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In this paper we demonstrate how, using a natural generalization of BCS theory, superconducting phase
coherence manifests itself in phase-insensitive measurements—when there is a smooth evolution of the exci-
tation gapA from above to belovl’.. . In this context, we address the underdoped cuprates. Our premise is that
just as Fermi-liquid theory fails abovk,, BCS theory fails below. The order parametey, is different from
the excitation gap\. Equivalently there is #pseudggap in the excitation spectrum aboVe which is also
present in the underlying normal state of the superconducting phase. A central emphasis of our paper is that the
latter gap is most directly inferred from specific heat and vortex core experiments. At the same time there are
indications that fermionic quasiparticles exist beldw so that many features of BCS theory are clearly
present. A natural reconciliation of these observations is to modify BCS theory slightly without abandoning it
altogether. Here we review such a modification based on a BCS-like ground-state wave function. A central
parameter of our extended BCS theor;Ai%—Agc which is a measure of the number of bosonic pair excita-
tions which have a nonzero net momentum. These bosons are present in addition to the usual fermionic
quasiparticles. Applying this theory we find that the Bose condensation of Cooper pairs, which is reflected in
Agc, leads to sharp peaks in the spectral function oleeT.. These are manifested in angle-resolved
photoemission spectra as well as in specific heat jumps, which become more like the behaxidrénsition
as the pseudogap develops. We end with a discussion of tunneling experiments and condensation energy
issues. The comparison between theoretical and experimental pl6ts tinneling, vortex core spectroscopy
measurements is good.
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[. INTRODUCTION and 20] and the mean-field order parametey, (which is
nonvanishing below ;) are not necessarily the same at any
In the underdoped regime of high-temperature supercomonzero temperature; this is a reflection of the distinction
ductors it is now clear that Fermi-liquid theory fails and thebetweenT* and T.. SinceA#Ay., we say that there are
“smoking gun” for this failure is a(pseudggap in the fer- pseudogap effects beloW,. The normal state underlying
mionic excitation spectrum abovk,. Many would argué?  the superconducting phase is not a Fermi liquithe exci-
that this failure is evidence for spin-charge separation. Howtations of the system can be viewed as a “soup” of fermions
ever, the fact that the excitation gap evolves smoothly into itand pairs of fermiongbosons. The latter are very long lived
counterpart in the superconducting phase may also be inteat and belowT , in the long-wavelength limit; their number is
preted as evidence for “preformed pairs.” In this way super-associated with the differena\ez—Aﬁc.
conducting pairing correlations are responsible for the break- This background sets the stage for the important questions
down of the Fermi liquid state. This picture appears ratheiyhich we address in this paper. What are the signatures of
natural in view of the notably short coherence lengtin  T_, in thermodynamical quantities such as the specific heat
these materials, which leads to a breakdown of the stric(:u, given the smooth evolution of the excitation gap? How
mean-field theory of BCS. Within this shogtscheme, one do we understand the abrupt appearance of long-lived, fer-
considers that pairs form at temperatdre and Bose con-  mionic “quasiparticles” belowT and their implications for
dense at lower temperatuig,. These are not true “pre- the electronic spectral functioh(k, »)? If the superconduct-
formed” or bound pairs but rather long-livéd pair states. ing state is not Fermi-liquid based, then how does one ex-
Many have argued for this viewpoint from trapolate the “normal state” below, in order to deduce
experimentalists™ to theorists:"*2 such thermodynamical properties as the condensation en-
Our contributiod®* !’ to this body of work has been to ergy?
show how to microscopically implement this preformed pair  One of the central observations underlying this paper is
approach at all temperatur@s<T., by deriving an exten- the fact that there are two distinct experiments which provide
sion of BCS theory, based on the ground state of Ledfett. seemingly similar information about the extrapolated normal
We have also addressid the behavior abov@,. In this state, i.e., that thiF <T, state contains an excitation gap.
extended BCS approach, the fermionic excitation gap These are scanning tunneling microscq®fM) data in a
[which evolves smoothly from above to beloWw (Refs. 19  vortex coré?! as well as specific heat measuremént®en-
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ner and co-workefshave argued that their vortex experi- mates. Moreover, the non-Fermi-liquid characteristics of the
ments “show either the presence of important superconductextrapolated normal stafevhich underlies the superconduct-
ing fluctuations or pre-formed pairs.” Loram and ing phas¢ should help provide constraints on the long-
co-workeré?2* have analyzed their specific heat data tostanding controverdyof Fermi-liquid breakdown in the nor-
show that a thermodynamically consistent pictureCgfre- ~ mal state. Indeed, spin-charge separation scerfaffamight
flects a gap in the [<T.) “normal’-state spectrum, not be distinguishable from alternatives such as the present one
directly related to the condensate. This would, they argueQr that of Ref.25 by studieiselow T;. This provides a major
include the possibility of preformed pairs that retained theirimpetus for the present work.

structure belowT,, as in “He, and whose binding energy

does not contribute to the condensatiqn energy. Alternative Il. THEORETICAL FRAMEWORK

explanations for the vortex core experiments have been ad- . _ .
vanced by Franz and Milli8 and, more recently, by Franz Our work begins with the ground-state wave function of

and Tesanovf€ and by Lee and WefY. BCS as generalized by Leggétt,
This “preformed pair” picture, which is essentially a
mean-field-based approach, should be contrasted with the ‘1’0=Hk(Uk+kaETCT—kQ|O>' (1)

phase fluctuation picture of Emery and Kivel8dwhich has
been implemented by Franz and Miffisto address photo- which describes the continuous evolution between a BCS
emission and tunneling spectroscopies. In the present casgstem, having weak couplirgyand large¢, towards a BEC
the normal-state excitations represent a “soup” of fermionssystem with largey and small&. Here uy vy, which are
and bosons, whereas in the approach of Ref. 25 the systemdgfined as in BCS theory, are self-consistently determined in
thought to consist of a soup of fluctuating vortices. It isconjunction with the number constraifithe central approxi-
widely believed that, at least beloVy, fermionic quasipar- mation of this paper is the choice of this ground-state wave
ticles are present so that the phase fluctuation picture wilunction The essence of our previous contributitii§*’has
eventually need to accommodate their contributions. Loranbeen a characterization of the excitationsW§ and their
et al?* have, moreover, argued that phase fluctuations argxperimental signature$or all T<T.). New thermodynami-
not consistent with the behavior &, , which they observe. cal effects stemming from bosonic degrees of freedom must
The results which we obtain in this paper show that upomecessarily enter, as one crosses out of the BCS regime, to-
entering the superconducting phase, the onset of the coherepards Bose-Einstein condensation.
condensate, characterized By, leads to a sharpening of  As in BCS theory, we presume that there exists some
the peaks in the electronic spectral function, which will beattractive interaction between fermions of unspecified origin
directly reflected in angle-resolved photoemission spectroswhich is written asV, ,»=geyey:, whereg<O0; here, ¢
copy (ARPES studies where its effects are quite dramatic, as=1 and (cok,—cosk,) for s- and d-wave pairing, respec-
well as in tunnelingd® ARPES measurements support such atively. The fermions are assumed to have dispersign,
peak sharpening, and it has been recently claifiets is = 2t(2— cosk,—cosk,)+2t, (1—cosk ) —u, measured with
consistent with the theme of this paper, that the Observe%spect to the fermionic chemical potenua|HeretH andtj_
sharpening al ; (rather than al™*) is difficult to understand  are the in-plane and out-of-plane hopping integrals, respec-
within strict BCS theory. tively. In a quasi-two-dimensionalquasi-2D system,t,
Indeed, BCS theory can and should be generalized, and iQtH_ For brevity, we use a four-momentum notatih
its more general form, this peak sharpening in conjunctionz(k,iw), k=T, ., etc., and suppress, until the final
with the temperature dependence of the excitation gap is alsgyuations. '
responsible for a specific heat jump. The latter is, thus, quite \we now make a number of important observations about
generally, associated with the onset of off-diagonal long8Cs theory. BCS theory involves a special form for the pair
range order. When this general picture is applied to the cusysceptibility y(Q)=3xG(K)Go(Q—K), where the
prates we find that in the overdoped regime, this juiM  Green’s functionG satisfies G 1=G51+3, with 3(K)

C,) can be qua_ntif_ied in term_s of the t(_e_mperature depen-— —Acho(—K). In this notation, the gap equation is
dence of the excitation gap [as in the traditional BCS case;

see EQ.(18) below]. This is in contrast to the underdoped
regime, where the order parameter and excitation gap are

distinct and where the excitation gap is smooth acibss As was first observed by Kadanoff and Martinthis BCS

Here the jump(associated only with\;;) becomes smaller ; . : :

towards u]nde%oping where %/he pseslcj)dogap is more prornfg_ap_equatlon can be rederived by truncating the equations of

nent. Moreover, the s’hape of ti®, versusT curve is more motion so that only the one&) and two-parpcle ) propa-

like the \ transition of Bose-Einstein condensatidBEC). gatg_rs appeareg._rll-lefedepedngs_ o, Wh'(.:g in trl%nfdepeﬁds

All of these features seem to be consistent with®" *: In general7'has two additive contri Ut'(.) ;rom the
condensatésc) and the noncondensdgdg) pairs. Similarly

experiment*® he associated self-enery
An important second theme of this paper is an analysis o% y

the extrapolated normal state beldw. We argue here that
the superconductivity is non-Fermi-liquid based and that this S(K)=> T(Q)Go(Q—K) 3)
has important implications for condensation energy esti- Q 0

1+9gx(0)=0, T=T,. (2
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X = Q + m L S S S N S
T = | + 3 4+ 4+ T4
FIG. 1. Diagrammatic representation of the self-eneXgsnd T

matrix 7, as shown in Eq(3). The thin and thick lines denote bare

and full Green’s functions, respectively.

can be decomposed intD,(K)+2(K). The two contri-

butions in 3 come, respectively, from the condensate,

T.{(Q)=—A2.5(Q)/T, and from the Q#0 npairs, with
Tpo(Q)=0/[1+gx(Q)].

More generally, at largeg, the above equations hold but

we now include feedback into Eq2) from the finite-
momentum  pairs, via 2 ,(K)=2q7,4(Q)Go(Q—K)
~G0(—K)EQ%Q(Q)E—AEQGO(—K), which defines a

pseudogap parametdr, . This self-energy and the associ-
ated T matrix can be diagrammatically represented by Fig

1.32 This last approximation is valid only becaugarough

Eq. (2)] 7,4 diverges afQ— 0. A more complete discussion
of the validity of this approximation, based on numerical
studies, is given in Ref. 4. This body of work addresses th

behavior wherT is approached from above. Only B¢ can

this approximation be made with any confidence, since oth
erwise theT matrix is not sufficiently peaked at small fre-
guencies and wave vectors; this is equivalent to the statem
that the temperature-dependent coherence length is not s
ficiently long. Similar observations have been made else

where in the literaturé® However, at all temperature@t

and below T, the gap equation or, alternatively, the gener-

alized Thouless criterion of Eq2) helps to establish this

important approximation. For the purposes of computing th

gap parameters as a function of temperatdea(dAg.), as
well asT., we may use the approximation tiag,(K) has
a BCS-like form, as does, then, the total self-enexdK)
=—A%Gy(—K), where
AZ=AZ+AZ. €)
For the physically relevant regime of modergteve have
found, after detailed numerical calculationis?that 7,, may
be approximated as

©)

where the pair dispersioﬂq=q2/2M pair @and the effective
pair chemical potentiak,,;=0 for T<T.. The effective
pair massM ,;; and the coefficient, are determined via a
Taylor expansioff of T;gl. Moreover,I';—0, asq—0. As
a consequence we have

ngl(QuQ):aO(Q_Qq'l'Mpair_"irq)-

1

dg q#0

AZ= —% Tpo(Q)= b(Qg). (6)

We now rewrite Eq.(2), along with the fermion number
constraint, as

1—2f(Ep)

2E, ()

2
(pk: 1]

1+gz
K

eL[Erm. In the present approach it is the singular term inTthe
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2

€k €k
2 1—E—k+E—kf(Ek) =nN. (8)

k

Here f(x) and b(x) are the Fermi and Bose functions and
Ex= \/?k+ Azgokz is the quasiparticle dispersion.

Before leaving this section, it is useful to recapitulate
some key points of the above analy<i$.The pair suscepti-
bility x(Q) which we use throughout involves one bare and
one dressed Green’s function. Thi&'G,” scheme owes its
origin to BCS theory, where this form for leads to the BCS
gap equation, rewritten as E(). Since we require that the
present approach yield BCS theory at weglt is natural to
introduce this form for our more general purpodesi) Said
alternatively, we can see that in weak coupling andQat
=0, the integrand iny is proportional to the usual Gor’kov
F function which is fundamental to BCS theory. Here the
coefficient of proportionality isAg.=A. (iii) It should be
evident that, at stronger coupling, where these two energy

‘gap parameters become distinct, it is not appropriate to in-

troduce this anomalous form for the Green’s function, since
it is not clear whether in any given instance one should use
the excitation gapA or the order parametek,.. By the

%ame token, on general grounds, belbwit is not sensible

to use anomalous Green’s functions in the pair susceptibility
or in the self-energy. Rather their effects are accommodated
via the introduction of the pair susceptibility in the5G,"”

\atrix, Zg. (rather than the Gor'ko¥ function), which in-
froduces the anomalous self-enerdy.() into the formalism.
Finally, it should be stressed that Eq6)—(8) represent
the central equations of our theory beldy. They are con-
sistent with BCS theory at smaijland with the ground state

G{I’O at all g; in both cases the right hand side of K@) is

zero. The simplest physical interpretation of the present de-
coupling scheme is that it goes beyond the standard BCS
mean-field treatment of single particleghich also acquire a
self-energy from finiteq pair9, but it treats the pairs at a
self-consistent mean-field level

IIl. SPECTRAL FUNCTIONS, DENSITIES OF STATES,
AND SPECIFIC HEAT

Experimentally, it has been established from specific heat
measurements in the cuprates that there is a step discontinu-
ity or a maximum afT;, depending on the doping levet?*

It is clear that one cannot explain these experiments using
the standard picture of BCS theory, in which the specific heat
jump at T, results from the opening of the excitation gap.
We now address these experiments. In Sec. I, we used an
approximate form for the pseudogap self-enexgy [see the
derivation of Eq.(4)], in order to simplify the calculations.
Under this approximatior. 4 has a BCS-like character, so
that the spectral function is given by twé functions at
*Ey. These approximations were justified in the context of
the applications considered thus fart’

However, in order to study quantities which rely on de-
tails of the density of states, we will, in the remainder of this
paper, relax this simplifying approximation and allow for
lifetime effects inX,q. This more realistic form for ;4
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incorporates a finite broadeningdue to the incoherent na- which satisfies the sum rulg”  (dw/27)A(K,w)=1. We
ture of the finite center-of-mass momentum pair excitationsthus obtain a relatively simple expression fk, ) which
In this way we distinguish this contribution from that of the applies below and abovE,, respectively,

condensate. To make numerical calculations tractablee
do not solve for the broadening and excitation gap self-

consistently. This would involve an iterative solution of the

complex set of three coupled equations @®rand 7; rather
we take A below T. from Egs. (6)—(8), and use our

ZAE‘pgy(aH- €)?

estimate$® of T* to determine where pseudogap effects are
essentially negligible. More importantly, we treat the broad-

ening as a phenomenological parameter, with one adjustable
coefficient, chosen to optimize fits to tunneling experiments.

AK,0)= ,
(o) (0+ €)% (w?—ER)2+ Y (0?— e, — A )
(12a
2A2
A(k, )= kY (12b

(02— ER)2+ v (w—€)?

Our results, throughout this paper, are not particularly sensi-

tive to the detailed form ofy (which will depend on doping
concentratiorx andT),3* but it is essential thay be nonzero
and appreciable when compared withIn this same spirit,
we takeT. and the chemical potential from our leading
order calculationgwith y=0).

We turn now to the spectral functio(k, ). It follows
from our microscopic scheme that slightly abbve, and
for all T<T,,* the self-energy associated with tioez0
pairs and that from the condensateqer O pairs are given,
respectively, by

Epg(k,w)=Lpg.—i20(k,w) (9)
w+etly
and
2
2sc(kvw): w_lk_,ick' (10

where Ay jq=Apgex and Ay sc=Agpx. Here we have
added toX ,4 an additional piec& , which is not accounted
for by our (particle-particle ladder diagrams. This leads to
an “incoherent” background contribution which we will ad-

From Eg.(12b), we see that the spectral function contains a
zero atw= — ¢, below T, whereas it has no zero aboVg.
This difference is responsible for the different thermody-
namical behavior acrosg; .

In Fig. 2, we plot the spectral function feg,=0 (on the
Fermi surfacgat different temperatures from slightly above
T. [Fig. 2@)] to temperatures within the superconducting
phasdFig. 2(f)]. This figure is typical of situations in which
there is a well-established pseudogap. The figure can be
viewed as representative of bathandd-wave order param-

eter symmetries. Hence the value of the wave velctisrnot
particularly relevant, provided it is away from the nodal
points in thed-wave case. For illustrative purposes, we take

k at the antinodes, withy(T) =A4(T¢) andAp(T¢)=0.05

(in units of 4). In this way we ignore any dependence in

v and, thus, single out the long-range order effects associated
with Ag..

These figures give the first clear indications of the onset
of “quasiparticle” coherence. Moreover, pan@) helps to
emphasize an important component of our physical picture:
the superconductor is not in a Fermi-liquid state just above
T., as can be seen by the non-Fermi-liquid form for the
spectral function. Just beloW,, the dramatic dip at 0.9

dress later in the context of the cuprates. For the rest of thig a consequence of Bose condensatiog-eD pairs. Here, a
discussion in the next two sections we S£§=0 and, very small condensate contribution nevertheless leads to the
thereby, focus only on the superconducting and pseudogagepletion of the spectral weight at the Fermi level, as shown

terms. in Fig. 2b). As the temperature continues to decrease and
The spectral function can readily be computed frdm the superconducting gap increases, the two peaks in the spec-
=2t 2pg, AS tral function become increasingly well separated, as plotted

in Figs. 2¢c)—2(f). Even at the relatively high temperatures

A(k,w)=—=2ImG(k,w+i0), (11 corresponding toT/T.~0.7, the spectral peaks are quite
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the parameters to be the same as
those used in Fig. 2. Afl/T,
~0.7, as shown irtf), the density

of states is close to that of strict
BCS theory.

T @ IT/T I1o_ 5 © R B
6k e ] 6k 095 1 I FIG. 3. Effects of supercon-
A = = ducting long-range order on the
L L behavior of the density of states as
_r 12r 120 a function of temperature in a
23, g_ —— } } } ] (g_ —— } } } . g pseudogf'ippedswave supercon-
L (b) 0.99 T () 0.9 ductor withn=0.5. Here we take
6 61 6
4 4 4
2 2 2
0 0 0

sharp—only slightly broadened relative to their BCS coun-wheree)= ¢+ u is the dispersion measured from the bottom
terparts(where the spectral function is composed of t&wo of the band. It follows that
functions. g
It should be stressed that lifetime effects viao not lead * do
to significant peak broadening. This follows from the fact E= f,w L@t rN(0)+K(0)]f(0), (16
that the imaginary part of the pseudogap self-energy at the
peak locatiorE, is given by(for =0) where we have defineﬁ(w)zEkeﬁA(k,w), which can be
regarded as the contribution associated with the kinetic en-

i Af pg _ Af pg 13 ergy of the system. In this way, we obtain
(Ext|e)®+92 " AF+9?

Y

*» dowld
CU=L ﬁ[ﬁmmf(w)—[(mmww)

Since Eq.(6) indicates that ,4 vanishes a3 — 0, the effec-
tive peak width, determined by, decreases with decreasing

T. It can be seen that beloW,, the spectral function in Eq. ., IN(w)  IK(w)
(12b), is very different from that obtained using a simple +K(w)]_|_f (@) +| (0t p) aT aT flw)f.
broadened BCS form; there is no true gap for the latter, in 17)

contrast to the present case.
These spectral functions can be used to derive the densifjhe first two terms on the right hand side lead to a “normal-

of states(per spin as metal-like” contribution toC, /T which is proportional to
N(w) at low T. However, the third term arises becal$gv)
N(w)=2 Ak, o). (14) dgpends ofT. Ilj thi§ case, G/T no anger reflects the dgr)—
K sity of stateslt is this term that will give rise to the specific

L . ._heat discontinuity af .
Moreover, it is expected that peak sharpening effects dis- In Fig. 4 we plot the temperature dependenceCofin

cussed above for the spectral function are also reflected ig ., (a) the weak-coupling BCS case afig) the moderate-

the density of states. For simplicity, we first consider the : . -
o . . coupling pseudogap case wigwave pairing. We choose,
case ofswave pairing. In Figs. @-3(f), the density of for definiteness, the broadeningT)=T for the second of

states Is plotted for a quasi-2Bwave superconductor, these calculations. We also indicate in the insets the respec-
where the various energy gaps are taken to be the same as,in

Fig. 2. Because of contributions from states wéf¥ 0, the tve tem%glrgture-dde pgndetrr:t ef>_<0|tat|on gaps, which have been
narrow dips in Figs. @) and Zc) do not show up here. asTunE)eth n pro L;]cmg _eF|.guri. th ific heat i
However, as is evident, the density of states within the ga N Do™ cases shown in Fig. &, e Speciiic heat jump

region decreases quickly, as the superconducting condensa fises from a discontinuity indN(w)/dT,36 associated
de%/elops q Y, P 9 With the onset of superconducting order. However, for the

. . . . BCS case, this derivative can be associated with a disconti-
The rapid decrease of the density of states with decreasn‘}gﬂ‘"ty in the derivative of the excitation gap, via

T, in the vicinity of T, will be reflected in the behavior of
the specific heat, and, thereby, leads to the thermodynami- dA2
cal signature of the phase transitioB, may be obtained ACECS=—N(O)F.
from C,=dE/dT, where the energ§ is calculated vi&

(18

By contrast, in the pseudogap case, the §agnd its deriva-
E=2TE l(iwn-l—eg-l-,u)G(k,iwn) tive dA/dT are presumed to be continuous acrdssas
kn 2 shown in the inset to Fig.(#) and in Fig. 5 below, so that
Eqg. (18) does not hold. Moreover, in this case, above but
ZE - g—w(w+ek+2M)A(k,w)f(w), (15) near_Tc_, the temperature dependence in the densjty .of states
kK J-w2m is still important due to the presence of an excitation gap
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0.3 - T - T - T the anomaly irC, [shown in Fig. 4b)] is more characteristic
-10.04 (a) | of a \-like transition, although there is a precise step func-
tion discontinuity just aff ..

IV. APPLICATION TO THE CUPRATES

The results obtained in Sec. lll are generally valid for
both s- andd-wave cases, and can be readily applied to the
d-wave cuprates. In this section we test the physical picture
and the results obtained above by studying the tunneling
spectra and the specific heat behavior in the cuprates as a
function of doping and of temperature. As in earlier
work,'%17 we introduce a hole concentration dependence of
the electronic energy scales by imposing the Mott constraint
that the in-plane hopping integraj(x)=tyx, so that the
plasma frequency vanishesxas>0. As a result, the effective
coupling strength—g/t|(x) increases as the Mott insulator
phase is approached. Here we assyfoe simplicity) g(x)
=g and fit the one free parametay/t, to the phase
diagram®®

In order to compare with tunneling spectra, we introduce
a slightly more realistic band structure which includes a

FIG. 4. Comparison of the temperature dependence of the Sp@ext-nearest-neighbpr hopping ,termZt’(l—(_:oskx cosk,)
cific heat in the(a) weak-coupling BCS case an) moderate- 1N the band dispersiom, with t'/tj~0.4. This parameter

coupling pseudogap case. Shown here are quas-®Bve results, choice gives rise to the holelike Fermi surface shape seen in
atn=0.5, —g/4t;=0.5 and 0.6, respectively. THedependence of ARPES measurements for underdoped and optimally doped
the gap is shown as insets. cuprates®3®and places the van Hove singularity in a more
correct position within the band.

Finally, we turn to the phenomenological paramegeas
well as toA. We presume thaty changes from above to
higherT, well away fromT,, wheredN(w)/d T tends gradu- below T and in this wayA (which is directly coupled toy

via the set of coupled equations f@& and 7°) will have

ally to zero,C, is then controlled, as in a more typical “nor- i _—
mal metal,” byN(w). We see, then, that the approach to theSOme, albeit small, structure in its temperature dependence at
’ ’ ! T., as seems to be the case experimentally. Our choice for

“normal metal” value is sharp for the BCS case, but because ¢’ oe . g
of the nonzero pseudogap, it is more gradual for ¢aseAn the excitation gaps is shown in Fig. 5, and appears compat-

important consequence of these effects, is that the shape B¥€ With Figs. 8 and 9 in Ref. 22. As is consistent with
scattering rate measurements in the literaffifé,we take

y< T2 below T, and linear inT aboveT,.*? For the doping

aboveT.. The latter leads to a decreasaliN(w)/dT which
is then reflected] in a decrease i€, , slightly aboveT,. At

2 ' ' dependence, we assume thavaries inversely withA. This
i reflects the fact that when the gap is large, the available
0.08 quasiparticle scattering decreases. With these reasonable as-
15k 010 s_umptions, along with the continuity ofat T, we obtain a
simple form
0.125
g, aT3TA (T<T),
0.155 7] = 19
s Y“laTtTua  (T>Ty). (19
0.175 |
Here, the coefficiena<1. This corresponds to our single
0.5 T adjustable parameter.
0.22
x=0.25 A. Tunneling spectra
L 1 L
00 1 2 Tunneling experiments were among the first to provide
T, information about the excitation gap—which measurements

seem to be consistent with ARPES dafeor a given density
FIG. 5. Temperature dependence of the excitation gaps for variof statesN(w), the quasiparticle tunneling current across a
ous doping concentrations used for calculations in Fig. 7. Heresuperconducting-insulator-normalSIN) junction can be
Ao opt is the zeroT gap at optimal doping~0.15. readily calculated®

184519-6



SUPERCONDUCTING PHASE COHERENCE IN H. .. PHYSICAL REVIEW B 63 184519

* dw

IS.N=2eNoTéJ - N@)[f(o—eV)=f(w)], (20
where we have assumed a constant density of ststgdpr
the normal metal, and presumed that the tunneling matrix
elementT is isotropic. In reality, there may be some direc-
tional tunneling which will tend to accentuate the gap fea-
tures, but we do not complicate our discussion here with
these effects. At lowl, one obtains

(dl) e’NoT3
dv SIN

N(eV) (21)

s

so that the tunneling spectra and the density of states are
equivalent, up to a multiplicative constant coefficient. At
comparable tdl., however, the tunneling spectra reflect a
more thermally broadened density of states.

In Fig. 6(a), we plot the SIN tunneling spectra, calculated
for optimal doping &k~0.15) at temperatures varying from
above to belowT.. The van Hove singularity introduces a
broad maximum in the spectra at high temperatures, as seen
for the top curve in Fig. @). We see here thdeven for this
optimal samplg as observed experimentaflyhe density of
states containgpseudggaplike features which lead to two
peaks. This is visible for temperatures well above. A
similar plot is presented in Fig.(6), which shows at fixed
low T=0.2T. how the spectrum evolves as a functionxof
Both these plots appear in reasonable agreement with what is
observed experimentally by Renner and co-worKeasd by
Miyakawaet al® for Bi,Sr,CaCyOg, 5 (Bi2212).

B. Specific heat | 0125

There is a substantial amount of experimental data on the 10
specific heat in the cupraté$® although systematic studies
come primarily from one experimental grotfhWe compare
our numerical results with these data by plotting our calcu- T Y
lations for C,/T in Figs. 7a)—7(f), from over- to under- v/4t,
doped systems. As shown in these plots, the behavi@, of
is BCS-like in the overdoped regime. As the system passes FIG. 6. (a) Temperature antb) doping dependence of tunneling
from optimal doping towards underdoping, the behavior isspectra across an SIN junction. Shown(@nare thed!/dV charac-
more representative of B-like anomaly, as found in Fig. teristics calculated for optimal doping at various temperatures from
4(b) for the swave case. All these trends seem to be quali2bove to belowT;. Shown in(b) are tunneling spectra at loW (at
tatively consistent with experimental d&&2* In the under-  0-2Tc) for variousx. The units ford1/dV aree’NoT5/4t, wheret
doped regime at higff, we find a maximum irC, /T, near a is evalugted at optimal doping. For clarity, t.he curveganand (b)
temperaturel™* , which may be associated with the onset of &€ vertically offset by 1.5 and 10, respectively.
the pseudogap stafsee, e.g., Fig. @)]. Finally, in contrast ) )
to Fig. 4, at lowT, the d-wave nodes lead to a larger quasi- T, seems to reinforce the general theme of this work—that
particle specific heat, than for treewave case. corrections to BCS theo.ry may be reasonably accounted.for

The experimentally observedlike anomaly ofC, atT,  P°Y @n improved mean-field theory, rather than by, say, in-
has been interpreted previously as evidence for a Bose cofluding order parameter fluctuation effects.
densation descriptiohHere, in contrast, we see that within
our generalized mean-field theory, this anomaly naturallyV. LOW-T EXTRAPOLATION OF THE PSEUDOGAPPED
arises from the temperature dependence of the fermionic ex- NORMAL STATE
citation gap which has some structure at, but persists above,
T., as shown in Fig. 5. Thus, this is a property of supercon-
ductors which have a well-established pseudogap. That the The character of the extrapolatef<T.) “normal state”
experimental daté@which, except at extremely reduced hole is at the core of many topical issues in hiflasuperconduc-
concentrationsshow a reasonably sharplike) structure at tivity. Understanding this state may shed light on the nature

A. Non-Fermi-liquid-based superconductivity
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0.2 T T T T T T T 0.2

FIG. 7. Temperature depen-
dence of the specific heat for vari-
ous doping concentrations, calcu-
lated witha=1/4 in Eq.(19).

CAT/TY

of Fermi-liquid breakdown abovE,. Moreover, the thermo- We have emphasized that within our physical picture
dynamics of this extrapolated phase provides a basis for eghere is an underlyingpseudogap in the normal state below
timates of the condensation energy. This is dedtfceg  Tc. A similar picture was independently deduced phenom-
integrating the difference between the entropy of the superenologically from specific heat and maé;netm susceptibility
conducting state and that of the extrapolated normal stat@€asurements by Loram and co-workére/ho arrived at
with respect tar. This extrapolated normal state also appear£duations like those of Sec. [Egs.(4) and(7)]. However,

as a component of the free energy functional of conventiond’®Y did not impose a self-consistent condition/og, as in
Landau-Ginzburg theory. Indeed, considerable attention hasd- (8)- Rather the quantitA g (which they callE) is

; ; : d to b& independent.
been paid recently to condensation energy in the context ssume . -
determining the pairing “mechanism” in high-temperature To expand on these issues we plot in Fig. 8 the calculated

A58 . . i C,/T and entropys for (a) and (b) the BCS case, as com-
superconductors™™ In this regard what is needed is the pareq with the counterparts obtained for the pseudogap su-

difference  between the various “normal”- and perconductor inc) and (d). The dotted lines represent the
superconducting-state polarizabiliti€®.g., magnetic and Fermi liquid, i.e., linear extrapolatiofFL). Figures 8a) and
electrig which are thought to be responsible for the pairing.g(b) reaffirm that this Fermi-liquid extrapolation is sensible
Itis important to stress thae “normal state” used in com-  for the BCS case-G, /T is a constant, an8is a straight line
puting the polarizabilities should contain an excitation gap going through the origin. Panéb) is useful in another re-
which is compatible with that found in the experimental dataspect: it shows how the entropy behaves as phase coherence
analysig* with which the microscopically deduced conden-is established. In general, the phase-coherent state has a
sation energy is compared lower entropy than the extrapolated normal state.

0.05 : . : 0.2 ——
0_04-_ BCS x=0.95 i pseudogap x=0.125 ]
0.03| _ _
<0.02}
0.01}

of
0.04 |

| L
~_

o

~

C AT/T,)

™ T T T
\

0.02f

FIG. 8. Comparison of the extrapolated normal state belgvin (a),(b) BCS and(c),(d) pseudogap superconductors. Shown are the
extrapolations foiIC, /T and the entropys in the upper and lower panels, respectively. Here “SC,” “PG,” and “FL” denote supercon-
ducting state, extrapolated normal state with a pseudogap, and Fermi-liquid-based extrapolation, respectively. The shadefare&d) in
determine the condensation energy.
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FIG. 9. Extrapolated normal-
state (PG) and superconducting-

didv

5 | T.=83.0K

_ state (SO contributions to SIN
N £ (underdoped) \/ 3 tunneling and thermodynamics
0 04 00 0 02 04 3500 -200 -100 0© 100 200 300 (eft), as well as comparison .Wlth
(a) v © v [mV] experiments(right) on tunneling
Sample for Bi2212 from Renneret al.
0.2 T T T T T 3 : : : — _ (Ref. 8 and on specific heat for
_ — SC x=0.125 ] T [ 520,439 Yo.d8Ca BaCu0; 5 from Lo-
bo - PG 1 e 4 c -é ramet al. (Ref. 24. The theoreti-
; %" 2L A 220K 1 cal SIN curve is calculated fof
S - 1 = 7 =T.2, while the experimental
- 0.1 T/ 7 - ; I J ] curves are measured outside
k= [ [ 1 a.L s/ L 1 (dashed ling and inside (solid
% AT 1 LS/ s line) a vortex core.
| 1 N 1 N 0 PN BT BTN AR B
00 1 7 3 0 50 106 150 200 250
(b) /T, (d) T

In the underdoped regime, Loram and co-workehmve  quadratic inT, respectively. Slightly different power laws
stressed that entropy measurements lead one to infer that Aave been assumed experimentally. A rough estimate of the
excitation gap occurabove T.. We analyze our calculated condensation energy can be obtained from the integrated
form of the entropy in a similar fashion. In contrast to the area between the solid lingor the superconducting state
BCS case, for a pseudogap superconductor, the Fermi-liquiand the dashed lingor the extrapolated normal state Fig.
extrapolation ofS is unphysical, approaching a negative 8(d). It should also be noted that a more meaningful measure
value at lowT, as shown by the dotted line in Fig(d. Here  of the condensation energy is obtained by computing the
the solid and dotted lines separate around the temperature magnetic-field-dependent Gibbs free energy. This is more
which we find to be around 1T;. In order to obtain a ther- complicated to implement both theoretically and experimen-
modynamically consistent picture, then, the normal statdally.
must deviate from the FL line and this is accomplished by
turning on an excitation gap &i<T*. _ _

The dashed lines in Figs(® and 8d) show a more rea- B. Comparison with vortex core and C, measurements
sonable extrapolated normal stafi@beled PG which is The presence of a pseudogap in the underlying normal
equivalent to the solid line foT=T, and distinct forT  state of the superconducting phase is also consistent with the
<T,. This extrapolation is taken to be consistent with theobservations by Renner and co-workdsased on STM mea-
conservation of entropﬁzfgcv /T dT, i.e., the shaded ar- surements within a vortex core. While one might be con-
eas in(c) and (d). This construction for th&<T. normal cerned about magnetic fielth, effects in interpreting these
state is similar to the procedure followed experimentdlly, data, it should be noted thkt appears to have a rather weak
and, in effect, removes phase-coherent contributions whickffect® on pseudogap phenomena, as measure@*ynd
enter viaAg.. This construction is by no means unique; all A(H). (In more overdoped samples the field dependence be-
that is required is that the entropy of the extrapolated normatomes more apparéfly By contrastT. is more sensitive to
and of the superconducting states be equalatT.. As  H.
shown in the figure, we chose, for simplicity, a straight line Indeed, this weak dependence Bnis often invoked in
extrapolation forC,/T. Moreover, this choice is consistent the literature as strong evidence against the “preformed”
with our expectation that there would be, in the “normal pair scenario. In the usual BCS case, pairs form precisely
state,” a finite intercept foC, /T. when phase coherence sets in. However, in the case of a

Just as a gap is present abolg the underlying normal pseudogap superconductor where the coupling is stronger,
phase belovl; (labeled PGis to be distinguished from the pairs form abovel . without an underlying phase coherence.
FL extrapolation; it also contains an excitation gap. Indeed|t is clear that a magnetic field loweTs by destroying phase
this is consistent with what has been claimedcoherence. However, “preformed” pairs will survivel,
experimentally’* a thermodynamically consistent picture of leaving the excitation gap in tact. Stated alternatively, a mag-
C, reflects a gap in the €T, normal-state spectrum, not netic field (just like magnetic impuritigsbreaks time rever-
directly related to the condensaté/hile Figs. &c) and &d) sal symmetry, and therefore makes it energetically unfavor-
are similar to what is in the data in underdoped cuprates, i@ble to form Cooper pairs which are comprised of time-
our analysis the “normal” stat€, /T and S are linear and reversed single-particle states. In contrast, finite-momentum
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pair excitations, which are responsible for the pseudogap ipronounced sharp feature than in Ref.(&#hough the latter
our approach, are not formed in time-reversed states, and appears to be descended from the more anomalous features
such, they are not as susceptible to external magnetic fieldeported earlier by Suzuldt al). Earlier work® by some of
or to magnetic impurities. A more microscopic theory of thethese same authors reportedli/dV characteristics in
characteristic temperaturés (H) andT.(H) at smallH will  HgBr,-intercalated Bi2212 samples. In advantage, the Joule
be presented in a forthcoming paper. The field insensitivityheating, which was considered to be a problem in experi-
of the former can be traced to the small size of the coherencgents on 13J at high bias curréfitcan therefore be signifi-
length®* cantly suppressed. These latter observations were more in

In Fig. 9, we plot our results for the SIN tunneling char- jine with those found by other group€ in single-junction
acteristics,dl/dV, and the computed entropy and specific experiments. In contrast to their more recent wik these
heat in a pseudogap superconductor, and compare withtercalated samples the peak-dip-hump features were clearly
experiment*®52 To obtain the extrapolated normal state visible at characteristic energies in the ratio 2:3:4.
(called PG in dI/dV, we set the superconducting order pa- There is in all these experiments the possibility that the
rameterA . to zero, but maintain the total excitation gap to so-called superconducting peak is an artifact of self-heating
be same as in a phase coherent, superconducting state—with other nonequilibrium effects, which would be present
nonzeroA . (called SQ. This procedure presumes that whenwhen there is a nonzero critical current. Its absence in single-
the condensate is absent, the pseuddgapmust correspond  junction experiments would, otherwise, be difficult to ex-
to the full excitation gap. Thus it should reflect the pairsplain. These latter experiments correlate well with ARPES.
which would otherwise be condensed. The characteristic béMoreover, they also correlate with inferences fr@y and
havior of dI/dV measured in an SIN configuration is pre- other bulk data”® We have no simple explanation for the
sented as a comparison between thetef) and experiment sharp feature in tunneling. Within our approach there is a
(right) in the upper panels of Fig. 9. Here the experimentalisingle excitation gaj above as well as beloW, . Although
curves are taken from Ref. 8, measured for underdopethe critical current |, reflects the order parametér,.,
Bi2212 inside(PG) and outside/SC) a vortex core, respec- Wwhich vanishes af., this order parameter contribution is
tively. The non-Fermi-liquid nature of the extrapolated nor-not expected to show up in quasiparticle tunneling as a sec-
mal state can be clearly seen. In a similar fashion, we shownd gap feature. Of these 13J experiments, the data which
the comparisons for the extrapolated entropy and specifiseem not incompatible with our picture are those of Yurgens
heat between our theory and experiments of Ref. 24 foet al®® and, possibly, Latysheet al.;*® the latter authors,
Y Cay BaCu;0;_5. Here y=C,/T. The agreement be- nevertheless, find much sharper maximadifdV than we
tween the theoretically computed curves and experimentallyould have.
deduced curves provides reasonable support for the present Quantum  critical  points Both theorist®® and
theoretical picture. experimentalist8®* have recently turned their attention to
quantum critical phase transitions. Moreover, these phenom-
ena are assumed to be related to pseudogap effects. Indeed,
Loram and co-workefé presume thatl ,4 (which, in their

In this section we revisit some of the issues raised in thispproach, is taken to be temperature independsiropor-
paper and in experiments @), , tunneling, vortex core, and tional to T*. Then at some critical doping concentration (
related spectroscopies. In contrast to what has been presented.19), A4 appears to vanish and they infer thigt—0.
up until now, here we are more qualitative and, in someBy contrast, we find thak ;4 is more closely associated with
instances, more speculative. (T*—T,), which does not lead to a zero-temperature phase

Intrinsic tunnelingexperiments® Considerable attention transition, even when 4 vanishes.
has been directed towards intrinsic tunneling experiments At low x, on the other hand, there may be something more
stacked layeps not only because they yield different results dramatic like a first-order or quantum critical phase transi-
from STM (Refs. 44 and 2jland from point contact/break tion going on — at the superconductor-insulator boundary.
junctiorf® experiments, but also because they sometimes reHere the excitation gap is maximum on the one side of the
veal an unexpected sharp featuoe second peak idl/dV)  boundary and yet the superconducting order parameter dis-
presumably associated with superconductivity. This peak ocappears on the othefln the present picture this disappear-
curs in addition to a broader excitation gap featlwaich is  ance was found to arise from the localization afvave
more like that found in single-junction experimentnd it  pairs®) At low x, this superconductor-insulator transition
vanishes forT=T,. There is, as yet, no complete conver- also appears in the presence of a magnetic *fleidhen the
gence between different intrinsic Josephson junciidd)  field is large enough to drive the system into the normal
tunneling experiments. On overdoped samples Suzukphase. It also appears with impurity pair breakifig\l three
and co-worker¥ have found anomalously sharp and largeof these experiments may be interpreted as suggesting that
amplitude (second peaks whose presence correlates withthe fermionic excitation gap survives in the presence of
long-range order, while, by contrast, Latyshev andpair breaking(by large fields or impuritiesor low hole
co-workers® find only a single maximum irdI/dV below  concentrations—thereby leading to an insulating fermionic
T., which rather smoothly evolves into the normal stateexcitation spectrum. Some confirmation of this conjecture
peak. However, for underdoped samples, Krasnov andomes from NMR experimerftdwhich seem to imply thad
co-workers? report two maxima below, with a much less does not vary withH, once the pseudogap is well estab-

C. Discussion
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lished. And the STM measuremefits) general, as well as T. Within this approach we were able in the past to perform
inside a vortex core seem consistent with the observation that number of concrete calculatiotis}” and, in the present

A is only weaklyH dependent. One cannot, of course, ignorepaper, explore the behavior somewhat above and b@low
Mott insulating effects at this superconductor-insulatorof the specific heat, and quasiparticle tunneling character-
boundary as well. However, whatever physical mechanism igstics dI/dV. This present study led us naturally to analyze
dominant, the fact that the superconductor-insulator transine nature of superconducting phase coherence in the pres-
tion is a robust feature associated with the disappearance gfce of a pseudogap.

superconductivity, whether by pair breaking or by doping, study ofC, anddl/dV is based on a Green’s func-

neleds tho be ?ddrets_ze?_. o th tral function in oh tion decoupling scheme chosen to be consistent with(Bg.
toe;?SSiggegeggztn rl:c:t(z)r:esmic;,sioi Seaeia:i; é%ll,rt]g% 'i?]gig;tz % The spectral functions which enter these two physical quan-
P P tities depend, in turn, on the self-energy which is the sum of

that the relative weight of the coherent contribution to the :
. . ; . ~ "Egs. (9) and (10), where throughout we have ignored the
spectral function decreases rapidly with decreasinignor incoherent term2,, which enters through diagrams other

ing the incoherent term, in the self-energy(as we h h ible f h ducti d
have hergwill necessarily affect any quantitative inferences "@" those  responsible for the superconducting an

about the systematie dependence of the spectral function PS€udogaps. It should be noted that this form3as differ-

and, thereby, o€, or the related condensation energy. Thiseqt.frgsm that introduced phenomenologically by Franz and
term can only be put in by hand in the present approach: iMillis > and by Norman and Dinfy: One of these groups,
arises here from diagrams other than the particle-particlé particular, emphasized the effects of the temperature-
terms which give rise to the superconductivity anddependent scattering rate. Here, by contrast, we emphasize
pseudogap. Moreover, the measured systematiepen- the effects of long-range phase coherence which sets in at
dence of the coherent spectral weight, which has been inf..

ferred from photoemissiot;*°is likely to be consistent with Because of the breakdown of BCS theory, in a supercon-
the inferences based on thermodynarfider the x depen-  ductor with a pseudogap, the standard simplifications, such
dence of the entropys and related condensation energy. as Landau-Ginzburg expansions and Bogoliubov—de Gennes
However, when the contribution frol, is sizable, relative approache&’ are not expected to hold, at least without some
to the coherent terms, one cannot includéoit hand with-  modifications. For the BCS case, the expansion in terms of a
out self-consistently also re-solving for the chemical potensmall order parameter which is identical to the excitation gap
tial » and, hence, also foA and T, etc. This extensive atT_ is possible. However, when the order parameter and the
numerical program would take us too far afield to implementaycitation gap are distinct as in the pseudogap case, there is
here. no straightforward way to expand the free energy in terms of

In additi02n, this2 o contribution is needed to arrive at the a small order parameter and to reflect the existence of a
well-knowrP? dip-hump features of photoemission. When well-established excitation gap simultaneously.

this term is artificially added, we are able to obtain this latter |, <1 0//14 pe emphasized, finally, that, in the non-BCS

structure which will scale with the excitation gap Indeed, superconductor, there is an important distinction betwien

a dep(_andence_om IS p!au3|ble SINCe We presume tlﬁ. 4 1S and the zero-temperature excitation gaf®). In thestrong-
associated with various(electron-hol¢ polarizabilities, . . . . .
Puplmg, but still fermionic, regime, as the pseudogap in-

which in the superconducting and pseudogap states refle€ . 515 - .
the nonvanishing excitation gap. It is, however, essefiial CreasesT, is suppresseli>*This observation allows us to

obtain dip-hump featurgghat the imaginary part Gt turn respond to the widely repeated criticism of this “preformed”

on rather abruptly at frequencies somewhere betweand P& approach: namely, tﬁat“.the gap is not closely tied to
2A. Indeed, the step function model introduced in Ref. 63the onset of superconductivity”—as inferred from, say, the
seems to accomplish this quite well, but we know of nolack of magnetic field dependence in the former. Here we
simple microscopic mechanism which yields this rapid fre-claim that in contrast to BCS theory, the excitation gajs
guency onset. expected to be robust with respect to standard pair breaking
perturbationgsuch as magnetic fields and impurity scatter-
ing), while the order parameteX. is not. As emphasized
VI. CONCLUSIONS throughout this paper, the distinction between these two

This paper has raised some issues which have a number gelantities is an essential component of the “preformed” pair

important ramifications. We suggest that specific heat an@PProach.

vortex core experiments have provided strong evidence that

the normal state underlying the superconducting phase is not

a Fermi liquid. Thus BCS theory cannot be applied to the ACKNOWLEDGMENTS
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