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Magnetic-field effects in the pseudogap phase: A competing energy gap scenario
for precursor superconductivity
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We study the sensitivity ofTc and the pseudogap onset temperature,T* , to low fields,H, using a BCS-based
approach extended to arbitrary coupling. We find thatT* and Tc , which are of the same superconducting
origin, have very differentH dependences. This is due to the pseudogap,Dpg , which is present at the latter, but
not former temperature. Our results for the coherence lengthj fit well with existing experiments. We predict
that very near the insulatorj will rapidly increase.
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One of the central questions in understanding the un
doped cuprates is the extent to which the superconduc
phase is described by the BCS theory. Recent experimen1–3

indicate that the pseudogap persists belowTc in the underly-
ing normal density of states. Thus, the fermionic excitat
gapD is to be distinguished from the order parameterDsc .
These two energy gaps mirror a distinction between the
temperaturesT* ~the pseudogap onset!, and Tc ~the super-
conducting transition!, which behave differently as a func
tion of hole concentrationx as well as of magnetic field
H.3–6 Indeed, T* and Tc are, respectively, weakly an
strongly dependent onH in the well-established pseudoga
regime. Moreover, the distinction between these tempera
and energy scales has been frequently cited4,2,1 as evidence
that they have different physical origins.

In this paper we provide a counter argument to this wid
stated inference by demonstrating that these cru
magnetic-field effects in the pseudogap phase, are ent
compatible with superconductivity as origin forboth T* and
Tc . Our approach is based on an extended version of
BCS theory, in which the attractive couplingg is contem-
plated to be strong enough so that pairs begin to form
higher temperatureT* than the Tc at which they Bose
condense.7,8 We have shown9–11 that as a necessary cons
quenceDÞDsc . Moreover, our work has emphasized9,12,13

that a~pseudo!gap in the fermionic spectrum atTc is delete-
rious for superconductivity. Thus, as observed experim
tally, as a function of decreasingx, Tc decreases as th
pseudogap orT* grows.

A calculation of the field dependence ofTc ~i.e., Hc2) is
an important problem in its own right.~i! This is the only
way to provide a precise interpretation of the ‘‘coheren
length’’ j, which we demonstrate here is very different fro
that of the BCS theory.14 ( i i ) An analysis ofHc2 is tanta-
mount to arriving at a reformulation of the microscopica
deduced Ginzburg-Landau~GL! free energy up to quadrati
terms,which must necessarily incorporate the presence o
nonzero pseudogap at Tc. (i i i ) Because the ‘‘competing or
der parameter’’ scenario1,15 also addresses the observati
that DÞDsc , as well as the competingx dependences ofTc
andT* , magnetic-field effects may provide a unique testi
ground for distinguishing between these two scenarios.
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Indeed there is a rather close similarity in the structure
our zero-field theory to the phenomenology deduced fr
thermodynamical data by Loramet al.16 Our mean-field
calculations9–11 show that the gap equation forT<Tc re-
duces to the usual BCS form, but with a new quasiparti
dispersion

Ek5Aek
21~Dsc

2 1Dpg
2 !wk

25Aek
21D2wk

2. ~1!

Herewk is associated with the pairing symmetry. It follow
from this that the larger isDpg(Tc), the lower the transition
temperatureTc . In contrast to the work in Refs. 16 and 1
here Dpg(T), is determined self-consistently and deriv
from the presence of a strong pairing attraction.Moreover,
this pseudogap,Dpg , persists below Tc.

The conclusions of this paper are relatively straightf
ward and we begin with a simple intuitive argument to a
dressHc2. Consider the Ginzburg-Landau free-energy fun
tional nearTc to quadratic order inDsc , in a finite field

F;S t0~T!1h2S ¹

i
2

2eA

c D 2D uDscu2. ~2!

Here t0 describes how the system approaches the crit
point with varying temperature, andh2 is the stiffness
against spatial variations of the order parameter. The me
field behavior oft0 nearTc yields t0(T)5 t̄0(12T/Tc). It
follows that

2
1

Tc

dTc

dH U
H50

5
2p

F0
j25

2p

F0

h2

t̄0

, ~3!

wherej is the zero-temperature coherence length. A rou
extrapolation yieldsHc2(0)'F0 /(2pj2). In the small g
~i.e., BCS! caset̄05N(0), thedensity of states per spin a
the Fermi surface, andh25N(0)7z(3)/48p2(vF /Tc)

2. The
squared coherence lengthjBCS

2 57z(3)/48p2(vF /Tc)
2 is de-

termined by the stiffnessh2 with t̄0 cancelling the density of
states.

In contrast, in the strong coupling case the pseudo
modifies the fermionic quasiparticle dispersion through a
placement ofek by Ek and thereby suppressest̄0. Moreover,
©2001 The American Physical Society05-1
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the stiffnessh2 ~which is relativelyinsensitiveto the energy
scale of the pseudogap!, decreases due to the diminishin
pair size. There is, thus, a competition between the num
tor and denominator in Eq.~3!. The decrease int̄0 dominates
at sufficiently large couplingg, resulting in an extended fla
region followed by an eventual growth ofj2 with increasing
g. The latter reflects the approach to the ideal ‘‘boson’’ lim
whereTc is suppressed17 to zero at anyHÞ0.

Next, we provide a microscopic derivation of the para
eters in Eq.~3! ~and a related counterpart forT* ). A central
theme in our paper is that both the field sensitivity ofTc and
of T* in small H can be studied through the zero-fie
normal-state pair propagator, or the inverset matrix
t21(Q)51/g1x(Q), whereQ5(q,V) is a four vector. The
coefficients in Eq.~2! will be shown to arise from an expan
sion of t21 in the momentum components perpendicular
the field ~indexed byi , j 5x,y) as

t05
1

g
1x~0,0!,h25

1

2Adet@]qi
]qj

x~Q!#uQ50 , ~4!

where we have generalized from Eq.~2! to include possible
anisotropy.

A proper motivation for our choice ofx(Q) is essential.
The formalism10,11 in this paper combines a Green’s functio
decoupling scheme18 with a generalization of the BCS
ground-state wave function.19 This formalism allows for
Fermi- and non-Fermi-liquid~i.e., Dpg(Tc)Þ0) based super
conductivity, according to the size ofg, with self-consistently
determined chemical potentialm. In the present paper a
technical issues of this decoupling scheme can be sim
by-passed, and the results obtained are not only intuitive,
rather general. All that is needed here is the observation
the pair susceptibility x(q,V)5x(Q)5(KG(K)G0(Q
2K)wk2q/2

2 . Thus

x~q,0!5(
k

wk2q/2
2 F12 f ~Ek!2 f ~ekÀq!

Ek1ekÀq
uk

2

2
f ~Ek!2 f ~ekÀq!

Ek2ekÀq
vk

2G . ~5!

Here uk
2 and vk

2 are the usual BCS coherence factors, a
wk

25@11(k/k0)2#21, or @cos(kxa)2cos(kya)#2, for s- wave
pairing in three-dimensional~3D! jellium or d-wave pairing
on a quasi- 2D lattice, respectively. That there is one
Green’s function~G! along with one bare Green’s functio
(G0), reflects the structure of the BCS gap equation, wh
introduces18 this x(Q) form, ~with integrand proportional to
the usual Gor’kovF function!. All numerical calculations in
this paper are based on Eqs.~1!, ~4!, and ~5!, given Dpg
[Dpg(Tc). Although here we proceed more se
consistently, our analytical scheme for computing the vari
energy scales13 can be by-passed, ifDpg and Tc are prede-
termined, e.g., fitted to cuprate experiments.

We next turn toT* , where the Fermi liquid begins to
break down; this is associated with the onset of
resonance20,21 in t(Q), asg becomes sufficiently large. De
tailed numerics21,12 based on the coupled Green’s functio
14050
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equations show that to a good first-order approximation
resonance temperature can be deduced from the cond
1/g1x0(0,0)50, wherex0 is given by Eq.~5! with ek sub-
stituted forEk . Indeed, quite generally, atT>T* , the t ma-
trix can be well approximated by usingx0(Q) in place of
x(Q).

Magnetic-field effects can be readily included into o
formalism. We begin with a derivation ofT* (H) to linear
order inH. Our Hamiltonian consists of the field depende
kinetic energy term along with the usual two-body pairi
interaction of strengthVk,k85gwkwk8

* where we now include
interactions between pairs of nonzero net momentum. F
tuations of pairs with finite momentum (q,k) are character-
ized by the correlation function D(q,k;q8,k8)
5^T b(q,k,t)b†(q8,k8,t8)&, where b(q,k,t)5e(H2mN)t

3cq/22kcq/21ke
2(H2mN)t.

Summing ladder diagrams leads to a Dyson equationD
5G0G02G0G0VD with solution

(
k,k8

Dwk* wk85x̂0/~11gx̂0! , ~6!

where x̂05G0G0 is the counterpart pair susceptibility fo
HÞ0, and the field-dependence of the bare electron pro
gator G0 is implemented using the semiclassical pha
approximation,22 elevating bothx̂0 and (k,k8Dwk* wk8 to in-
tegral operators23 whose eigenvalues satisfy Eq.~6!. This
approximation allows the calculation of the eigenvalues
x̂0 from the zero-field pair susceptibilityx0 in the regime
T@eH/mc. The field-induced relative phase shift betwe
electrons in a pair renormalizes the interactionVk,k8 , but the
effect is quadratic inH and is therefore ignored here. Th
pairing resonance temperatureT* is defined by the appear
ance of an eigenvalueP052g21 of x̂0, which causes Eq
~6! to diverge. We define parametersh* 2 and t0* 5 t̄0* (1
2T/T* ) analogous to those which appear in Eq.~4! and
obtain

g211P05t0* 1h* 2
• ~2e/c! H50, ~7!

which definesT* (H) to linear order inH. The slope of
T* (H) at H50 is

2
1

T*

dT*

dH U
H50

5
h* 2

t̄0*

2p

F0
~8!

which leads to the associated ‘‘coherence length’’j* 2

5h* 2/ t̄0* . The stiffnessh* 2 can be explicitly evaluated us
ing the zero-field pair susceptibility, and

t̄0* 5(
k

wk
2F2 f 8~ek!

1
dm

dT

T

ek
•S 122 f ~ek!

2ek
1 f 8~ek! D G

T5T*
. ~9!

Here we have included a contribution from the temperat
dependence ofm. In the weak coupling case, the chemic
5-2



ef

,
re
y

t

e
d
o

l-

he
nc
e

le
m
nd
he

ur

um-

g to
at

ld

t-

n
eld

ded
ior
a
d
s

ore
tiff-
but
-

e

of

ce
ri-
tin-
ry.

tiff-

e
e

13,

RAPID COMMUNICATIONS

MAGNETIC-FIELD EFFECTS IN THE PSEUDOGAP . . . PHYSICAL REVIEW B64 140505~R!
potential is pinned atEF , and we recover the (s-wave! BCS
limit t̄0* 52(k f 8(ek)wk

2'N(0)wkF

2 'N(0).

The dashed line in Fig. 1 is a plot of the slope ofT* with
H, as a function of the couplingg, for the case ofs-wave
jellium. This should be compared with the inset, from R
13, which illustrates the suppression ofTc by Dpg for all g in
the fermionic regime;~ultimately, whenm becomes negative
Tc starts to increase again!. When pseudogap effects a
weak,T* is essentially the same asTc and depends strongl
on H. A stronger pairing interactiong causesDpg to increase
and the pair size to decrease; the latter effect diminishes
stiffness and causesT* to be weakly field dependent.24

We turn next toTc(H) and note that a solution of th
coupled equations of motion18 ~as was done in the zero-fiel
case! appears prohibitively difficult. Nevertheless, based
the above observations that~i! in zero fieldT* scales rather
well with Dpg ~both theoretically13 and experimentally,1! and
( i i ) that T* is very weakly field dependent in the wel
established pseudogap regime, we infer thatDpg[Dpg(Tc)
is weakly H dependent. This assumption, along with t
semiclassical phase approximation for the full Green’s fu
tion, are the only essential assumptions made here. The w
H dependence in Dpg appears compatible with
experiment4,6,3 and underlies a GL formulation@Eq. ~2!# in
which only the superconducting order parameter is coup
to the magnetic field. In this way, for the purposes of co
puting Hc2, the pseudogap enters as a relatively rigid ba
structure effect, which is accounted for by introducing t
full pair susceptibility into the standardHc2 formalism.23

This approach necessarily yields the correctH50 result
for Tc .

It also leads naturally to Eq.~4!, from which one deduces
a rather complicated expression~not shown! for h2 along
with

t̄052(
k

wk
2f 8~Ek!, ~10!

where we have omitted contributions from the temperat
dependence ofm and Dpg nearTc . Equation~10! contains

FIG. 1. Coherence lengthsj ~for Tc , solid! and j* ~for T* ,
dashed! with variable coupling g for s-wave jellium; here
gc[24p/mk0 and units arekF

21 . See Eqs.~3! and~8!. Inset shows
the zero-field behavior ofT* , Tc , andDpg from Ref. 13, whereT
andD are in units ofEF .
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the essential physics introduced by the pseudogap. The s
mation essentially measures theE50 density of states which
is depleted by the pseudogap at strong coupling, leadin
t̄0;e2Dpg /Tc. Moreover, we have shown analytically th
the neglected terms further suppresst̄0, and, therefore, do
not qualitatively change our results.

Figures 1 and 2 indicate how the characteristic low-fie
slopes behave as a function of couplingg, for the s-wave
~jellium! andd-wave~lattice! cases, respectively. For the la
ter, the bare band dispersion was presumed to beek52t i@2
2cos(kxa)2cos(kya)#22t'@12cos(k'd)#2m, where a is the
lattice constant in the plane andd is the distance betwee
layers. The insets in each figure summarize the zero-fi
results for Tc , T* , and Dpg , calculated elsewhere.13 It
should be noted from the insets that there is an exten
regime of coupling constants over which the BCS behav
(Dpg50, and Tc5T* ) is obtained. However, beyond
‘‘critical’’ coupling ~corresponding roughly to where boun
states of the isolated pair occur,! the pseudogap become
nonzero, andTc is differentiated fromT* .

It is clear from the figures that the slopes ofT* andTc are
identical at weak coupling and become progressively m
distinct as the coupling is increased. The two associated s
ness parameters decrease with coupling in a similar way,
the field dependence ofTc is enhanced by the strong sup
pression oft̄0 relative to t̄0* . The competition between th
numerator and denominator in Eq.~3! leads to a length scale
j2 which is relatively constant over a rather wide range
moderateg; then at sufficiently strong couplingj2 begins to
increase due to the reduction in the density of states (t̄0)
associated with the growth of the pseudogap.

The key role oft̄0 in determining the squared-coheren
lengthj2 highlights the fact that at strong coupling, the va
ous length scales of the system must be carefully dis
guished even though they are identical in the BCS theo
This is illustrated in Figs. 3~a! and 3~b! for thes- andd-wave
cases, respectively, in which we compare normalized s
ness,h̄5h/AN(0), with the BCS coherence length atTc ,
andj, the calculated coherence length atTc . The density of
states effect is evident in both thes- andd-wave cases, as th
upturn of j at strong coupling contrasts sharply with th

FIG. 2. Coherence lengths atTc ~solid! andT* ~dashed! versus
variable couplingg for a d-wave lattice at densityn50.85. j is in
units ofa. The inset plots the zero-field energy scales from Ref.
andT,D are in units of 4t i .
5-3
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tapering of the stiffnessh̄. Note thatjBCS exhibits unusual
structure in Fig. 3~a! which arises from the non-monoton
behavior ofTc evident in the inset of Fig. 1. In Fig. 3~b!, the
divergence ofjBCS at largeg is ‘‘accidental’’ and derives
from the vanishing of Tc which arises from
pair-localization13 ~see Fig. 2, inset!. BCS relations, there
fore, are very misleading when one tries to infer the behav
of j at strong coupling from other length scales in t
system.

In order to map the couplingg onto hole concentrationx,
we introduce anx-dependent hopping matrix elementt i(x)
5t0x associated with the Mott transition.10 We presume in
the absence of more microscopic information thatg is x in-
dependent, leaving one free parameter in our theoryg/t0,
chosen to optimize a fit to the phase diagram~Fig. 4, inset.!
One could, alternatively, bypass all assumptions concern
Mott insulator physics, if one instead used experimental d

FIG. 3. Coupling constant dependence of the key length sca

the calculated coherence lengthj obtained fromHc2 ~solid!, h̄ ~the
normalized stiffness; dashed!, and the BCS coherence length
(}vF /Tc ; dot dashed!, for the s-wave jellium case~a! and the
d-wave lattice case~b!.
14050
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in place of the calculations in the inset. The resulting beh
ior of j andj* ~Fig. 4! would be essentially the same.Over
most of the range of x, j is relatively constant, as seems to b
observed experimentally, and its magnitude is within a fac
of two or three of experiment.25 As in experiment,T* is
found to be less field sensitive in the underdoped4 than
overdoped5 regimes. As the insulator is approached,j rap-
idly increases26 while j* continues to decrease. We hav
thus demonstrated that the different observed field dep
dences ofT* and Tc ~for both under- and overdoped cu
prates! are contained in our theory, in which the pseudogap
associated with precursor superconductivity.

Note Added. After this work was completed we learne
of related experimental studies by Shibauchiet al.27 which
show strong similarities to our theoretical predictions.

This work was supported by NSF-MRSEC, Grant N
DMR-9808595 and by the State of Florida~Q.C.!. We ac-
knowledge the hospitality of the ITP, UCSB, where the wo
was begun, and thank A. Carrington, B. Janko´, V. Krasnov,
and Z. Tesˇanović for useful conversations.

s:

FIG. 4. Magnetic length scales associated withTc andT* as a
function of hole concentration in the cuprates. Zero-field resu
from Ref. 10 are shown in the inset (Dpg is a factor of 2 smaller
than experiment due to our convention forwk).
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