4e Z[ < ) (@ 4 Q2 /20D + 12, P, P (D, Py)
palr palr

Zp* ( Zp?Y
M, pair M, pair
The Matsubara frequency summation is performed by using the Eliashberg contour [5,21,32] (see Appendix C for details). After
performing the Matsubara frequency summation, and analytically continuing to real frequencies, i2,, — € + i0", the result is

> (lwm - iQm/z)t(iwm - iQm’p—)t(iwm’p+)t(iwm7p—):|- (E33)

1 ZpY ( Z
AY(RQ,0) = —4e22/ — coth( ﬁx){ﬁ(Mil) (x + Q/Dtr(x + Q,p)Im[tr (x,p)tr(x,p+)]

Zpt [ Zp’
L Zrs < p ) (x — Q/2)ta(x — Q.p)tA(x — 2.p)Im[tr(x,p)]

Mpair Mpalr
Zp* (Zp*\’
(x = Q2/2)ta(x — Q,p_)Im[rg (x,p4)1r (x,p-)]
Mpair Mpair
zp* (zp* \*
+ (x + Q/Dtr(x + 2, p_)r(x + Q,p)Im[tr (x,p-)] ¢ (E34)
Mpair Mpair

The transverse thermoelectric coefficient can now be computed using the Kubo formula:

o gim L Re[AY(Q.0)ig a0 (E35)
EB Q,0-020c

Inserting the retarded pair propagator, defined by 7 1(x,p) = Z[kx —p*/ (2Mpair) — |fpair] + iT'x], into Eq. (E34), and then
taking the limits Q — 0 followed by £ — 0 in Eq. (E35), gives j,/EB. In the small-|tpq; | limit, the main contribution to the
integral occurs when Bx <« 1, which allows the coth function to be expanded as coth(8x/2) ~ 2T /x. In this limit, the current
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becomes

]y

(i
Mpalr

Z
(i

M pair

)
)G

20 ZpY >
< 14 ) %;{Re[tR(x p)|Im[tr(x,p)] — Im[£3 (x,p)|Re[tr (x.p)]}

2T x(kx — P*/2Mopgic — | pair])

2 dx 1
Mpalr oo X {[Kx - 2/(2Mpalr)

|Mpair|]2 + (Fx)2}3

1

P

—3Te2<lc +r2>2( >2< r’
Cc palr Mpair

c r2 P (P2 + 2Mpajr|/ipair|)2 '

[pz/(ZMpair) + |/'Lpair|]4

(E36)

The momentum integral is the same as that performed in Eq. (C9). Using that result for the momentum integration then gives the

result in Eq. (6.10) of the main text:

Jy _ kgTe? 1/(2Mpair)<,c2+r2)
EB  4xh’c\  |itpal r:. )

(E37)

The constants /i, kg, and ¢ have been restored in this expression. The transverse thermoelectric coefficient is determined from
Oyy = Blcxdaia/h — j¥/(E B)]; using Egs. (C10) and (E37) then gives the result stated in Eq. (6.11) of the main text:

- BkpTe* [1/(2Mpair) <3K2 + r2>
Oyy = .
Y 127k | L pair | r2

(E38)
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