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The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally
since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of
FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum
in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of
the pairs. These results address the absence of convincing experimental observations of FFLO phases in both
condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true
ground state has a pair momentum distribution highly peaked on an entire constant energy surface.
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I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states,
which were first predicted by Fulde and Ferrell [1] (FF) and
Larkin and Ovchinnikov [2] (LO) in an s-wave superconductor
in the presence of a Zeeman field over fifty years ago, have
attracted enormous attention in condensed matter physics
[3–6], including heavy-fermion [7–9], organic [10–13], and
high-Tc superconductors [14], nuclear matter [15] and color
superconductivity [16], and, more recently, in ultracold Fermi
gases [17]. Conventional BCS superfluidity originates from
Bose-Einstein condensation (BEC) of Cooper pairs at zero
momentum. In contrast, in these exotic states, Cooper pairs
condense either at a finite momentum q, with a one-plane-wave
order parameter �(r) = �0e

iq·r or at momenta ±q, with a
standing-wave order parameter �(r) = �0 cos(q · r) for the
FF and LO states, respectively.

These exotic superfluids have been actively searched for
over the past half century. The strongest signatures of FFLO
states come from heavy fermion [7,8,18–24], and organic
superconductors [25–30]. References [3] and [31] give nice
reviews of possible experimental observations as well as
theoretical surveys of FFLO states.

For heavy fermions, Gloos et al. [18] and Huxley et al.
[19] reported possible FFLO states in UPd2Al3 and CeRu2,
respectively. However, they were argued to be inconsistent with
theory [32,33]. The majority of heavy fermion signatures come
from CeCoIn5. Radovan et al. [7] reported the first possible
thermodynamic signature of FFLO states in CeCoIn5 via
heat capacity and magnetization measurements. However, they
considered an FFLO wave vector perpendicular to the highly
two-dimensional Fermi surface, which is rather different from
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the case of a Fermi surface mismatch considered in the original
FF and LO ideas. Bianchi et al. [22] reported specific heat
measurements of CeCoIn5 near the superconducting critical
field Hc2, with magnetic fields in different directions, and at
temperatures down to 50 mK, and interpreted an observed
second specific heat anomaly as signatures of FFLO states,
which seems to have been under doubt in later works [8].
Kumagai et al. [20] reported signatures that can be associated
with FFLO states in CeCoIn5 via NMR studies of 115In
in a perpendicular field. Mitrovic et al. [21] observed a
spin susceptibility enhancement in possible FFLO states in
CeCoIn5. Kenzelmann et al. [8] reported an observation of
coexisting magnetic order and superconductivity in CeCoIn5,
and suggested a form of superconductivity (referred to as
Q phase) that is associated with a nonvanishing momentum.
However, they also noticed discrepancies between theory and
their own experimental observations. Recently, Tokiwa et al.
[23] performed high-precision studies of the isothermal field
dependence of the entropy in CeCoIn5, derived from com-
bined specific heat and magnetocaloric effect measurements,
and did not observe an additional entropy contribution upon
tuning at constant temperature by the magnetic field from the
homogeneous superconducting into the presumed FFLO state.
In addition, for H ‖[100], a reduction of entropy was found
that quantitatively agrees with the expectation for spin-density-
wave order without FFLO superconductivity. Very recently,
Kim et al. [24] observed a reduction of thermal conductivity in
the magnetic Q phase in CeCoIn5, and argued that an additional
order (intertwined with possibly an FFLO state) is needed in
order to account for the data [34].

In organic superconductors, Mayaffre et al. [25] reported
enhancement of NMR relaxation rate in a possible FFLO phase
in κ-(BEDT-TTF)2Cu(NCS)2, and argued that an Andreev
bound state can be used as a hallmark of FFLO states. However,
they failed to establish a hallmark of an Andreev bound state,
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such as a zero bias conductance peak. Koutroulakis et al. [26]
reported an NMR study of the quasi-two-dimensional (2D)
organic superconductor β ′′-(ET)2SF5CH2CF2SO3 and associ-
ated a possible second transition as a signature of FFLO states.
Uji et al. [35] studied the interlayer resistance in high magnetic
fields in λ-(BETS)2FeCl4, and reported results that are consis-
tent with pinning interactions between the vortices penetrating
the insulating layers and the order parameter of the FFLO state.
Yonezawa et al. [28] observed anomalous in-plane anisotropy
of the onset of superconductivity in (TMTSF)2ClO4, and
related it to an occurrence of FFLO phases. Bergk et al. [29]
reported magnetic torque evidence for the FFLO state in the
layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2

from rf penetration depth measurements with a tunnel diode
oscillator in a pulsed magnetic field. Coniglio et al. [30]
reported signatures of FFLO states in λ-(BETS)2GaCl4 also
from rf penetration depth measurements. Agosta et al. [13]
analyzed these recent rf penetration depth measurements and
found possible disagreement between rf penetration depth and
specific heat measurements.

While the existence of an FFLO phase is currently under
active debate, we note that the experimental phase diagrams
were inferred only from NMR, magnetic torque, and specific
heat data, rather than from more definitive phase sensitive
probes and Meissner effects. The phase diagram may be
further complicated by possible pseudogap phenomena, which
can persist above Tc, associated with these heavy-fermion or
organic superconductors. Thus far, there has been no solid
experimental evidence for the FFLO superfluid states from
condensed matter systems.

With the easy tunability of various control parameters,
especially population imbalance [36,37], ultracold Fermi gases
have provided a much greater opportunity and led to a high ex-
pectation for finding the FFLO states. Despite many theoretical
studies in this regard, both in a 3D homogeneous case [38–44]
and in a trap [45–48], as well as in more complex systems,
such as Fermi-Fermi mixtures [43,49,50] or optical lattices
[51], the experimental search for these exotic states in atomic
Fermi gases has not been successful [52,53].

In this paper, we investigate the stability of FFLO states
with an s-wave pairing symmetry against ubiquitous and
inevitable pairing fluctuations, and show that FFLO states are
intrinsically unstable at any finite temperature T due to pairing
fluctuations. We begin with simple arguments based on general
physical grounds, and then demonstrate this instability with
concrete calculations using several different pairing fluctuation
theories, some of which [36,54] have been applied success-
fully to the BCS-BEC crossover physics. Furthermore, we
predict that, in the mean-field FFLO regime in D � 2 (spatial)
dimensions, the true ground state has a pair momentum
distribution highly peaked on an entire (D − 1)-dimensional
constant energy surface (CES), which can be readily tested
experimentally.

We shall mainly work with the 3D continuum case, then
generalize to 2D, and finally discuss possible complications in
the presence of a lattice potential. We note that both the FF
and LO states as well as higher-order crystalline states in the
literature are essentially constructed at the mean-field level;
their stability does not appear to have been properly tested
against pairing fluctuations.

II. GENERAL PICTURE AND ARGUMENTS
ON PHYSICAL GROUNDS

We first argue intuitively that, unlike the BCS case, there
is no compelling constraint requiring condensation into a
superfluid having a finite momentum. To see this, consider a
single minority fermion in the presence of an isotropic majority
Fermi sphere in a homogeneous 3D continuum, without a mass
imbalance. For weak pairing, the ground state is a polaron
moving in the Fermi sea. When the interaction becomes just
strong enough, the minority fermion will pair with a majority
fermion near the Fermi surface to form a (meta-)stable pair.
To minimize the system’s energy, the pair dispersion will
reach a minimum at a finite momentum of q ≈ k

↑
F , where

k
↑
F is the majority Fermi wave vector [55]. Obviously, adding

more minority fermions to form a two-component gas with a
high population imbalance will not lead to abrupt changes,
because the majority background is barely modified by a
small percentage of minority fermions and the influence of
the correlation among minority fermions is negligible. For
weak interactions, the ground state will be minority polarons
moving in the majority Fermi sea. An example of this case
is the destruction of the mean-field FFLO solution by an
overly strong magnetic field in a superconductor; the pairing
strength is simply not strong enough to overcome the big Fermi
surface mismatch, which is necessary to form a pair. For very
strong interactions in the BEC regime, the two-body binding
energy dominates the Fermi energy, so that a non-FFLO,
but polarized (i.e., Sarma [56]) superfluid will emerge at
low T [57].

For intermediate pairing strengths, where the majority
Fermi surface still exists, pairs will first form in the normal state
without phase coherence, with momenta evenly distributed in
all possible directions. As the temperature drops from very
high T into the Fermi degenerate regime such that the Fermi
surface mismatch has a strong effect, the pair dispersion starts
to develop a minimum at a finite momentum q. As T decreases
further, the system will either phase separate into a 50-50
mixture forming a BCS superfluid plus a majority normal
Fermi gas, or try to enter an FF or LO state. At issue is whether
there is a compelling reason for these finite momentum pairs to
Bose condense. For the latter case, since the pair energy reaches
its minimum on a 2D surface in momentum space (which
happens to be spherical surface S2 for a 3D homogeneous
Fermi gas), one finds that no condensation is needed at any
finite T , in order to satisfy the appropriate particle number
constraints; pairing fluctuations destroy Bose condensation of
the pairs.

More concretely, as a starting point, the mean-field FFLO
phase can be regarded as a condensate of pairs at a finite
momentum q (or ±q). Importantly, near the minimum of the
pair dispersion, the pairs have a finite density of states (DOS).
This reflects an infinite degeneracy associated with all possible
directions for momentum q in the thermodynamic limit. As a
result, these pairs cannot condense so that fluctuations destroy
condensation into a single quantum state.

We note that the infinite quantum degeneracy [58] and
finite DOS on the CES occur at any dimensionality above
1D. In 1D, the “CES” becomes merely two points, and the
degeneracy reduces to 2, so that the continuous transverse
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momentum integral on the “CES” becomes a discrete sum,
and thus no divergence associated with a finite DOS will
occur. Nevertheless, there is no long-range order in 1D in
any case, due to the diverging DOS associated with the
remaining longitudinal dimension (which is supposed to
be perpendicular to the two-point “CES”). While one may
consider such a situation as a stripe state, it is certainly
not an FFLO superfluid, and thus is excluded from our
consideration.

To be more concrete, one may approximate the pair disper-
sion in a balanced isotropic system by �p = p2/(2M) − μpair

for small momentum p, with an effective pair mass M and a
bosonic chemical potential μpair. In the case of high population
imbalance, slightly above the FFLO superfluid transition Tc (if
it exists), this dispersion can be approximated by

�p ≈ C(p2 − q2)2 − μpair , (1)

with a constant coefficient C, and q is the radius of the
minimum pair energy surface. Starting from such a state, one
wants to seek an FFLO superfluid solution such that μpair

vanishes at a finite Tc > 0 while q remains nonzero. However,
to satisfy the finite pair number constraint with the finite DOS at
the lowest energy, it is necessary that μpair < 0 at all T > 0 so
that Bose condensation of the pairs (or spontaneous symmetry
breaking) never occurs at any finite T .

Mathematically, this is similar to the derivation of the
Mermin-Wagner theorem for the absence of long-range order
in 2D, where the DOS of a quadratic dispersion is finite at
zero momentum. The same conclusion can also be obtained
equivalently following Hohenberg’s argument [59] once the
simple quadratic bosonic dispersion is replaced by one that
has a minimum on a finite-size 2D surface.

III. INSTABILITY OF THE MEAN-FIELD FFLO STATE

A. Mean-field treatment of the one-plane-wave FFLO state

In this section, we examine what would happen if one
presumed an FFLO state at low T with a wave vector q pointing
in a symmetry broken direction. We consider a two-component
homogeneous Fermi gas with a contact potential [60] of
strength U < 0 with a population imbalance η in isotropic
3D, and begin by presenting the mean-field solutions, and
then show that the mean-field FFLO phase will eventually be
destroyed by pairing fluctuations.

Consider the simplest symmetry breaking with only one
wave vector q, i.e., the (assumed) FF states. Momentum
k states pair with those having q − k so that condensed
Cooper pairs have a nonzero momentum q (note that setting
q = 0 would give us the formalism for the Sarma super-
fluid state) with a free atom dispersion ξk,σ = k2/2mσ − μσ ,
where mσ and μσ are the mass and chemical potential for
(pseudo)spin σ = ↑,↓, respectively. We set the volume V = 1,
h̄ = kB = 1, and use the four-vector notations K ≡ (k,iωn),
P ≡ (p,i�l), where ωn (�l) is the odd (even) Matsubara
frequency.

The mean-field self-energy [36] takes the simple BCS-
like form, �σ (K) = −�2G0σ̄ (Q − K), with Q ≡ (0,q), and
bare Green’s function G−1

0σ (K) = iωn − ξk,σ . The full Green’s
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FIG. 1. Typical quasiparticle dispersion Ek,σ in the FFLO phases,
shown here along the k ‖ q direction in the unitary case with
population imbalance η = 0.75 and T/TF = 0.01, with q = 0.71kF

and mσ = m. The lower branch, Ek,↓, is gapless. The units for energy
and momentum are EF and kF , respectively.

functions G(K) are given by

G↑(K) = u2
k

iωn − Ek,↑
+ v2

k

iωn + Ek,↓
, (2a)

G↓(K) = u2
q−k

iωn − Eq−k,↓
+ v2

q−k

iωn + Eq−k,↑
, (2b)

where u2
k = (1 + ξkq/Ekq)/2, v2

k = (1 − ξkq/Ekq)/2, Ekq =√
ξ 2

kq + �2, Ek,↑ = Ekq + ζkq, Ek,↓ = Ekq − ζkq, ξkq =
(ξk,↑ + ξq−k,↓)/2, and ζkq = (ξk,↑ − ξq−k,↓)/2. Here, Ek,σ

may not be gapped. Shown in Fig. 1 are the quasiparticle
dispersions along the k ‖ q direction at unitarity with a
population imbalance η = 0.75 (see below for definition) and
q/kF = 0.71 at low T . The lower branch, Ek,↓, is gapless. It is
the gapless region in the momentum space that accommodates
the excessive majority fermions.

Note that it is often assumed in the literature that the LO
states exhibit a gap in a standing wavelike pattern in real space,
whereas the FF states are fully gapped with only an oscillating
phase. Here we see that the order parameter may differ from
the actual excitation gap completely.

The mean-field solution for the gap equation can be written
as a Thouless criterion,

t−1(0,q) = U−1 + χ (0,q) = 0, (3)

with t(P ) = U/[1 + Uχ (P )] representing the mean-field
compatible T matrix, and

χ (P ) ≡
∑
K,σ

G0σ (P − K)Gσ̄ (K)/2 (4)
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FIG. 2. T -η phase diagram of a homogeneous Fermi gas with equal mass at 1/kF a = −0.5, 0, and 0.1, corresponding to near-BCS, unitary,
and near-BEC cases, respectively. Here, “PS” denotes phase separation. An FF phase (yellow shaded) exists in the low-T and relatively high-η
regime, while they become unstable against phase separation in the dotted region. The gap vanishes along the black solid line, which separates
the FF phase and normal Fermi gas phase.

being the pair susceptibility. (Here, spin σ̄ is the opposite of
spin σ .) This leads to the usual gap equation,

mr

2πa
=

∑
k

[
1

2εk
− 1 − 2f̄ (Ekq)

2Ekq

]
, (5)

where εk = k2/4mr with reduced mass mr . Here, f̄ (x) =
[f (x + ζkq) + f (x − ζkq)]/2, f (x) = 1/(ex/T + 1) is the
Fermi distribution function and U has been replaced by the
s-wave scattering length a via U−1 = mr/2πa − ∑

k 1/2εk.
From the number constraint nσ = ∑

K Gσ (K), we obtain
the total number density n = n↑ + n↓ and density difference
δn = n↑ − n↓ ≡ ηn,

n =
∑

k

[(
1 − ξkq

Ekq

)
+ 2f̄ (Ekq)

ξkq

Ekq

]
, (6)

ηn =
∑

k

[f (Ek,↑) − f (Ek,↓)]. (7)

The FFLO wave vector q can be determined via
∂χ(0,p)

∂p |p=q = 0, or equivalently via minimizing the thermo-
dynamic potential with respect to q [43], as

∑
k

[
k

m↑
(nkq + δnkq) + q − k

m↓
(nkq − δnkq)

]
= 0 , (8)

where nkq and δnkq represent the summands of Eqs. (6) and
(7), respectively. Equations (5)–(8) form a closed set, and can
be used to solve the mean-field solution of the one-plane-wave
FFLO state, e.g., for (μ↑, μ↓, Tc, q) with � = 0, and for (μ↑,
μ↓, �, q) at T < Tc.

B. Mean-field phase diagrams of the FFLO states

We present in Fig. 2 the calculated mean-field T -η phase
diagram for a homogeneous Fermi gas with equal mass for the
near-BCS (1/kF a = −0.5), unitary, and near-BEC (1/kF a =
0.1) cases, respectively. A mean-field FF state in the low-T and
relatively high-η regime exists for all three cases. For lower η,
the FF states become unstable against phase separation (PS) at
low T (dotted region), and these two phases are divided by the
green line, as determined by the phase separation condition,
which can be found in Refs. [38,43]. The red line denotes
where q drops to zero. Along the black phase boundary, which

separates FF from the normal state, the gap vanishes, and q is
finite and decreases continuously with T from q = k

↑
F − k

↓
F at

T = 0 till it intersects the q = 0 line. It is the small gap case
near this boundary that was addressed by the LO paper [2].
Here we focus on the FF phase, not showing other phases at
lower population imbalance and higher T . The FF state in the
near-BEC case has a substantially smaller phase space, which
quickly shrinks to zero towards the BEC regime.

It should be noted that the green PS instability boundary
corresponds to the temperature where the longitudinal super-
fluid density is rendered negative by collective modes in a very
recent work [61]. The counterpart (and more complete) phase
diagrams for Fermi-Fermi mixtures such as 6Li-40K can be
found in Ref. [43].

C. Instability of the mean-field solution within a G0 G
approximation of the pairing fluctuations

Next, we consider pairing fluctuations in a fashion which
is consistent with this mean-field treatment [54]. (This same
approach was used to address a variety of ultracold Fermi gas
experiments without [36,62,63] and with population [57,64]
and/or mass imbalances [65,66].) We extract the generic pair
dispersion �p via Taylor-expanding

t−1(�,p) ≈ a0(� − �p + μpair), (9)

after analytic continuation, where coefficients a0, B‖, B⊥, and
μpair are self-consistently determined during the expansion,
with μpair = 0 at T � Tc, and μpair < 0 above Tc [67]. Near
p = q,

�p = −[χ (0,p) − χ (0,q)]/a0 ≈ B‖(p‖ − q)2 + B⊥p2
⊥ .

(10)

Here, the subscript ‖ (⊥) denotes the direction parallel with
(perpendicular to) the wave vector q. One can then deduce the
number of noncondensed pairs, via

npair =
∑

p

b(�p − μpair), (11)

where b(x) = 1/(ex/T − 1) is the Bose distribution function.
We show in Fig. 3 a 3D plot of the pair dispersion �p

in the mean-field FFLO phase at unitarity, with η = 0.75
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FIG. 3. Typical pair dispersion �p in the FFLO phases. Shown
here is the unitary case with η = 0.75 and T/TF = 0.01. The color
coding is such that �p increases with the wavelength of the light. The
units for energy and momentum are EF and kF , respectively.

and T/TF = 0.01, which has a solution of q = 0.71 kF (and
μpair = 0). Here, q ‖ ẑ, and θ measures the polar angle between
pair momentum p and the FFLO momentum q. Evidently, the
SO(3) rotational symmetry is broken. We find that, while in
all radial directions, �p reaches a minimum near p = |p| ≈ q,
this minimum itself reaches a maximum at θ = 0. Therefore
the p = q point is not a global minimum of the pair energy,
in contradiction with our assumption at the beginning. This
conclusion is also manifested in an alternative presentation of
this same pair dispersion as a function in the θ -p plane, as
shown in Fig. 9 in Appendix.

The pair dispersions for the near-BCS and near-BEC cases
are similar, which are also shown in Appendix (in Fig. 10).
To see the pair dispersion with a better quantitative resolution,
we plot in Fig. 4 the radial minimum, �p=q , as a function of
θ (black solid curve), i.e., along the p = q (half-)circle (in
Fig. 3). We also show the near-BCS case (red dashed line) at
1/kF a = −1/2 with η = 0.4. In neither case, the p = q point
is the global minimum of the pair dispersion, which contradicts

0 0.2 0.4 0.6 0.8 1
θ/π

-0.1

0

0.05

-0.2

Ω
p=

q
/E

F

(0, 0.75)
(-1/2, 0.4)

(1/kFa, η) =

T/TF = 0.01

FIG. 4. Radial minimum of the pair energy, �p=q , as a function
of θ (black solid line), i.e., along the bottom half circle in Fig. 3. Also
shown is the near-BCS case (red dashed line) at 1/kF a = −1/2 with
η = 0.4. Here, T/TF = 0.01.

our presumption that the FFLO state is a spontaneously broken
symmetry state. This means that the FFLO states found at the
mean-field level are not stable once pairing fluctuations are
taken into account.

D. Instability of the mean-field FFLO solution using alternative
treatments of pairing fluctuations

While it is not entirely consistent to consider pairing
fluctuations in other approximations, for completeness, we
perform similar calculations using an alternative (i.e., GG)
scheme with a substituted pair susceptibility

χGG(P ) =
∑
Kσ

Gσ (P − K)Gσ̄ (K)/2 . (12)

This has been known as the FLEX approximation [68], and
has been used by various authors in the study of BCS-BEC
crossover. This enables us to compare the results between these
two schemes.

Similar to the G0G scheme of the T -matrix approximation,
one can also extract the pair dispersion from the expansion of
the counterpart inverse T matrix in the GG and G0G0 schemes,
as in Eq. (9), leading to �p = −[1/U + χGG(0,p)]/a0. With
no doubt, the coefficient a0 will be quantitatively different. To
make different plots comparable in numerical values, here we
use the a0 from the G0G scheme to plot the pair dispersion.
The result at unitarity is shown in Fig. 5, where the values of
the chemical potentials μσ , the gap �, and the vector q were
the same as in Fig. 3 for the G0G case. Evidently, the pair
dispersion for the GG case is similar to that of the G0G case,
confirming that the p = q point is only a saddle point, rather
than a global minimum of �p.

Shown in Fig. 6 are representative pair dispersions �p as a
function of p along the radial directions at three representative
angles, θ = 0 (black), π/2 (red), and π (blue), for both G0G

(solid) and GG (dashed lines) schemes. Both were calculated
using the same unitary mean-field solution as in Fig. 3. Note
that for the GG scheme, the pair dispersion along θ = 0 does
not touch zero at its minimum, due to its inconsistency with

FIG. 5. Typical pair dispersion �p in the mean-field FFLO phases
for the GG scheme of pairing fluctuation theories. Shown here is the
unitary case with η = 0.75 and T/TF = 0.01. The conventions on
color coding and units are the same as in Fig. 3.
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F

0 = θ
π/2
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FIG. 6. Pair dispersion �p in the mean-field FFLO phase at
unitarity with η = 0.75 as a function of p along different polar angles
θ = 0 (black), π/2 (red), and π (blue), for both the G0G (solid) and
GG (dashed lines) schemes of T -matrix theories. For neither scheme
the minimum energy along the q direction is a global minimum. Here
the specific parameters are labeled.

the mean-field BCS gap equation. Nevertheless, common to
both schemes is that the minimum pair energy along θ = 0 is
higher than along other directions, indicating that p ‖ q is not
a stable symmetry breaking direction.

Similar instability of the FFLO states is also expected
from the G0G0 scheme of T -matrix approximation, with the
pair susceptibility χ0(P ) = ∑

K G0(P − K)G0(K), as in the
Nozieres–Schmitt-Rink theory [69]. The corresponding pair
dispersion reaches a minimum at a finite p, as shown in Fig. 7.

Note that there is an obvious difference between the G0G0

case and the other two; the pair dispersion has no angle
dependence. This can be easily understood since the pair
susceptibility χ0(P ) is isotropic, independent of the gap �

and the wave vector q, due to the lack of feedback effect.
This is a defect of the G0G0 approximation. Nevertheless, this
angle independence does suggest that the pair energy reaches a

FIG. 7. Typical pair dispersion �p in the mean-field FFLO phases
for G0G0 approximation of the pairing fluctuation theories. Shown
here is the unitary case with η = 0.75 and T/TF = 0.01. The
conventions on color coding and units are the same as in Fig. 3.

minimum on a finite momentum sphere so that no spontaneous
symmetry breaking or Bose condensation would take place for
the pairs. Indeed, using such a theory, Ohashi also find that
the FF state is unstable in 3D homogeneous Fermi gases for a
similar reason [70]. Like the GG scheme, the pair dispersion
for the G0G0 scheme does not vanish at p = q, because it is
incompatible with the BCS mean-field gap equation, either.

E. Extending to the 2D case and higher order crystalline states

Extending the 3D results to the 2D case, we note that the
pair dispersion reaches its minimum on a 1D ring, leading
to an infinite degeneracy, which shall destroy FFLO type of
superfluidity. Furthermore, there is no true long-range order
(LRO) in 2D, even for a zero-momentum condensate.

While our calculations were done with the FF states, we
argue that the infinite degeneracy induced finite DOS effects
hold for the LO and higher-order FFLO states as well. We
shall also point out that the pair momentum p takes value
in the entire space R3, unlike the vector field in a nonlinear
sigma model, whose value in 3D is restricted to the sphere
S2. For the latter, the transverse and longitudinal components
cannot vary independently, allowing spontaneous symmetry
breaking to occur. Indeed, except for translational invariance,
continuous spontaneous symmetry breaking is often associated
with a compact symmetry group, whose variables, e.g., the
angle parameters of an SU(2) spin, are not quantum numbers,
unlike the pair momentum p in the present case.

In extending to possible higher crystalline FFLO states, we
notice that one may understand the instability of the FFLO
states from a different perspective. At the mean-field level, it
is known that the LO states have slightly lower energy than
the corresponding FF states at low T in 2D and 3D; the latter
doubles the number of pair momenta for condensation. Mean-
field calculations in both 2D [71–74] and 3D [75–77] show
that condensation at two pairs of q’s forming a square in the
momentum space shall further lower the energy. This suggests
that condensation at 3, 4, 6, and 8 pairs of momenta and so on
should have a progressively lower energy (while Tc becomes
progressively lower as well). Indeed, this has been shown to
be true in 2D [73]. In 3D, it has been shown to hold for up
to 3 pairs [75]. It is promising that with a higher number of
pairs that preserve proper symmetries, the system may have a
lower energy at lower T . Eventually, it leads to the conclusion
that the lowest energy solution would be “condensation” on the
entire 2D constant-energy surface in 3D or a constant-energy
ring in 2D, on which the pair dispersion reaches its minimum.
This is no longer a condensed, FFLO state.

F. Nature of the normal and ground state

Finally, we investigate the nature of this unusual normal
state. The pairing correlation function for the 3D continuum
case is given by

C(r) ∝
∫

eip·rd3p

ξ 2(p − q)2 + τ

≈ 1

4πrξ 2

√
4ξ 2q2 + τ

τ
e−r

√
τ/ξ sin(qr) , (13)
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FIG. 8. Momentum distribution of the pairs in the (px,py) plane
in the Bose metal state, for the unitary case with the pair dispersion
minimized near p/kF = 0.71.

where ξ 2 = a0B‖ is the screening length (squared), and
τ = −a0μpair > 0, with μpair ∝ T near zero T . (Note here
that we consider an isotropic pair dispersion.) Apart from
the oscillating behavior, the correlation length is given by
ξ/

√
τ ∝ ξ/

√
T . When T → 0, the exponential decay will

disappear, leaving an r−1 power-law decay at large distances
at T = 0 so that the pairs approach an algebraic Bose liquid.
This oscillating behavior due to a finite q is very unusual,
manifesting the tendency to form a wavelike pairing order.
Without superfluidity, such a Bose liquid is a Bose metal in the
ground state, where μpair approaches 0 at zero T . In addition,
the major part of the system is composed of the excessive
majority fermions, which add to the metallic character of the
system. We shall call this phase “anomalous metal.”

The Bose metal state of the pairs can be probed exper-
imentally using a time-of-flight imaging technique, with a
quasiuniform trapping potential [78]. The momentum distri-
bution of the pairs, given by the Bose distribution function,
nB(p) ∝ b(�p − μpair) is highly peaked on the constant energy
surface (or ring in 2D). The peak height is controlled by
T/|μpair|, which has only a weak T dependence at low T . To
visualize this, we suppress the ẑ direction, and plot nB(p) as a
function of (px,py) in Fig. 8. This is in sharp contrast with the
Bose distribution of conventional Bose gas, which has a single
peak at zero momentum.

IV. DISCUSSIONS

One may argue that including impurities and/or higher-
order interpair interactions may change the conclusion. How-
ever, while they may have a quantitative influence on the
mean-field phase boundaries, we remark that the effects of
impurities and higher-order interactions may either shift the
minimum of the pair dispersion down to zero momentum or
leave it at a finite momentum p �= 0. For the former, a Sarma
type of breached pair superfluid will result. For the latter, the
situation remains. Either way, a stable FFLO superfluid state
will not appear.

It should be noted that we have restricted ourselves to
s-wave pairing only. Nonconventional pairing symmetries such

as p wave are often related to anisotropy associated with
spin-orbit coupling, and/or lack of inversion symmetry, etc.
This often introduces a preferential direction, and thus is
not considered here. For d-wave pairing, which is mainly
relevant for high Tc superconductors, there have been no strong
indications for the existence of an FFLO state in the cuprate
phase diagram [79]. We note that the pairing symmetry is an
internal degree of freedom within a pair, while the q vector
reflects the center-of-mass motion of the pair. These two are
largely decoupled. Of course, the pairing symmetry has also
a large effect on the pair dispersion [80]. It may or may not
induce an anisotropy in the pair dispersion, and this will be
investigated in a future work.

The instability of FFLO states has been investigated by a
few other groups both at finite T [72,81–84] and zero T [5].
Baym and Friman [81] found that at finite T pion condensates
with order parameter varying in one dimension (i.e., FFLO
states) are prohibited, but are stable at all temperatures when
varying in two and three dimensions (higher order crystalline
FFLO states).

Shimahara [72,82] has found that phase fluctuations destroy
LRO for the FFLO states in isotropic 3D and 2D, consistent
with our results. However, he also found a quasi-LRO (QLRO)
in isotropic 3D. We note that this is most likely a consequence
of their presumed mean-field approximation, which necessar-
ily leads to a zero pair chemical potential μpair. In contrast,
we have shown here that, without presuming a mean-field
solution at the beginning, one will obtain a normal state instead
with a nonzero μpair for all T > 0. The nonzero μpair leads
to an oscillatory exponential decay in the pairing correlation
function, Eq. (13), indicating that neither LRO or QLRO exists
in 3D. [Indeed, setting τ = 0 in Eq. (13) would have led to a
power law decay and hence a QLRO.] Note that we do not
invoke topological excitations such as vortex-antivortex pair
fluctuations.

Samokhin et al. [5] found a divergent spin susceptibility at
T = 0 in isotropic 3D and 2D due to quantum fluctuations, not
inconsistent with our findings here. However, their analysis in-
volves diagrammatic pair propagators without the self-energy
feedback effect, as well as an approximation assuming a small
gap.

Radzihovsky and Vishwanath [83,85] found that the LO
phase is unstable, which is consistent with our findings here.
Starting with the unstable LO state, they further argued that
fermion pairs may pair again to form a nematic charge-4
SF4 superfluid phase. However, the fact that the interactions
between fermion pairs are usually repulsive may render it
unlikely to form such an SF4 phase. Lee et al. [86] found that
the FF phase is unstable in isotropic 3D in the context of quark
matter, but reported a QLRO, for a reason similar to that of
Shimahara [72,82]. By adding collective mode contributions
to the mean-field solution, the latest work of Boyack et al.
[61] has reported that the superfluid density of a mean-field FF
state vanishes in the direction transverse to the wave vector q,
consistent with our findings here.

A few papers have addressed or briefly mentioned the
effect of anisotropy or lattice. Shimahara [72,82] claimed that
there exists a stabilized LRO in the presence of anisotropy
in 2D. Samokhin et al. [5] stated that a lattice will remove
the divergence in 3D. Ohashi also noted that crystal lattice
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may stabilize the FFLO phase. While these claims may
be right, however, only generic forms of possible solutions
were constructed [72], without self-consistent determination
of the gaps, the q-vectors, etc., on other parameters such as
interaction strength and population imbalance. Further fully
self-consistent, quantitative determination of the FFLO phase
diagram in the presence of anisotropy and/or lattice effect is
needed to substantiate these claims.

There have also been theoretical studies of possible FFLO
(or stripe) states in Fermi gases with spin-orbit coupling
(SOC) [87,88]. We point out that SOC forces a preferential
direction, and/or leads to topologically distinct Fermi surfaces,
making the system drastically different from the conventional
FFLO physics. There are also studies of FFLO phases in
1D Fermi gases, which, however, do not possess long-range
order at all.

Finally, we note that, despite many works in the literature
on the LO and higher-order crystalline FFLO states, it is
problematic to go beyond the FF case without a small gap
expansion even at the mean-field level. A Ginzburg-Landau
type of free energy with a combination of different q order
parameters are often assumed [2,3,6,34,72,83,84], but the
evaluation of the coefficients of the various terms of the
free energy either is left undetermined as free parameters
[72] or has to be done using a small gap expansion, as
in the original LO treatment [2], so that the noninteracting
fermionic Green’s function can be used. Such an approach is
appropriate only near the FFLO/normal phase boundaries in
Fig. 2. It will fail at least quantitatively for a large gap with
a strong pairing interaction, such as in a unitary Fermi gas.
Indeed, Samokhin et al. [5] have shown that the magnitude
of quantum fluctuation corrections is determined by (�/EF )2,
which will no longer be small for a unitary Fermi gas. Thus
one needs to go beyond the Ginzburg-Landau type of approach
(which is appropriate only for small order parameters anyway).
In other words, most Ginzburg-Landau-based treatments of
the FFLO phases in the literature are inadequate for unitary
Fermi gases.

A mean-field ansatz beyond the small gap expansion would
be to write down the self-energy in the form

�(K) = −
∑

i

�2
qi

iωn + ξqi−k
. (14)

When there are more than one qi , the simple BCS-like
form of the full Green’s function G(K), such as in Eq. (2),
necessarily breaks down. Even with the LO states it becomes
very complicated, as shown in Ref. [64].

Diagrammatically, the combination of different supercon-
ducting vertices associated with each �qi

order parameter (and
their hermitian conjugates) necessarily generates a hierarchy of
self-energy processes associated with an arbitrary combination
of these qi’s. There will also be finite momentum pairing
fluctuations associated with each one of them. This will also
spoil the BCS-like form of the Green’s function so that there
is no simple many-body theoretical approach for addressing
LO and higher-order FFLO states. A fully numerical approach
seems to be necessary.

V. CONCLUSIONS

In summary, we have studied the effects of pairing fluctu-
ations on the mean-field FFLO phases, and found that FFLO
phases are intrinsically unstable against pairing fluctuations
in continuum in 3D and 2D, and thus do not exist experi-
mentally. This conclusion holds on general physical grounds,
independent of specific pairing fluctuation theories, and is
applicable for both quantum gases and isotropic condensed
matter systems. We predict that the momentum distribution of
the pairs are highly peaked on an entire CES, which can be
easily tested experimentally.
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APPENDIX: PAIR DISPERSION IN THE MEAN-FIELD
FFLO PHASES FROM NEAR-BCS THROUGH NEAR-BEC

REGIMES

In this section, we will present more results of the pair dis-
persion at high population imbalances in the mean-field FFLO
phase from near-BCS through near-BEC regimes. Starting with
the unitary case, Fig. 9 shows the pair dispersion �p in the
FFLO phase with a population imbalance η = 0.75 and equal
masses at temperature T/TF = 0.01. This is just an alternative
3D plot of Fig. 3 in the main text, treating the angle θ between
pair momentum p and the FFLO wave vector q as a Cartesian
coordinate. This makes it easier to see that the minimum value
of �p (as a function of p) decreases as θ varies from 0 to π ,
revealing that the point p = q is indeed merely a saddle point

FIG. 9. Alternative 3D plot of the pair dispersion �p in the
FFLO phases at unitarity with population imbalance η = 0.75 and
temperature T/TF = 0.01. The conventions on color coding and units
are the same as in Fig. 2 of the main text.
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FIG. 10. Pair dispersion �p in the FFLO phases for the near-BCS and near-BEC cases, with (1/kF a,η,T /TF ) = (−1/2,0.45,0.01) and
(0.1,0.75,0.01) for the left and right panels, respectively. The conventions on color coding and units are the same as in Fig. 1 of the main text.

of �p. Now, we show the counterpart plot of the near-BCS
and near-BEC cases in Fig. 10, as the left and right panels,

respectively. Despite the different radii of the bottom (half)
circle, both confirm that the p = q point is a saddle point of �p.

[1] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[2] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[3] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004),

and references therein.
[4] D. F. Agterberg, Z. Zheng, and S. Mukherjee, Phys. Rev. Lett.

100, 017001 (2008).
[5] K. V. Samokhin and M. S. Mar’enko, Phys. Rev. B 73, 144502

(2006).
[6] A. Buzdin and H. Kachkachi, Phys. Lett. A 225, 341 (1997).
[7] H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Hannahs,

E. C. Palm, S. W. Tozer, and D. Hall, Nature (London) 425, 51
(2003).

[8] M. Kenzelmann, T. Straessle, C. Niedermayer, M. Sigrist, B.
Padmanabhan, M. Zolliker, A. D. Bianchi, R. Movshovich, E.
D. Bauer, J. L. Sarrao, and J. D. Thompson, Science 321, 1652
(2008).

[9] R. Ikeda, Phys. Rev. B 76, 134504 (2007).
[10] H. Shimahara, J. Phys. Soc. Jpn. 71, 1644 (2002).
[11] A. G. Lebed and S. Wu, Phys. Rev. B 82, 172504 (2010).
[12] M. D. Croitoru and A. I. Buzdin, Phys. Rev. B 86, 064507 (2012).

J. Phys.: Condens. Matter 25, 125702 (2013).
[13] C. C. Agosta, L. B.-V. Horn, and M. Newman, J. Low Temp.

Phys. 185, 220 (2016).
[14] A. B. Vorontsov, J. A. Sauls, and M. J. Graf, Phys. Rev. B 72,

184501 (2005); Q. Wang, H.-Y. Chen, C.-R. Hu, and C. S. Ting,
Phys. Rev. Lett. 96, 117006 (2006); A. M. Berridge, A. G. Green,
S. A. Grigera, and B. D. Simons, ibid. 102, 136404 (2009); K.
Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A.
Coniglio, C. C. Agosta, A. Gurevich, and R. Prozorov, Phys.
Rev. B 83, 060502(R) (2011); A. Ptok and D. Crivelli, J. Low
Temp. Phys. 172, 226 (2013).

[15] H. Müther and A. Sedrakian, Phys. Rev. C 67, 015802 (2003).
[16] M. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D 63,

074016 (2001); J. A. Bowers and K. Rajagopal, ibid. 66, 065002
(2002); K. Fukushima, ibid. 73, 094016 (2006); K. Fukushima
and K. Iida, ibid. 76, 054004 (2007); N. D. Ippolito, Phys. Part.

Nucl. 39, 1044 (2008); E. V. Gorbar, M. Hashimoto, and V. A.
Miransky, Phys. Rev. Lett. 96, 022005 (2006).

[17] A. Sedrakian, J. Mur-Petit, A. Polls, and H. Müther, Phys. Rev.
A 72, 013613 (2005); Y.-A. Liao, A. S. C. Rittner, T. Paprotta, W.
Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller,
Nature (London) 467, 567 (2010); L. Radzihovsky and D. E.
Sheehy, Rep. Prog. Phys. 73, 076501 (2010); K. Yang, Phys.
Rev. Lett. 95, 218903 (2005); T. Mizushima, K. Machida, and
M. Ichioka, ibid. 94, 060404 (2005); B. Wang and L.-M. Duan,
Phys. Rev. A 79, 043612 (2009); M. Rizzi, M. Polini, M. A.
Cazalilla, M. R. Bakhtiari, M. P. Tosi, and R. Fazio, Phys. Rev.
B 77, 245105 (2008).

[18] K. Gloos, R. Modler, H. Schimanski, C. D. Bredl, C. Geibel, F.
Steglich, A. I. Buzdin, N. Sato, and T. Komatsubara, Phys. Rev.
Lett. 70, 501 (1993).

[19] A. D. Huxley, C. Paulson, O. Laborde, J. L. Tholence, D.
Sanchez, A. Junod, and R. Calemczuk, J. Phys.: Condens. Matter
5, 7709 (1993).

[20] K. Kumagai, M. Saitoh, T. Oyaizu, Y. Furukawa, S. Takashima,
M. Nohara, H. Takagi, and Y. Matsuda, Phys. Rev. Lett. 97,
227002 (2006).

[21] V. F. Mitrovic, M. Horvatic, C. Berthier, G. Knebel, G. Lapertot,
and J. Flouquet, Phys. Rev. Lett. 97, 117002 (2006).

[22] A. Bianchi, R. Movshovich, C. Capan, A. Lacerda, P. G.
Pagliuso, and J. L. Sarrao, Phys. Rev. Lett. 91, 187004
(2003).

[23] Y. Tokiwa, E. D. Bauer, and P. Gegenwart, Phys. Rev. Lett. 109,
116402 (2012).

[24] D. Y. Kim, S.-Z. Lin, F. Weickert, M. Kenzelmann, E. D. Bauerm,
F. Ronning, J. D. Thompson, and R. Movshovich, Phys. Rev. X
6, 041059 (2016).

[25] H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, K.
Miyagawa, K. Kanoda, and V. F. Mitrović, Nat. Phys. 10, 928
(2014).

[26] G. Koutroulakis, H. Kühne, J. A. Schlueter, J. Wosnitza, and
S. E. Brown, Phys. Rev. Lett. 116, 067003 (2016).

[27] G. Varelogiannis, Phys. Rev. Lett. 88, 117005 (2002).

134513-9

https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/PhysRevLett.100.017001
https://doi.org/10.1103/PhysRevLett.100.017001
https://doi.org/10.1103/PhysRevLett.100.017001
https://doi.org/10.1103/PhysRevLett.100.017001
https://doi.org/10.1103/PhysRevB.73.144502
https://doi.org/10.1103/PhysRevB.73.144502
https://doi.org/10.1103/PhysRevB.73.144502
https://doi.org/10.1103/PhysRevB.73.144502
https://doi.org/10.1016/S0375-9601(96)00894-8
https://doi.org/10.1016/S0375-9601(96)00894-8
https://doi.org/10.1016/S0375-9601(96)00894-8
https://doi.org/10.1016/S0375-9601(96)00894-8
https://doi.org/10.1038/nature01842
https://doi.org/10.1038/nature01842
https://doi.org/10.1038/nature01842
https://doi.org/10.1038/nature01842
https://doi.org/10.1126/science.1161818
https://doi.org/10.1126/science.1161818
https://doi.org/10.1126/science.1161818
https://doi.org/10.1126/science.1161818
https://doi.org/10.1103/PhysRevB.76.134504
https://doi.org/10.1103/PhysRevB.76.134504
https://doi.org/10.1103/PhysRevB.76.134504
https://doi.org/10.1103/PhysRevB.76.134504
https://doi.org/10.1143/JPSJ.71.1644
https://doi.org/10.1143/JPSJ.71.1644
https://doi.org/10.1143/JPSJ.71.1644
https://doi.org/10.1143/JPSJ.71.1644
https://doi.org/10.1103/PhysRevB.82.172504
https://doi.org/10.1103/PhysRevB.82.172504
https://doi.org/10.1103/PhysRevB.82.172504
https://doi.org/10.1103/PhysRevB.82.172504
https://doi.org/10.1103/PhysRevB.86.064507
https://doi.org/10.1103/PhysRevB.86.064507
https://doi.org/10.1103/PhysRevB.86.064507
https://doi.org/10.1103/PhysRevB.86.064507
https://doi.org/10.1088/0953-8984/25/12/125702
https://doi.org/10.1088/0953-8984/25/12/125702
https://doi.org/10.1088/0953-8984/25/12/125702
https://doi.org/10.1088/0953-8984/25/12/125702
https://doi.org/10.1007/s10909-016-1657-y
https://doi.org/10.1007/s10909-016-1657-y
https://doi.org/10.1007/s10909-016-1657-y
https://doi.org/10.1007/s10909-016-1657-y
https://doi.org/10.1103/PhysRevB.72.184501
https://doi.org/10.1103/PhysRevB.72.184501
https://doi.org/10.1103/PhysRevB.72.184501
https://doi.org/10.1103/PhysRevB.72.184501
https://doi.org/10.1103/PhysRevLett.96.117006
https://doi.org/10.1103/PhysRevLett.96.117006
https://doi.org/10.1103/PhysRevLett.96.117006
https://doi.org/10.1103/PhysRevLett.96.117006
https://doi.org/10.1103/PhysRevLett.102.136404
https://doi.org/10.1103/PhysRevLett.102.136404
https://doi.org/10.1103/PhysRevLett.102.136404
https://doi.org/10.1103/PhysRevLett.102.136404
https://doi.org/10.1103/PhysRevB.83.060502
https://doi.org/10.1103/PhysRevB.83.060502
https://doi.org/10.1103/PhysRevB.83.060502
https://doi.org/10.1103/PhysRevB.83.060502
https://doi.org/10.1007/s10909-013-0871-0
https://doi.org/10.1007/s10909-013-0871-0
https://doi.org/10.1007/s10909-013-0871-0
https://doi.org/10.1007/s10909-013-0871-0
https://doi.org/10.1103/PhysRevC.67.015802
https://doi.org/10.1103/PhysRevC.67.015802
https://doi.org/10.1103/PhysRevC.67.015802
https://doi.org/10.1103/PhysRevC.67.015802
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.66.065002
https://doi.org/10.1103/PhysRevD.66.065002
https://doi.org/10.1103/PhysRevD.66.065002
https://doi.org/10.1103/PhysRevD.66.065002
https://doi.org/10.1103/PhysRevD.73.094016
https://doi.org/10.1103/PhysRevD.73.094016
https://doi.org/10.1103/PhysRevD.73.094016
https://doi.org/10.1103/PhysRevD.73.094016
https://doi.org/10.1103/PhysRevD.76.054004
https://doi.org/10.1103/PhysRevD.76.054004
https://doi.org/10.1103/PhysRevD.76.054004
https://doi.org/10.1103/PhysRevD.76.054004
https://doi.org/10.1134/S1063779608070113
https://doi.org/10.1134/S1063779608070113
https://doi.org/10.1134/S1063779608070113
https://doi.org/10.1134/S1063779608070113
https://doi.org/10.1103/PhysRevLett.96.022005
https://doi.org/10.1103/PhysRevLett.96.022005
https://doi.org/10.1103/PhysRevLett.96.022005
https://doi.org/10.1103/PhysRevLett.96.022005
https://doi.org/10.1103/PhysRevA.72.013613
https://doi.org/10.1103/PhysRevA.72.013613
https://doi.org/10.1103/PhysRevA.72.013613
https://doi.org/10.1103/PhysRevA.72.013613
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1103/PhysRevLett.95.218903
https://doi.org/10.1103/PhysRevLett.95.218903
https://doi.org/10.1103/PhysRevLett.95.218903
https://doi.org/10.1103/PhysRevLett.95.218903
https://doi.org/10.1103/PhysRevLett.94.060404
https://doi.org/10.1103/PhysRevLett.94.060404
https://doi.org/10.1103/PhysRevLett.94.060404
https://doi.org/10.1103/PhysRevLett.94.060404
https://doi.org/10.1103/PhysRevA.79.043612
https://doi.org/10.1103/PhysRevA.79.043612
https://doi.org/10.1103/PhysRevA.79.043612
https://doi.org/10.1103/PhysRevA.79.043612
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevLett.70.501
https://doi.org/10.1103/PhysRevLett.70.501
https://doi.org/10.1103/PhysRevLett.70.501
https://doi.org/10.1103/PhysRevLett.70.501
https://doi.org/10.1088/0953-8984/5/41/018
https://doi.org/10.1088/0953-8984/5/41/018
https://doi.org/10.1088/0953-8984/5/41/018
https://doi.org/10.1088/0953-8984/5/41/018
https://doi.org/10.1103/PhysRevLett.97.227002
https://doi.org/10.1103/PhysRevLett.97.227002
https://doi.org/10.1103/PhysRevLett.97.227002
https://doi.org/10.1103/PhysRevLett.97.227002
https://doi.org/10.1103/PhysRevLett.97.117002
https://doi.org/10.1103/PhysRevLett.97.117002
https://doi.org/10.1103/PhysRevLett.97.117002
https://doi.org/10.1103/PhysRevLett.97.117002
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.109.116402
https://doi.org/10.1103/PhysRevLett.109.116402
https://doi.org/10.1103/PhysRevLett.109.116402
https://doi.org/10.1103/PhysRevLett.109.116402
https://doi.org/10.1103/PhysRevX.6.041059
https://doi.org/10.1103/PhysRevX.6.041059
https://doi.org/10.1103/PhysRevX.6.041059
https://doi.org/10.1103/PhysRevX.6.041059
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1103/PhysRevLett.116.067003
https://doi.org/10.1103/PhysRevLett.116.067003
https://doi.org/10.1103/PhysRevLett.116.067003
https://doi.org/10.1103/PhysRevLett.116.067003
https://doi.org/10.1103/PhysRevLett.88.117005
https://doi.org/10.1103/PhysRevLett.88.117005
https://doi.org/10.1103/PhysRevLett.88.117005
https://doi.org/10.1103/PhysRevLett.88.117005


WANG, CHE, ZHANG, AND CHEN PHYSICAL REVIEW B 97, 134513 (2018)

[28] S. Yonezawa, S. Kusaba, Y. Maeno, P. Auban-Senzier, C.
Pasquier, K. Bechgaard, and D. Jérome, Phys. Rev. Lett. 100,
117002 (2008).

[29] B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y.
Nakazawa, and R. Lortz, Phys. Rev. B 83, 064506 (2011).

[30] W. A. Coniglio, L. E. Winter, K. Cho, C. C. Agosta, B. Fravel,
and L. K. Montgomery, Phys. Rev. B 83, 224507 (2011).

[31] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005
(2007).

[32] M. R. Norman, Phys. Rev. Lett. 71, 3391 (1993).
[33] K. Tenya, S. Yasunami, T. Tayama, H. Amitsuka, T. Sakakibara,

M. Hedo, Y. Inada, Y. Haga, E. Yamamoto, and Y. Onuki, Physica
B: Condens. Matter 259–261, 692 (1999).

[34] Y. Hatakeyama and R. Ikeda, Phys. Rev. B 91, 094504 (2015).
[35] S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike,

K. Enomoto, H. Cui, H. Kobayashi, A. Kobayashi, H. Tanaka,
M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks,
Phys. Rev. Lett. 97, 157001 (2006).

[36] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, Phys. Rep. 412, 1
(2005).

[37] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[38] Y. He, C.-C. Chien, Q. J. Chen, and K. Levin, Phys. Rev. A 75,
021602 (2007).

[39] D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401
(2006).

[40] H. Hu and X.-J. Liu, Phys. Rev. A 73, 051603 (2006).
[41] L. He, M. Jin, and P. Zhuang, Phys. Rev. B 74, 214516 (2006).
[42] R. Combescot and C. Mora, Phys. Rev. B 71, 144517 (2005);

N. Yoshida and S.-K. Yip, Phys. Rev. A 75, 063601 (2007).
[43] J. B. Wang, Y. M. Che, L. F. Zhang, and Q. J. Chen, Sci. Rep. 7,

39783 (2017).
[44] A. Bulgac and M. M. Forbes, Phys. Rev. Lett. 101, 215301

(2008).
[45] K. Machida, T. Mizushima, and M. Ichioka, Phys. Rev. Lett. 97,

120407 (2006).
[46] W. Zhang and L.-M. Duan, Phys. Rev. A 76, 042710 (2007).
[47] J. Kinnunen, L. M. Jensen, and P. Törmä, Phys. Rev. Lett. 96,

110403 (2006).
[48] L. O. Baksmaty, H. Lu, C. J. Bolech, and H. Pu, Phys. Rev. A

83, 023604 (2011); New J. Phys. 13, 055014 (2011).
[49] K. B. Gubbels, J. E. Baarsma, and H. T. C. Stoof, Phys. Rev.

Lett. 103, 195301 (2009); J. E. Baarsma, K. B. Gubbels, and
H. T. C. Stoof, Phys. Rev. A 82, 013624 (2010).

[50] J. E. Baarsma and H. T. C. Stoof, Phys. Rev. A 87, 063612
(2013).

[51] Z. Cai, Y. Wang, and C. Wu, Phys. Rev. A 83, 063621 (2011);
V. V. França, D. Hördlein, and A. Buchleitner, ibid. 86, 033622
(2012); R. Mendoza, M. Fortes, M. A. Solís, and Z. Koinov,
ibid. 88, 033606 (2013); Y. Okawauchi and A. Koga, J. Phys.
Soc. Jpn. 81, 074001 (2012); M. R. Bakhtiari, M. J. Leskinen,
and P. Torma, Phys. Rev. Lett. 101, 120404 (2008); D.-H. Kim
and P. Törmä, Phys. Rev. B 85, 180508(R) (2012); A.-H. Chen
and X.-L. Gao, ibid. 85, 134203 (2012).

[52] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle,
Science 311, 492 (2006).

[53] G. B. Partridge, W. Li, R. I. Kamar, Y. A. Liao, and R. G. Hulet,
Science 311, 503 (2006).

[54] Q. J. Chen, I. Kosztin, B. Jankó, and K. Levin, Phys. Rev. Lett.
81, 4708 (1998).

[55] When pairing is so strong that a two-body bound state with a
large binding energy forms in the real space, the momenta of the
component fermions inside the pair will span a large momentum
space. In this case, the Pauli exclusion between the component
fermions and the Fermi sphere is weak because the occupation
probability v2

k is tiny for k < kF for the component fermions,
so that the pair will happily coexist with the Fermi sea, with a
energy minimum at k = 0.

[56] G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).
[57] C. C. Chien, Q. J. Chen, Y. He, and K. Levin, Phys. Rev. Lett.

97, 090402 (2006).
[58] By quantum degeneracy, we mean that the pairs may take any

(combination) of the degenerate (quantum) momentum states on
the lowest CES of the pairs without changing the energy of the
entire system. This is different from, e.g., the global phase α of
a U(1) symmetry, where α is not a quantum number.

[59] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[60] With an s-wave pairing symmetry, a finite range of interaction

will introduce a symmetry factor ϕk into the gap function, via
�k = �ϕk . But it will not affect the conclusions here.

[61] R. Boyack, C.-T. Wu, B. M. Anderson, and K. Levin, Phys. Rev.
B 95, 214501 (2017).

[62] Q. J. Chen, J. Stajic, and K. Levin, Fiz. Nizk. Temp. 32, 538
(2006) [Low Temp. Phys. 32, 406 (2006)].

[63] Q. J. Chen, Y. He, C.-C. Chien, and K. Levin, Rep. Prog. Phys.
72, 122501 (2009).

[64] Q. J. Chen, Y. He, C.-C. Chien, and K. Levin, Phys. Rev. B 75,
014521 (2007).

[65] H. Guo, C.-C. Chien, Q. J. Chen, Y. He, and K. Levin, Phys.
Rev. A 80, 011601 (2009).

[66] J. B. Wang, H. Guo, and Q. J. Chen, Phys. Rev. A 87, 041601
(2013).

[67] This is a generic expansion at low energy and long wavelength.
Expressions of the various coefficients can be easily derived, and
may be found in, e.g., Ref. [66].

[68] N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett.
62, 961 (1989).

[69] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1985).

[70] Y. Ohashi, J. Phys. Soc. Jpn. 71, 2625 (2002).
[71] H. Shimahara, J. Phys. Soc. Jpn. 67, 1872 (1998).
[72] H. Shimahara, J. Phys. Soc. Jpn. 67, 736 (1998).
[73] C. Mora and R. Combescot, Europhys. Lett. 66, 833 (2004).
[74] R. Combescot and G. Tonini, Phys. Rev. B 72, 094513

(2005).
[75] C. Mora and R. Combescot, Phys. Rev. B 71, 214504

(2005).
[76] R. Combescot and C. Mora, Europhys. Lett. 68, 79 (2004).
[77] S. Matsuo, S. Higashitani, Y. Nagato, and K. Nagai, J. Phys. Soc.

Jpn. 67, 280 (1998).
[78] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah,

J. Struck, and M. W. Zwierlein, Phys. Rev. Lett. 118, 123401
(2017).

[79] There has also been experimental evidence for d-wave pairing in
organic superconductors. See, e.g., A. Carrington, I. J. Bonalde,
R. Prozorov, R. W. Giannetta, A. M. Kini, J. Schlueter, H. H.
Wang, U. Geiser, J. M. Williams, Phys. Rev. Lett. 83, 4172
(1999); However, this is not yet established, as evidence for
both s- and d-wave symmetry has been reported [29]. In addition,
some evidence for d-wave can be explained using s-wave pairing

134513-10

https://doi.org/10.1103/PhysRevLett.100.117002
https://doi.org/10.1103/PhysRevLett.100.117002
https://doi.org/10.1103/PhysRevLett.100.117002
https://doi.org/10.1103/PhysRevLett.100.117002
https://doi.org/10.1103/PhysRevB.83.064506
https://doi.org/10.1103/PhysRevB.83.064506
https://doi.org/10.1103/PhysRevB.83.064506
https://doi.org/10.1103/PhysRevB.83.064506
https://doi.org/10.1103/PhysRevB.83.224507
https://doi.org/10.1103/PhysRevB.83.224507
https://doi.org/10.1103/PhysRevB.83.224507
https://doi.org/10.1103/PhysRevB.83.224507
https://doi.org/10.1143/JPSJ.76.051005
https://doi.org/10.1143/JPSJ.76.051005
https://doi.org/10.1143/JPSJ.76.051005
https://doi.org/10.1143/JPSJ.76.051005
https://doi.org/10.1103/PhysRevLett.71.3391
https://doi.org/10.1103/PhysRevLett.71.3391
https://doi.org/10.1103/PhysRevLett.71.3391
https://doi.org/10.1103/PhysRevLett.71.3391
https://doi.org/10.1016/S0921-4526(98)00819-9
https://doi.org/10.1016/S0921-4526(98)00819-9
https://doi.org/10.1016/S0921-4526(98)00819-9
https://doi.org/10.1016/S0921-4526(98)00819-9
https://doi.org/10.1103/PhysRevB.91.094504
https://doi.org/10.1103/PhysRevB.91.094504
https://doi.org/10.1103/PhysRevB.91.094504
https://doi.org/10.1103/PhysRevB.91.094504
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevA.75.021602
https://doi.org/10.1103/PhysRevA.75.021602
https://doi.org/10.1103/PhysRevA.75.021602
https://doi.org/10.1103/PhysRevA.75.021602
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevA.73.051603
https://doi.org/10.1103/PhysRevA.73.051603
https://doi.org/10.1103/PhysRevA.73.051603
https://doi.org/10.1103/PhysRevA.73.051603
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.71.144517
https://doi.org/10.1103/PhysRevB.71.144517
https://doi.org/10.1103/PhysRevB.71.144517
https://doi.org/10.1103/PhysRevB.71.144517
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevA.76.042710
https://doi.org/10.1103/PhysRevA.76.042710
https://doi.org/10.1103/PhysRevA.76.042710
https://doi.org/10.1103/PhysRevA.76.042710
https://doi.org/10.1103/PhysRevLett.96.110403
https://doi.org/10.1103/PhysRevLett.96.110403
https://doi.org/10.1103/PhysRevLett.96.110403
https://doi.org/10.1103/PhysRevLett.96.110403
https://doi.org/10.1103/PhysRevA.83.023604
https://doi.org/10.1103/PhysRevA.83.023604
https://doi.org/10.1103/PhysRevA.83.023604
https://doi.org/10.1103/PhysRevA.83.023604
https://doi.org/10.1088/1367-2630/13/5/055014
https://doi.org/10.1088/1367-2630/13/5/055014
https://doi.org/10.1088/1367-2630/13/5/055014
https://doi.org/10.1088/1367-2630/13/5/055014
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.86.033622
https://doi.org/10.1103/PhysRevA.86.033622
https://doi.org/10.1103/PhysRevA.86.033622
https://doi.org/10.1103/PhysRevA.86.033622
https://doi.org/10.1103/PhysRevA.88.033606
https://doi.org/10.1103/PhysRevA.88.033606
https://doi.org/10.1103/PhysRevA.88.033606
https://doi.org/10.1103/PhysRevA.88.033606
https://doi.org/10.1143/JPSJ.81.074001
https://doi.org/10.1143/JPSJ.81.074001
https://doi.org/10.1143/JPSJ.81.074001
https://doi.org/10.1143/JPSJ.81.074001
https://doi.org/10.1103/PhysRevLett.101.120404
https://doi.org/10.1103/PhysRevLett.101.120404
https://doi.org/10.1103/PhysRevLett.101.120404
https://doi.org/10.1103/PhysRevLett.101.120404
https://doi.org/10.1103/PhysRevB.85.180508
https://doi.org/10.1103/PhysRevB.85.180508
https://doi.org/10.1103/PhysRevB.85.180508
https://doi.org/10.1103/PhysRevB.85.180508
https://doi.org/10.1103/PhysRevB.85.134203
https://doi.org/10.1103/PhysRevB.85.134203
https://doi.org/10.1103/PhysRevB.85.134203
https://doi.org/10.1103/PhysRevB.85.134203
https://doi.org/10.1126/science.1122318
https://doi.org/10.1126/science.1122318
https://doi.org/10.1126/science.1122318
https://doi.org/10.1126/science.1122318
https://doi.org/10.1126/science.1122876
https://doi.org/10.1126/science.1122876
https://doi.org/10.1126/science.1122876
https://doi.org/10.1126/science.1122876
https://doi.org/10.1103/PhysRevLett.81.4708
https://doi.org/10.1103/PhysRevLett.81.4708
https://doi.org/10.1103/PhysRevLett.81.4708
https://doi.org/10.1103/PhysRevLett.81.4708
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1103/PhysRevLett.97.090402
https://doi.org/10.1103/PhysRevLett.97.090402
https://doi.org/10.1103/PhysRevLett.97.090402
https://doi.org/10.1103/PhysRevLett.97.090402
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevB.95.214501
https://doi.org/10.1103/PhysRevB.95.214501
https://doi.org/10.1103/PhysRevB.95.214501
https://doi.org/10.1103/PhysRevB.95.214501
https://doi.org/10.1063/1.2199443
https://doi.org/10.1063/1.2199443
https://doi.org/10.1063/1.2199443
https://doi.org/10.1063/1.2199443
https://doi.org/10.1088/0034-4885/72/12/122501
https://doi.org/10.1088/0034-4885/72/12/122501
https://doi.org/10.1088/0034-4885/72/12/122501
https://doi.org/10.1088/0034-4885/72/12/122501
https://doi.org/10.1103/PhysRevB.75.014521
https://doi.org/10.1103/PhysRevB.75.014521
https://doi.org/10.1103/PhysRevB.75.014521
https://doi.org/10.1103/PhysRevB.75.014521
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.87.041601
https://doi.org/10.1103/PhysRevA.87.041601
https://doi.org/10.1103/PhysRevA.87.041601
https://doi.org/10.1103/PhysRevA.87.041601
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1143/JPSJ.71.2625
https://doi.org/10.1143/JPSJ.71.2625
https://doi.org/10.1143/JPSJ.71.2625
https://doi.org/10.1143/JPSJ.71.2625
https://doi.org/10.1143/JPSJ.67.1872
https://doi.org/10.1143/JPSJ.67.1872
https://doi.org/10.1143/JPSJ.67.1872
https://doi.org/10.1143/JPSJ.67.1872
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1209/epl/i2004-10037-5
https://doi.org/10.1209/epl/i2004-10037-5
https://doi.org/10.1209/epl/i2004-10037-5
https://doi.org/10.1209/epl/i2004-10037-5
https://doi.org/10.1103/PhysRevB.72.094513
https://doi.org/10.1103/PhysRevB.72.094513
https://doi.org/10.1103/PhysRevB.72.094513
https://doi.org/10.1103/PhysRevB.72.094513
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1209/epl/i2004-10164-y
https://doi.org/10.1209/epl/i2004-10164-y
https://doi.org/10.1209/epl/i2004-10164-y
https://doi.org/10.1209/epl/i2004-10164-y
https://doi.org/10.1143/JPSJ.67.280
https://doi.org/10.1143/JPSJ.67.280
https://doi.org/10.1143/JPSJ.67.280
https://doi.org/10.1143/JPSJ.67.280
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.83.4172
https://doi.org/10.1103/PhysRevLett.83.4172
https://doi.org/10.1103/PhysRevLett.83.4172
https://doi.org/10.1103/PhysRevLett.83.4172


INSTABILITY OF FULDE-FERRELL-LARKIN- … PHYSICAL REVIEW B 97, 134513 (2018)

symmetry as well with strong pairing fluctuations. See, e.g.,
Q. J. Chen, I. Kosztin, and K. Levin, ibid. 85, 2801 (2000).

[80] Q. J. Chen, I. Kosztin, B. Jankó, and K. Levin, Phys. Rev. B 59,
7083 (1999).

[81] G. Baym and B. L. Friman, Nucl. Phys. B 210, 193 (1982).
[82] H. Shimahara, Physica B 259–261, 492 (1999).
[83] L. Radzihovsky and A. Vishwanath, Phys. Rev. Lett. 103, 010404

(2009).
[84] P. Jakubczyk, Phys. Rev. A 95, 063626 (2017).

[85] L. Radzihovsky, Phys. Rev. A 84, 023611 (2011).
[86] T.-G. Lee, E. Nakano, Y. Tsue, T. Tatsumi, and B. Friman, Phys.

Rev. D 92, 034024 (2015).
[87] Z. Zheng, M. Gong, X. Zou, C. Zhang, and G. Guo, Phys. Rev.

A 87, 031602 (2013); X.-J. Liu and H. Hu, ibid. 87, 051608(R)
(2013).

[88] L. Dong, L. Jiang, and H. Pu, New J. Phys. 15, 075014 (2013);
M. Iskin, Phys. Rev. A 88, 013631 (2013); F. Wu, G.-C. Guo,
W. Zhang, and W. Yi, Phys. Rev. Lett. 110, 110401 (2013).

134513-11

https://doi.org/10.1103/PhysRevLett.85.2801
https://doi.org/10.1103/PhysRevLett.85.2801
https://doi.org/10.1103/PhysRevLett.85.2801
https://doi.org/10.1103/PhysRevLett.85.2801
https://doi.org/10.1103/PhysRevB.59.7083
https://doi.org/10.1103/PhysRevB.59.7083
https://doi.org/10.1103/PhysRevB.59.7083
https://doi.org/10.1103/PhysRevB.59.7083
https://doi.org/10.1016/0550-3213(82)90239-5
https://doi.org/10.1016/0550-3213(82)90239-5
https://doi.org/10.1016/0550-3213(82)90239-5
https://doi.org/10.1016/0550-3213(82)90239-5
https://doi.org/10.1016/S0921-4526(98)00768-6
https://doi.org/10.1016/S0921-4526(98)00768-6
https://doi.org/10.1016/S0921-4526(98)00768-6
https://doi.org/10.1016/S0921-4526(98)00768-6
https://doi.org/10.1103/PhysRevLett.103.010404
https://doi.org/10.1103/PhysRevLett.103.010404
https://doi.org/10.1103/PhysRevLett.103.010404
https://doi.org/10.1103/PhysRevLett.103.010404
https://doi.org/10.1103/PhysRevA.95.063626
https://doi.org/10.1103/PhysRevA.95.063626
https://doi.org/10.1103/PhysRevA.95.063626
https://doi.org/10.1103/PhysRevA.95.063626
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevD.92.034024
https://doi.org/10.1103/PhysRevD.92.034024
https://doi.org/10.1103/PhysRevD.92.034024
https://doi.org/10.1103/PhysRevD.92.034024
https://doi.org/10.1103/PhysRevA.87.031602
https://doi.org/10.1103/PhysRevA.87.031602
https://doi.org/10.1103/PhysRevA.87.031602
https://doi.org/10.1103/PhysRevA.87.031602
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1088/1367-2630/15/7/075014
https://doi.org/10.1088/1367-2630/15/7/075014
https://doi.org/10.1088/1367-2630/15/7/075014
https://doi.org/10.1088/1367-2630/15/7/075014
https://doi.org/10.1103/PhysRevA.88.013631
https://doi.org/10.1103/PhysRevA.88.013631
https://doi.org/10.1103/PhysRevA.88.013631
https://doi.org/10.1103/PhysRevA.88.013631
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401



