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Magnetic-field effects in the pseudogap phase: A competing energy gap scenario
for precursor superconductivity

PHYSICAL REVIEW B, VOLUME 64, 140508R)

Ying-Jer Kao! Andrew P. lyengat,Qijin Chen? and K. Levirt
LJames Franck Institute and Department of Physics, University of Chicago, Chicago, lllinois 60637
National High Magnetic Field Laboratory, Tallahassee, Florida 32310
(Received 29 March 2001; published 18 September 001

We study the sensitivity of ; and the pseudogap onset temperattite,to low fields,H, using a BCS-based
approach extended to arbitrary coupling. We find thatand T., which are of the same superconducting
origin, have very different dependences. This is due to the pseudoggp, which is present at the latter, but
not former temperature. Our results for the coherence leadithwell with existing experiments. We predict
that very near the insulat@r will rapidly increase.
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One of the central questions in understanding the under- Indeed there is a rather close similarity in the structure of
doped cuprates is the extent to which the superconductingur zero-field theory to the phenomenology deduced from
phase is described by the BCS theory. Recent experifénts thermodynamical data by Loraret all® Our mean-field
indicate that the pseudogap persists befavin the underly- ~ calculations™* show that the gap equation far<T, re-
ing normal density of states. Thus, the fermionic excitationduces to the usual BCS form, but with a new quasiparticle
gapA is to be distinguished from the order parametgg.  dispersion
These two energy gaps mirror a distinction between the two . > — ———
temperature§™* (the pseudogap onsetand T, (the super- Ei= Vet (AL Ay pi= e+ A%y, @
conducting transition which behave differently as a func- Here ¢, is associated with the pairing symmetry. It follows

tion of hole concentratiorx as well as pf magnetic field, ¢4 this that the larger id ,,(T.), the lower the transition
H."® Indeed, T* and T, are, respectively, weakly and temperaturel... In contrast to the work in Refs. 16 and 15
. . Cc* " !

strongly dependent ofl in the well-established pseudogap nhere A ,(T), is determined self-consistently and derives
regime. Moreover, the distinction between these temperatugom the presence of a strong pairing attractiMoreover,
and energy scales has been frequently &iédis evidence this pseudogap) . persists below T
that they have different physical origins. The conclusions of this paper are relatively straightfor-

In this paper we provide a counter argument to this widelyward and we begin with a simple intuitive argument to ad-
stated inference by demonstrating that these cruciadressH.,. Consider the Ginzburg-Landau free-energy func-
magnetic-field effects in the pseudogap phase, are entirelyonal nearT. to quadratic order im\4;, in a finite field
compatible with superconductivity as origin footh T and ,

2eA)

T.. Our approach is based on an extended version of the )
BCS theory, in which the attractive couplirgyis contem- F~{ 7o(M+ 7%\ 7~ —
plated to be strong enough so that pairs begin to form at a
higher temperaturel* than the T, at which they Bose Here 7, describes how the system approaches the critical
condensé:® We have showir™ that as a necessary conse- point with varying temperature, ana?® is the stiffness
quenceA#A.. Moreover, our work has emphasiZéd®®  against spatial variations of the order parameter. The mean-
that a(pseudggap in the fermionic spectrum &t is delete-  field behavior ofr, nearT, yields 7o(T)=7o(1—T/T). It
rious for superconductivity. Thus, as observed experimenfollows that
tally, as a function of decreasing T. decreases as the
pseudogap of * grows. 1 dT, 2 27 72

A calculation of the field dependence ®f (i.e., H,) is T A =¢T§2=¢T =, ()
an important problem in its own righti) This is the only ¢ H=0 0 0 7o

way to provide a precise interpretation of the “coherenceyhere ¢ is the zero-temperature coherence length. A rough
length” &, which we demonstrate here is very different from extrapolation yieldsH ,(0)~®,/(27¢?). In the smallg

that of the BCS theordf (ii) An analysis ofH,, is tanta- . . .
L . ; ; (i.e., BCS caserp=N(0), thedensity of states per spin at
mount to arriving at a reformulation of the microscopically the Fermi surface, ang?—N(0)7¢(3)/48%(v, IT,)?. The

deduced Ginzburg-Landa@GL) free energy up to quadratic - 2 .
terms,which must necessarily incorporate the presence of asquared coherence Ieng@cs— 7_5(3)/48” (ve/Te)” s de-

nonzero pseudogap at,T(iii) Because the “competing or- termined by the stiffness? with 7, cancelling the density of
der parameter” scenarid® also addresses the observationstates.

that A# A, as well as the competingdependences df . In contrast, in the strong coupling case the pseudogap
andT*, magnetic-field effects may provide a unique testmgmodifies the fermionic quasiparticle dispers_ion through a re-
ground for distinguishing between these two scenarios. placement ok, by E, and thereby suppresses Moreover,

|Asd?. )
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the stiffness»? (which is relativelyinsensitiveto the energy ~ equations show that to a good first-order approximation this
scale of the pseudoggpdecreases due to the diminishing fésonance temperature can be deduced from the condition
pair size. There is, thus, a competition between the numera/d+ xo(0,0)=0, wherey is given by Eq.(5) with €, sub-

— ; i *

tor and denominator in E¢3). The decrease iny dominates tst.|tuted fgrEk. Illndeed, qumi %egerally, a=T N thft ma—f
at sufficiently large coupling, resulting in an extended flat "X can be well approximated by using,(Q) in place o
region followed by an eventual growth éf with increasing X(Q).

0. The latter reflects the approach to the ideal “boson” limit, Magnetlc-fleld effect_s can be_ re_adlly |*ncluded _|nto our
whereT, is suppresséd to zero at anyH#0. formalism. We begin with a derivation of* (H) to linear

Next, we provide a microscopic derivation of the param-o.rder. inH. Our Hamiltonian consists of the field dependent
eters in Eq(3) (and a related counterpart o). A central !(lnetlc fanergy term along with tre usual two-body pairing
theme in our paper is that both the field sensitivityTofand ~ INteraction of strengtV - =gy, where we now include
of T* in small H can be studied through the zero-field interactions between pairs of nonzero net momentum. Fluc-
normal-state pair propagator, or the inversematrix tuations of pairs with finite momentuny() are character-
t~1(Q)=1/g+ x(Q), whereQ=(q,Q) is a four vector. The ized by the correlation function D(q.k;q".k’)
coefficients in Eq(2) will be shown to arise from an expan- =(7b(a,k,7)b™(q’,k’,7")), where b(q,k,7)=e N7

sion oft~! in the momentum components perpendicular toX Cq/27kcq/2+kei( WN_)T-
the field (indexed byi,j =x,y) as Summing ladder diagrams leads to a Dyson equaflon

=GyGy— GyGyVD with solution
1 1
To=§+x(0.0),n2=§\/de(r7qi(9qjx(Q)]|Q=o, 4

where we have generalized from H@) to include possible
anisotropy. where xo=GoG, is the counterpart pair susceptibility for

A proper motivation for our choice 0f(Q) is essential. H=0, and the field-dependence of the bare electron propa-
The formalism®**in this paper combines a Green’s function gator G, is implemented using the semiclassical phase
decoupling schent® with a generalization of the BCS approximatior?? elevating bothy, and S, D e ¢y to in-
ground—state wave f_ur_10ti_d‘1_‘?. This formalism allows for tegral operatof® whose eigenvalues sétisfy Ep). This
Fermi- and non-Fermi-liquidi.e., Ao(Tc) # 0) based super- - 5o5rqximation allows the calculation of the eigenvalues of
conductivity, according to the size gf with self-consistently - f r . S .

| Xo from the zero-field pair susceptibility, in the regime

determined chemical potential. In the present paper al o . .

technical issues of this decoupling scheme can be simpIT?Pj[H/m(.:' IS _f|e|d-|nduc|(_ad retI:twet pha;e Sh'fé btett%Neen

by-passed, and the results obtained are not only intuitive, b ectrons in a pair renormafizes the in eracm’ » but the
&ffect is quadratic irH and is therefore ignored here. The

rather general. All that is needed here is the observation that_.". . ,
the pair susceptibility y(q,Q)=x(Q)=SG(K)Go(Q pairing resonance temperatufé is defined by the appear-

> Def e =xol (1+3gxo) , (6)
k,k’

—K)<P§—q/z- Thus ance of an eigenvaluH,=—g~* of y,, Which causes Eq.
(6) to diverge. We define parameterg'® and 75 = 75 (1
1-f(Ep)—f(ek—q) —T/T*) analogous to those which appear in E4) and
X(qvo):; (Pﬁqlz[ Evt €xq Uﬁ obtain

_f(Ek)—f(ek_q)v2 g '+ My=7%+ 7*2. (2elc) H=0, 7

k

. (5

Ex— €—q which definesT*(H) to linear order inH. The slope of

Here u? andv? are the usual BCS coherence factors, and'” (H) atH=0is
@i=[1+(k/ko)?] "%, or [coska)—coska)]?, for s wave .
pairing in three-dimensiondBD) jellium or d-wave pairing _i dl
on a quasi- 2D lattice, respectively. That there is one full T* dH
Green’s function(G) along with one bare Green’s function

(Gy), reflects the structure of the BCS gap equation, whichvhich leads to the associated “coherence lengii?
introduces® this x(Q) form, (with integrand proportional to = *2/7% . The stiffnessy*2 can be explicitly evaluated us-
the usual Gor’kow function). All numerical calculations in  ing the zero-field pair susceptibility, and

this paper are based on Ed4), (4), and (5), given A

——= ®)

H=0

=A,4(Te). Although here we proceed more self- — 2 ,
consistently, our analytical scheme for computing the various 7o :; ¢k —f'(ed)
energy scalés can be by-passed, &,, andT; are prede-
termined, e.qg., fitted to cuprate experiments. du T [1-2f(e)
We next turn toT*, where the Fermi liquid begins to d_Te_k'(z—ekJrf (ek)) - ©)

break down; this is associated with the onset of a
resonanc€-?lin t(Q), asg becomes sufficiently large. De- Here we have included a contribution from the temperature
tailed numeric& 2 based on the coupled Green’s function dependence of.. In the weak coupling case, the chemical
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FIG. 1. Coherence lengths (for T., solid and & (for T*, FIG. 2. Coherence lengths @t (solid) andT* (dashed versus

dashed with variable couplingg for swave jellium; here variable couplingy for a d-wave lattice at densitp=0.85. ¢ is in
g.= — 4m/mky and units arek,;l. See Eqgs(3) and(8). Inset shows units ofa. The inset plots the zero-field energy scales from Ref. 13,
the zero-field behavior of*, T., andApq from Ref. 13, wherel andT,A are in units of 4.

andA are in units ofEg.
F the essential physics introduced by the pseudogap. The sum-

mation essentially measures the= 0 density of states which
i_s depleted by the pseudogap at strong coupling, leading to

To~e€ “ra’/Tc. Moreover, we have shown analytically that

the neglected terms further suppress and, therefore, do
not qualitatively change our results.

Figures 1 and 2 indicate how the characteristic low-field
slopes behave as a function of coupliggfor the swave
(jellium) andd-wave (lattice) cases, respectively. For the lat-

potential is pinned aEg, and we recover thesfwave BCS
limit 75 =—3,f ’(ek)¢§~N(0)<pﬁF~ N(0).

The dashed line in Fig. 1 is a plot of the slopeTdf with
H, as a function of the coupling, for the case ok-wave
jellium. This should be compared with the inset, from Ref.
13, which illustrates the suppressionTfby A 4 for all g in
the fermionic regimef{ultimately, whenu becomes negative,

\',I'via;lia_lr_as iéoelsr;gnet?:lf ?hgealsrl;/:/nhee; p:::(;i ?j(;gz;:] diﬁset(r:(t)sn allre ter, the bare band dispersion was presumed te,be2t)[ 2
' y ? P gy —cosk@)—cosk,a)]—2t, [1-cosk, d)|—u, wherea is the

onH. Astro_ng_er pairing interactiog causesi 4 to _in(_:r_ease lattice constant in the plane amtis the distance between
and the pair size to decrease; the latter effect diminishes ti]e

. . ayers. The insets in each figure summarize the zero-field
stiffness and causéB* to be weakly field dependefit.

We turn next toT;(H) and note that a solution of the results for T, T*, and Apg, calculated elsgwheﬂé. I
counled equations o? motidh(as was done in the zero-field should be noted from the insets that there is an extended

P d - o regime of coupling constants over which the BCS behavior
case appears prohibitively difficult. Nevertheless, based on(A —0, and T,=T*) is obtained. However, beyond a
i A i * pPg— ™ : '

the ab_ove observations th(_al in zero er|dT. scales rather “critical” coupling (corresponding roughly to where bound
V\.'.e”W'th APQ.(bOth theoretlcall.ﬁﬁ and expenmentallﬂﬂ and states of the isolated pair ocouthe pseudogap becomes
(ii) that T* is very weakly field dependent in the well- nonzero. andr. is differentiated froniT*
established pseudogap regime, we infer thgg=A,4(T.) y ¢ .

. . X . It is clear from the figures that the slopesTof andT,. are
is weakly H dependent. This assumption, along with theidentical at weak coupling and become progressively more

;emiclassical phase approximation'for the full Green's fur‘C'distinct as the coupling is increased. The two associated stiff-
tion, are the only essential assumptions made here. The We%léss parameters decrease with coupling in a similar way, but

H dependence in A appears compatible with . .
experimerft®3 and underlies a GL formulatiofEq. (2)] in the f|§ld de_penderpe dfi*ls enhanced b'y' the strong sup-
which only the superconducting order parameter is couple®@'€SSion ofrg relative torg . The competition between the
to the magnetic field. In this way, for the purposes of Com_ngmerato_r and denominator in E@) leads to a length scale
puting H.,, the pseudogap enters as a relatively rigid band$” Which is relatively C_opstant over a rathgr wide range of
structure effect, which is accounted for by introducing themoderateg; then at sufficiently strong coupling’ begins to
full pair susceptibility into the standard., formalism? increase due to the reduction in the density of statg$ (
This approach necessarily yields the corrétt=0 result —associated with the growth of the pseudogap.
for Te. The key role ofrg in determining the squared-coherence
It also leads naturally to Ed4), from which one deduces length&? highlights the fact that at strong coupling, the vari-
a rather complicated expressiénot shown for »? along  ous length scales of the system must be carefully distin-
with guished even though they are identical in the BCS theory.
This is illustrated in Figs. &) and 3b) for thes- andd-wave
cases, respectively, in which we compare normalized stiff-
ness,n= n/N(0), with the BCS coherence length &t ,
and¢, the calculated coherence lengthTat The density of
where we have omitted contributions from the temperatursstates effect is evident in both tseandd-wave cases, as the
dependence oft and A,y nearT.. Equation(10) contains  upturn of £ at strong coupling contrasts sharply with the

?o=—§ o2t (Ep), (10)
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FIG. 4. Magnetic length scales associated WithandT* as a

FIG. 3. Coupling constant dependence of the key length scaledtinction of hole concentration in the cuprates. Zero-field results

the calculated coherence lengtlobtained fromH ., (solid), 7 (the

normalized stiffness; dashgdand the BCS coherence length
(xvg/T.; dot dashel for the swave jellium case(@ and the
d-wave lattice caséb).

tapering of the stiﬁnesg. Note thatégcs exhibits unusual

structure in Fig. 82 which arises from the non-monotonic

behavior ofT. evident in the inset of Fig. 1. In Fig(B), the
divergence ofégcgs at largeg is “accidental” and derives
from the vanishing of T, which arises from

pair-localizatiort® (see Fig. 2, inseét BCS relations, there-

from Ref. 10 are shown in the inseA (4 is a factor of 2 smaller
than experiment due to our convention foy).

in place of the calculations in the inset. The resulting behav-
ior of £ and&* (Fig. 4) would be essentially the sam@ver
most of the range of, X is relatively constant, as seems to be
observed experimentally, and its magnitude is within a factor
of two or three of experimer As in experiment,T* is
found to be less field sensitive in the underddpéuan
overdoped regimes. As the insulator is approachedrap-

idly increases’ while & continues to decrease. We have
thus demonstrated that the different observed field depen-

fore, are very misleading when one tries to infer the behaviof€nces ofT* and T. (for both under- and overdoped cu-
of ¢ at strong coupling from other length scales in thePrates are contained in our theory, in which the pseudogap is

system.

In order to map the coupling onto hole concentrationr,
we introduce arx-dependent hopping matrix eleme¢x)
=tox associated with the Mott transitidf.We presume in
the absence of more microscopic information thas x in-
dependent, leaving one free parameter in our thegty,
chosen to optimize a fit to the phase diagrdfig. 4, inset)

associated with precursor superconductivity.

Note Added After this work was completed we learned
of related experimental studies by Shibauehial?’ which
show strong similarities to our theoretical predictions.
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