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Pairing fluctuation theory of high-Tc superconductivity in the presence of nonmagnetic impurities

Qijin Chen and J. R. Schrieffer
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
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The pseudogap phenomena in the cuprate superconductors requires a theory beyond the mean-field BCS
level. A natural candidate is to include strong pairing fluctuations, and treat the two-particle and single-particle
Green’s functions self-consistently.At the same time, impurities are present in even the cleanest samples of the
cuprates. Some impurity effects can help reveal whether the pseudogap has a superconducting origin and thus
test various theories. Here we extend the pairing fluctuation theory for a clean system@Chenet al., Phys. Rev.
Lett. 81, 4708~1998!# to the case with nonmagnetic impurities. Both the pairing and the impurityT matrices
are included and treated self-consistently. We obtain a set of three equations for the chemical potentialm, Tc ,
the excitation gapD(Tc) at Tc , or m, the order parameterDsc , and the pseudogapDpg at temperatureT
,Tc , and study the effects of impurity scattering on the density of states,Tc and the order parameter, and the
pseudogap. BothTc and the order parameter as well as the total excitation gap are suppressed, whereas the
pseudogap is not for givenT<Tc . Born scatterers are about twice as effective as unitary scatterers in sup-
pressingTc and the gap. In the strong pseudogap regime, pair excitations contribute a newT3/2 term to the low-
T superfluid density. The initial rapid drop of the zero-T superfluid density in the unitary limit as a function of
impurity concentrationni also agrees with experiment.

DOI: 10.1103/PhysRevB.66.014512 PACS number~s!: 74.20.2z, 74.25.Fy
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I. INTRODUCTION

The pseudogap phenomena in high-Tc superconductors
have been a great challenge to condensed-matter phys
since over a decade ago. These phenomena manifestly
tradict BCS theory by, e.g, presenting a pseudoexcitation
in single-particle excitation specta. Yet the origin of t
pseudogap and, in general, the mechanism of the super
ductivity are still not clear. Many theories have been p
posed, which fall into two classes, based on whether
pseudogap has a superconducting origin. Some authors
pose that the pseudogap may not be related to the supe
ductivity; instead, it is associated with another ordered st
such as the antiferromagnetism related resonating vale
bond ~RVB! state,1 d-density wave,2 and spin-density wave
order.3 On the other hand, many others believe that
pseudogap has the same origin as the superconductivity,
as the phase fluctuation scenario of Emery and Kivelson4 and
the various precursor superconductivity scenarios.5–10 Previ-
ously, Chen and co-workers have worked out, within the p
cursor conductivity school, a pairing fluctuation theory9,11,12

which enables one to calculate quantitatively physical qu
tities such as the phase diagram, the superfluid density,
for a clean system. In this theory, two-particle and on
particle Green’s functions are treated on an equal foot
and equations are solved self-consistently. Finite center
mass momentum pair excitations become important as
pairing interaction becomes strong, and lead to a pseudo
in the excitation spectrum. In this context, these authors h
been able to obtain a phase diagram and calculate the s
fluid density, in ~semi!quantitative agreement with exper
ment.

However, to fully apply this theory to the cuprates, w
need to extend it to impurity cases, since impurities
present even in the cleanest samples of the high-Tc materials,
such as the optimally doped YBa2Cu3O72d ~YBCO! single
0163-1829/2002/66~1!/014512~17!/$20.00 66 0145
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crystals. In addition, this is necessary in order to underst
the finite frequency conductivity issue. Furthermore, study
how various physical quantities respond to impurity scatt
ing may help to reveal the underlying mechanism of t
superconductivity. For example, it can be used to determ
whether the pseudogap has a superconducting origin.13 Par-
ticularly, it is important to address howTc and the pseudogap
itself vary with impurity scattering, especially in the unde
doped regime. To this end, one needs to go beyond B
theory and include the pseudogap as an intrinsic part of
theory. Due to the complexity and technical difficulties
this problem, there has been virtually no work in the field
this important problem.

Among all physical quantities, the density of states~DOS!
N(v) close to the Fermi level~v50! is probably most sen-
sitive to the impurities. Yet different authors have yield
contradictory results in this regard. BCS-based impur
T-matrix calculations predict a finite DOS atv50,14,15which
has been used to explain the crossover fromT to T2 power
law for the low-temperature superfluid density.16 Nonpertur-
bative approaches have also been studied and have yie
different results. Senthil and Fisher17 find that DOS vanishes
according to universal power laws, Pe´pin and Lee18 predict
that N(v) diverges asv→0, assuming a strict particle-hol
symmetry, and Ziegler19 and co-workers’ calculation shows
rigorous lower bound onN(v). Recently, Atkinsonet al.20

try to resolve these contradictions by fine tuning the det
of the disorders. Nevertheless, all these calculations
based on BCS theory and cannot include the pseudogap
self-consistent fashion, and thus can only be applied to
low-T limit in the underdoped cuprates. Therefore it is ne
essary to extend the BCS-based calculations on impurity
sues to include the pseudogap self-consistently.

In this paper, we extend the pairing fluctuation theo
from clean to impurity cases. Both the impurity scatteri
and particle-particle scatteringT matrices are incorporate
©2002 The American Physical Society12-1
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and treated self-consistently. This goes far beyond the u
self-consistent~impurity! T-matrix calculations at the BCS
level by, e.g., Hirschfeld and others.14,15 In this context, we
study the evolution ofTc and various gap parameters as
function of the coupling strength, the impurity concentratio
the hole doping concentration, and the impurity scatter
strength. In addition, we study not only the Born and t
unitary limits, but also at intermediate scattering streng
We find that the real part of the frequency renormalizat
can never be set to zero, the chemical potential adjusts i
with the impurity level. As a consequence, the positive a
negative strong scattering limits do not meet. The resi
density of states at the Fermi level is generally finite at fin
impurity concentrations, in agreement with what has be
observed experimentally. BothTc and the total excitation gap
decrease with increasing impurity level, as one may naiv
expect. Born scatterers are about twice as effective as un
scatters in suppressingTc and the gap. In the unitary limit
the zero-temperature superfluid density decreases faster
ni whenni is still small, whereas in the Born limit, it is th
opposite. At givenT,Tc , both the order parameter and th
total gap are suppressed, but the pseudogap is not. Fin
incoherent pair excitations contribute an additionalT3/2 term
to the low-T temperature dependence of the superfluid d
sity, robust against impurity scattering.

In the next section, we first review the theory in a cle
system, and then present a theory at the Abrikosov-Gor’
level. Finally, we generalize it to include the full impurityT
matrix, in addition to the particle-particle scatteringT matrix,
in the treatment, and obtain a set of three equations to s
for m, Tc , and various gaps. In Sec. III, we present nume
cal solutions to these equations. We first study the effect
impurity scattering on the density of states, then study
effects onTc and the pseudogap atTc , followed by calcula-
tions of the effects on the gaps and the superfluid den
below Tc . Finally, we discuss some related issues, and c
clude our paper.

II. THEORETICAL FORMALISM

The excitation gap forms as a consequence of Coo
pairing in BCS theory, while the superconductivity requir
the formation of the zero-momentum Cooper pair cond
sate. As these two occur at the same temperature in B
theory, one natural way to extend BCS theory is to allow p
formation at a higher temperature (T* ) and the Bose con
densation of the pairs at a lower temperature (Tc). Therefore
these pairs are phase incoherent atT.Tc , leading to a
pseudogap without superconductivity. This can nicely
plain the existence of the pseudogap in the cuprate super
ductors. Precursor superconductivity scenarios, e.g.,
present theory, provides a natural extension of this kind.
weak coupling, the contribution of incoherent pairs is neg
gible and one thus recovers BCS theory, withT* 5Tc . As
the coupling strength increases, incoherent pair excitat
become progressively more important, andT* can be much
higher thanTc , as found in the underdoped cuprates. In g
eral, both fermionic Bogoliubov quasiparticles and boso
pair excitations coexist at finiteT,Tc .
01451
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A. Review of the theory in a clean system

The cuprates can be modeled as a system of ferm
which have an anisotropic lattice dispersionek52t i(2
2coskx2cosky)12t'(12coskz)2m, with an effective, short-
range pairing interactionVk,k85gwkwk8 , whereg,0. Here
t i andt' are the in-plane and out-of-plane hopping integra
respectively, andm is the Fermionic chemical potential. Fo
the cuprates,t'!t i . The Hamiltonian is given by

H 05(
ks

ekcks
† cks

1 (
kk8q

Vk,k8ck1q/2↑
† c2k1q/2↓

† c2k81q/2↓ck81q/2↑ . ~1!

The pairing symmetry is given bywk51 and (coskx
2cosky) for s and d wave, respectively. Here and in wha
follows, we use the superscript ‘‘0’’ for quantities in th
clean system, to be consistent with the notations for the
purity dressed counterpart below. For brevity, we use a fo
momentum notation:K5(k,iv), (K5T(k,v , etc.

To focus on the superconductivity, we consider only t
pairing channel, following early work by Kadanoff an
Martin;21 the self-energy is given by multiple particle
particle scattering. The infinite series of the equations of m
tion are truncated at the three-particle levelG3, and G3 is
then factorized into single-~G! and two-particle (G2)
Green’s functions. The final result is given by the Dyson
equations for the single-particle propagator~refer to Refs. 9
and 12 for details!,

S0~K !5G0
021~K !2G021~K !

5(
Q

t0~Q!G0
0~Q2K !wk2q/2

2 , ~2a!

and theT matrix ~or pair propagator!

t0~Q!5tsc
0 ~Q!1tpg

0 ~Q!, ~2b!

with

tsc
0 ~Q!52

Dsc
2

T
d~Q!, ~2c!

whereDsc[0 at T>Tc , and

tpg
0 ~Q!5

g

11g x0~Q!
, ~2d!

where Dsc is the superconducting order parameter,G0
0(K)

51/(iv2ek) is the bare propagator, and

x0~Q!5(
K

G0~K !G0
0~Q2K !wk2q/2

2 ~2e!

is the pair susceptibility. This result can be represented
grammatically by Fig. 1. The single and double lines den
the bare and full Green’s functions, respectively, and
wiggly double lines denote the pair propagator.
2-2
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PAIRING FLUCTUATION THEORY OF HIGH-Tc . . . PHYSICAL REVIEW B 66, 014512 ~2002!
The superconducting instability is given by the Thoule
criterion

11gx0~0!50, ~T<Tc!, ~3!

which leads to the approximation

Spg
0 ~K !5(

Q
tpg
0 ~Q!G0

0~Q2K !wk2q/2
2 '2Dpg

2 G0
0~2K !wk

2 ,

~4!

where the pseudogap is defined by

Dpg
2 52 (

QÞ0
tpg
0 ~Q!. ~5!

As a consequence, the self-energy takes the standard
form,

S~K !52D2G0
0~2K !wk

252Dk
2G0

0~2K !, ~6!

whereD25Dsc
2 1Dpg

2 , and Dk5Dwk . In this way, the full
Green’s functionG0(K) also takes the standard BCS form
with the quasiparticle dispersion given byEk5Aek

21D2wk
2.

So does the excitation gap equation

11g(
k

122 f ~Ek!

2Ek
wk

250. ~7!

We emphasize that although this equation is formally ide
cal to its BCS counterpart, theD here can no longer be in
terpretted as the order parameter asDpgÞ0 in general. For
self-consistency, we have the fermion number constraint

n52(
K

G0~K !52(
k

Fvk
21

ek

Ek
f ~Ek!G . ~8!

The gap equation Eq.~7!, the number equation Eq.~8!,
and the pseudogap parametrization Eq.~5! form a complete
set, and can be used to solve self-consistently forTc , m(Tc),
andD(Tc) by settingDsc50, orm(T), D(T), andDpg(T) at
given T,Tc . Herevk

25 1
2 (12ek /Ek), as in BCS.

B. Impurity scattering at the Abrikosov-Gor’kov level

For simplicity, we restrict ourselves to nonmagnetic, el
tic, isotropic s-wave scattering. At the same time, we w
keep the derivation as general as possible. In the presen
impurities of concentrationni , the Hamiltonian is given by

H5H 01HI , ~9!

where in the real space the impurity term is given by

FIG. 1. Diagrams for the Dyson’s equations in a clean s
tem.
01451
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HI5(
i
E dx u~x2xi !c

†~x!c~x!, ~10!

with u(x)5ud(x) for isotropics-wave scattering.
To address the impurity scattering, we begin at t

Abrikosov-Gor’kov ~AG! level,22–24 which is a good ap-
proximation in the Born limit. Following AG, we include al
possible configurations of impurity dressing, but excludi
bridging diagrams like Fig. 2~a!, crossing diagrams like Fig
2~b!, and higher-order terms like Fig. 2~c!. The dashed lines
denote impurity scattering, and the crosses denote the im
rity vertices. We clarity, in most diagrams, we do not dra
the fermion propagation arrows. It is understood, howev
that they change direction at and only at a pairing vertex.
in Sec. II A, we use plain double lines to denote the Gree
function (G0) fully dressed by the pairing interaction bu
without impurity scattering, i.e.,

G0~K !5
1

iv2ek2S0~K !
, ~11!

where

S0~K !5(
Q

t~Q!G0
0~Q2K !wk2q/2

2 . ~12!

However, since we will address the impurity dressing of t
pairing vertex or, equivalently, the pair susceptibilityx(Q),
we assume the pair propagatort(Q) in the above equation is
already dressed with impurity scattering, with

t~Q!5tsc~Q!1tpg~Q!, ~13!

tsc~Q!52
Dsc

2

T
d~Q!, ~14!

and

Dpg
2 52 (

QÞ0
tpg~Q!52 (

QÞ0

g

11gx~Q!
, ~15!

as in the clean case. The shaded double lines de
impurity-dressed full Green’s functionG, and ‘‘shaded’’
single lines denote impurity-dressed bare Green’s func
~which we callĜ0), i.e,

Ĝ0~K !5
1

iv2ek2 Ĝ̄0,v

, ~16!

where the bar denotes impurity averageĜ̄0,v5ni(k8uu(k
2k8)u2Ĝ0(K8). We use open circles to denote bare pairi
vertexg(KuQ)5wk1q/2 , and shaded circles full pairing ver

-
FIG. 2. Examples of~a! bridging,~b! crossing diagrams, and~c!

higher-order terms neglected in the calculation.
2-3
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FIG. 3. Feynman diagrams for the impurity dressed full Green’s function.
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tex G(KuQ), whereQ is the pair four-momentum. To obtai
the Feynman diagrams for the impurity dressed fullG, we
first expand the pairing self-energy diagram as an infin
series which contains only bare single-particle Green’s fu
tion and pair propagators, and then insert all possible im
rity scattering on the single-particle propagators at the
level. We assume that the pair propagators are always
consistently dressed by the impurity scattering. After
grouping all nonimpurity dressed lines on the left, the fin
result for the diagrams is shown in Fig. 3~a!. Here following
AG, the subdiagrams inside the two impurity legs are
sumed to be self-consistently dressed by impurity scatter
To make direct comparison with the BCS case easier,
present the corresponding diagrams for the BCS case in
Appendix. The first term on the right-hand side~RHS! of
01451
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Fig. 3~a! contains all diagrams without impurity dressin
~except via the pair propagators!. The second term corre
sponds to the third term of the first equation in Fig. 18. T
third term corresponds to the last term, the last term to
second. The fourth and the fifth together correspond to
fourth term@see Fig. 4~a!#. The fifth term in Fig. 3~a! arises
since the two impurity legs can cross two separate pair
self-energy dressing parts; it can be eliminated using
equality shown in Fig. 3~b!. Here the shaded elliptical regio
denotes self-consistent impurity dressing of the double p
ing vertex structure inside the two impurity scattering leg
as shown in Fig. 4~a!. It is worth pointing out that these
diagrams reduce to their BCS counterpart if one removes
pairing propagators. The Dyson’s equationĜ0

21(K)

5G0
021(K)2 Ĝ̄0,v can then be used to eliminate the four
FIG. 4. Feynman diagrams for pairing vertex.
2-4
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PAIRING FLUCTUATION THEORY OF HIGH-Tc . . . PHYSICAL REVIEW B 66, 014512 ~2002!
term in Fig. 3~a!. We now obtain the greatly simplified dia
grams forG as shown in Fig. 3~c!, which can be further
reduced into Fig. 3~e!, upon defining a reduced pairing ve
tex G0(KuQ) ~shaded triangles! as shown in Fig. 3~d!,

G0~KuQ!5wk2q/21ni(
k8

uu~k2k8!u2Ĝ0~Q2K8!

3G~K8uQ!G~K8!. ~17!

One can then read off the impurity-inducedquasiparticle
self-energy S8(K)5G021(K)2G21(K) immediately, as
shown in Fig. 3~e!,

S8~K !5Ḡv1S~K !2S0~K !, ~18!

where the impurity average

Ḡv5ni(
k8

uu~k2k8!u2G~K8!, ~19!

and the ‘‘full’’ self-energy

S~K !5(
Q

G0~KuQ!t~Q!G~KuQ!Ĝ0~Q2K !. ~20!

Therefore we have finally

G21~K !5G021~K !2S8~K !5 iv2ek2Ḡv2S~K !

5 i ṽ2ek2S~K !5G0
21~K !2S~K !, ~21!

where we have defined the renormalized frequencyi ṽ5 iv

2Ḡv and the ‘‘bare’’ Green’s function

G0~K !5
1

i ṽ2ek

. ~22!

Note hereG0(K)ÞĜ0(K).
Now we deal further with the pairing vertexG(KuQ).

First, we notice that the impurity-dressed double-ver
structure in Fig. 3~a! can be simplified as shown in Fig. 4~a!
using the approximation

(
Q

t~Q! f ~K,Q!'F(
Q

t~Q!G f ~K,0!, ~23!

where f (K,Q) is an arbitrary slow-varying function ofQ.
This is due to the fact thatt(Q) diverges asQ→0 at T
<Tc . The Dyson’s equation for the Green’s functio
G0(2K) in a clean system is also used in getting the sec
line of Fig. 4~a!. Therefore we have approximately th
impurity-dressed pairing vertex as shown in Fig. 4~b!, which
implies the equality shown in Fig. 4~c!. Figure 4~c! can be
written as
01451
x

d

Ĝ0~K !G~KuQ!G~Q2K !5
G0~KuQ!G~Q2K !

Ĝ0
21~K !2Ḡv1 Ĝ̄0,v

5G0~K !G0~KuQ!G~Q2K !.

~24!

This result demonstrates the following important relatio
ship:

Ĝ0~K !G~KuQ!5G0~K !G0~KuQ!, ~small Q!. ~25!

Using this relationship, now the self-energy can be simplifi
as follows:

S~K !5(
Q

G0
2~KuQ!t~Q!G0~Q2K !'2D2G0

2~K !G0~2K !

52D̃k
2G0~2K !, ~26!

whereG0(K)[G(KuQ50) andD̃k5DG0(K).
Finally, the impurity dressing of each rung@i.e., x(Q)# of

the particle-particle scattering ladder diagrams is topolo
cally identical to the impurity dressing of the pairing verte
and the two associated single-particle lines. And summing
all the ladders gives the pairingT matrix. Therefore the pair
susceptibility becomes

x~Q!5(
K

G~KuQ!Ĝ0~Q2K !G~K !wk2q/2

'(
K

G0~KuQ!G0~Q2K !G~K !wk2q/2 . ~27!

And the gap equation is given by

11gx~0!50511g(
K

G0~K !G~K !G0~2K !wk .

~28!

This result can be easily verified to be consistent with
self-consistency condition. Define formally the generaliz
Gor’kov F function:

F†~K ![DĜ0~2K !G~K !G~K !. ~29!

Using Eq.~25!, we have

F†~K ![DG0~K !G0~2K !G~K !5D̃kG0~2K !G~K !.
~30!

The formal difference between thisF† and that in BCS is
that wk is now replaced by the renormalized vertexG0(K).
One immediately sees that the condition

Dk[2g(
K8

wkwk8F
†~K8! ~31!

is consistent with the gap equation Eq.~28!. However, it
should be emphasized that theF function so defined does no
vanish aboveTc in the pseudogap regime, different from th
BCS case.
2-5
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DG0~K !G0~2K !G~K !, ~36!
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C. Impurity scattering beyond the AG level

In this subsection, we include both the impurity scatter
T matrix with the particle-particle scatteringT matrix, and
thus go beyond the AG level. We notice that if one repla
the second-order impurity scattering subdiagrams at the
level with the corresponding impurityT matrices, as shown
in Fig. 5, the derivation forG(K) goes through formally
without modification. Now we only need to determine t
impurity T matricesTv and TD† ~as well as their complex

conjugate! in terms of their AG-level counterpart,Ḡv and
F̄v

† 5ni(k8uu(k2k8)u2F†(K8), respectively. In other words

except thati ṽ and D̃k now have different expressions, e
erything else remains the same in terms ofi ṽ and D̃k ~as
well as their complex conjugate!, just as in the BCS case~see
the Appendix!.

The Feynman diagrams forTv andTD† are shown in Fig.
6. To obtain the second line forTD†, we make use of the
approximation in Fig. 4~a! to convert the left part of the
second and the third term on the first line to the fullG. This
result is direct analogy with its BCS counterpart as shown
Fig. 20. One can now write down the equations forTv and
TD† without difficulty,

Tv~k,k8!5u~k,k8!1(
k9

u~k,k9!G~K9!Tv~k9,k8!

1(
k9

(
Q

u~k,k9!G~K9!Ĝ0~Q2K9!

3G~K9uQ!t~Q!TD†~K92Q,K8uQ!, ~32!

and

FIG. 5. Replacement scheme from the AG level to se
consistent impurityT-matrix treatment.
01451
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TD†~K2Q,K8uQ!5(
k9

u~k92q,k2q!Ĝ0~Q

2K9!G~K9!G~K9uQ!Tv~k9,k8!

1(
k9

u~k92q,k2q!G~Q2K9!

3TD†~K92Q,K8uQ!. ~33!

Note here thatTD† does not contain the factorD, unlike its
BCS counterpart. It has the same dimension asG. BothG and
G0 now contain the full impurityT matrix beyond the AG
level, and the vertex relation Eq.~25! remains valid. The new
expression forG0 is given by

G0~KuQ!5wk2q/21ni(
k8

TD†~K2Q,K8uQ!. ~34!

So far, we have kept the derivation for a generic elas
scattering u(k,k8). For isotropic s-wave scattering,
u(k,k8)5u. In this case,Tv and TD† are independent ofk
andk8. Neglecting the momentum dependence, we obtai

TD†~v2V,v!5

u(
k

G0~Q2K !G0~KuQ!G~K !

12u(
k

G~Q2K !

Tv ,

~35a!

and

Tv5u1u(
k

G~K !Tv1u(
Q

t~Q!

3F(
k

G~K !G0~KuQ!G0~Q2K !GTD†~v2V,v!.

~35b!

Use has been made of the vertex relation Eq.~25!. Here
again, we need to make use of the approximation Eq.~23!.

Defining Ḡ̄v5(kG(K) and

¯̄† †

-

FIG. 6. Relationship between
the regular impurityT matrix Tv

and the anomalous impurityT ma-
trix TD†.
2-6
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PAIRING FLUCTUATION THEORY OF HIGH-Tc . . . PHYSICAL REVIEW B 66, 014512 ~2002!
we obtain

Tv5
u~12uḠ̄2v!

~12uḠ̄v!~12uḠ̄2v!1u2F̄̄vF̄̄v
†

, ~37a!

and

TD†~v2V,v!5

u2(
k

G0~Q2K !G0~KuQ!G~K !

~12uḠ̄v!~12uḠ̄2v!1u2F̄̄vF̄̄v
†

3
12uḠ̄2v

12uḠ̄V2v

. ~37b!

Letting V→0, the last equation becomes

DTD†~v!5
u2F̄̄v

†

~12uḠ̄v!~12uḠ̄2v!1u2F̄̄vF̄̄v
†

. ~37c!

The frequency and gap renormalizations are given by

i ṽ5 iv2Sv , i ṽ52 iv2S2v , ~38a!

D̃k5Dk1SD , D̃k* 5Dk* 1SD† ~38b!

whereSv5niTv andSD5niDTD . Hereṽ5(2ṽ!. The ex-
pression forx(Q) remains the same as in the previous su
section.

For d wave,TD†5TD50, andD̃k5Dk . Then Eq.~37a! is
greatly simplified,

Tv5
u

12uḠ̄v

. ~39!

The full Green’s function is given by

G~K !5
i ṽ2ek

~ i ṽ2ek!~ i ṽ2ek!1Dk* Dk

. ~40!

Due to the approximation Eq.~23!, we are able to bring
the final result Eqs.~39! and ~40! into the BCS form. It is
easy to show that they are equivalent to the more fam
form in Nambu formalism, as used in Ref. 15. Define

TAv5
1

2
~Tv2T2v!, TSv5

1

2
~Tv1T2v!, ~41!

and similarly forSv and Ḡ̄v . Here the subscript ‘‘A’’ and
‘‘ S’’ denote the antisymmetric and symmetric part, resp
tively. Further define

i ṽA5 iv2SAv , ẽK5ek1SSv , ~42!

then we obtain~with D* 5D)
01451
-

r

-

G~K !5
i ṽA1 ẽK

~ i ṽA!22 ẽK
2 2Dk

2
, ~43!

and

TAv5
u2Ḡ̄Av

~12uḠ̄Sv!22u2Ḡ̄Av
2

, ~44a!

TSv5
u~12 Ḡ̄Sv!

~12uḠ̄Sv!22u2Ḡ̄Av
2

, ~44b!

where

Ḡ̄Av5(
k

i ṽA

~ i ṽA!22 ẽK
2 2Dk

2
, ~45a!

Ḡ̄Sv5(
k

ẽK

~ i ṽA!22 ẽK
2 2Dk

2
, ~45b!

are the antisymmetric and symmetric parts ofḠ̄v , respec-
tively. It is evident thatTA and TS correspond toT0 and
2T3, respectively, in the Nambu formalism in Ref. 15~and
similarly for GA andGS).

It should be emphasized, however, that unlessu50 or u
56`, the symmetric part of the impurityT matrix, TSv ,
can never be set to zero, even if one could in principle h

Ḡ̄Sv50. This means thatẽK will always acquire a nontrivial,
frequency-dependent renormalizationSSv . While this renor-
malization is small for weak-coupling BCS superconducto
it is expected to be significant for the cuprate supercond
ors.

III. NUMERICAL SOLUTIONS FOR d-WAVE
SUPERCONDUCTORS

A. Analytical continuation and equations to solve

Since there is no explicit pairing vertex renormalizati
for d-wave superconductors, i.e.,G0(K)5wk or D̃k5Dk , a
major part of the numerics is to calculate the frequen
renormalization. Everything else will follow straightfor
wardly.

Numerical calculations can be done in the real frequ
cies, after proper analytical continuation. SinceTSvÞ0, Sv

and S2v are independent of each other. To obtain the f
quency renormalizationSv , one has to solve a set of fou

equations forḠ̄v , Ḡ̄2v , Sv , andS2v self-consistently for
given v. Becausei ṽÞ2 i ṽ, and one needs to analyticall
continue both simultaneously, the analytical continuat
must be done carefully. Forn.0, i ṽn→v1

R 5v11 iS19 ,

and i ṽn→v2
A 5v22 iS29 . For n852n,0, i ṽn8→v2

R

5v21 iS29 and i ṽn8→v1
A 5v12 iS19 . Here v656v

2S68 , and we choosev.0 and S69 .0. Then we obtain
four equations as follows:
2-7
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Ḡ̄v.0
R 5(

k

v22 iS29 2ek

~v11 iS19 2ek!~v22 iS29 2ek!1Dk
2

,

Ḡ̄2v,0
R 5(

k

v12 iS19 2ek

~v21 iS29 2ek!~v12 iS19 2ek!1Dk
2

,

~46!

Sv.0
R 5

niu

12uḠ̄v
R

5S18 2 iS19 ,

S2v.0
R 5

niu

12uḠ̄2v
R

5S28 2 iS29 .

These equations are solved self-consistently for (S68 ,S69 ),

as well as the real and imaginary parts ofḠ̄6v , as a function
of v. No Kramers-Kronig relations are invoked in these n
merical calculations. Note that in real numerics, we subtr
Sv508 from Sv

R so that Sv508 50. This subtraction is
compensated by a constant shift in the chemical potentiam.

Having solved the frequency renormalizationSv , one
can evaluate the pair susceptibility in the gap equation
~28!,

x~0!5(
K

wk
2

~ i ṽ2ek!~ i ṽ2ek!1Dk
2

5Im (
k
E

0

`dv

p

3
@122 f ~v!#wk

2

~v11 iS19 2ek!~v22 iS29 2ek!1Dk
2

, ~47!

where f (x) is the Fermi distribution function. It is easy t
check that the gap equation~28! does reduce to its clea
counterpart Eq.~7! asni→0.

The particle-number equation becomes

n52(
k
E

2`

` dv

2p
A~k,v! f ~v!

522 ImE
2`

` dv

p
Ḡ̄v

Rf ~v!. ~48!

The real and imaginary parts ofx(Q) are given respec
tively by

x8~V1 i01,q!5Im(
k
E

2`

` dv

2p
$GR~v,k!G0

R~V2v,qÀk!

3@ f ~v2V!2 f ~v!#1GR~v,k!G0
A~V

2v,qÀk!@12 f ~v!2 f ~v2V!#%wk2q/2
2 ,

~49a!

and
01451
-
ct

q.

x9~V1 i01,q!52(
k
E

2`

` dv

2p
Im GR~v,k!A0~V2v,qÀk!

3@ f ~V2v!2 f ~v!#wk2q/2
2 , ~49b!

where A0(v,k)522ImG0
R(v,k) is the ‘‘bare’’ spectral

function.
The pseudogap is evaluated via Eq.~15!. To this end, we

expand the inverseT matrix to the order ofV andq2 via a
~lengthy but straightforward! Taylor expansion,

tpg
21~V1 i01,q!5x~V1 i01,q!2x~0,0!

5~a081 ia09!V1b8q21 ia19V
2. ~50!

Here the imaginary partb9 vanishes. The termb8q2 should
be understood asbi8qi

21b'8 q'
2 for a quasi-two-dimensiona

square lattice. We keep the imaginary part up to theV2 or-
der. Substituting Eq.~50! into Eq. ~15!, we obtain

Dpg
2 5(

q
E

2`

` dV

p

~a091a19V!V

~a08V1b8q2!21~a091a19V!2V2
b~V!,

~51!

whereb(x) is the Bose distribution function.
Numerical solutions confirm that the coefficientsa08 and

b8 have very weakT dependence at lowT. Therefore, in a
three-dimensional~3D! system, we haveDpg

2 ;T3/2 at low T.
As the system dimensionality approaches 2, the expon
decreases from 3/2 to 1. However, in most physical syste
e.g., the cuprates, this exponent is close to 3/2. The pro
np[a08Dpg

2 roughly measures the density of incoherent pa
The gap equation~28! @together with Eq.~47!#, the fer-

mion number equation~48!, and the pseudogap equation~51!
form a closed set, which will be solved self-consistently f
Tc , m, and gaps at and belowTc . For given parametersTc ,
m, and gaps, we can calculate the frequency renormaliza
Sv , and then solve the three equations. A equation solve
then used to search for the solution for these parameters.
momentum sum is carried out using integrals. Very dens
populated data points ofv are used automatically whereSv

and/orḠ̄v change sharply. A smooth, parabolic interpolati
scheme is used in the integration with respect tov. The
relative error of the solutions is less than 1.031025, and the
equations are satisfied with a relative error on both sides
than 1.031027. In this way, our numerical results are muc
more precise than those calculated on a finite-size lattice

The solutions of these equations can be used to calcu
the superfluid densityns /m. Without giving much detail, we
state here that the impurity dressing of the current vertex
the ~short-coherence-length! cuprate superconductors doe
not lead to considerable contributions fors-wave isotropic
scattering and the long-wavelengthq→0 limit. The expres-
sion for the in-planens /m is given formally by the formula
for a clean system~before the Matsubara summation is ca
ried out!, as in Ref. 25,

ns

m
5

n

m
1P~0!, ~52!
2-8



on

gh

is

w

evel

he
the

he

n
a-

n,

ng
d.

a
n

PAIRING FLUCTUATION THEORY OF HIGH-Tc . . . PHYSICAL REVIEW B 66, 014512 ~2002!
where the in-plane current-current correlation functi
Pi j (Q)5P(Q)d i j can be simply derived from Eqs.~31! and
~32! of Ref. 25. The result is given by

P~Q!5(
K

G~K !G~K2Q!H @11~Dsc
2 2Dpg

2 !wkwk2q

3G0~2K !G0~Q2K !#S ]ek2q/2

]ki
D 2

2Dpg
2 G0~K !

]ek2q/2

]ki
•

]wk
2

]ki
J . ~53!

Using spectral representation and after lengthy but strai
forward derivation, we obtain

ns

m
54Dsc

2 (
k
E

2`

` dv

2p
ImF ~ F̃A~v,k!!2~¹W ek!2wk

2

1
1

2
GA~v,k!F̃A~v,k!¹W ek•¹W wk

2G f ~v!, ~54!

where

F̃~K !5G~K !G0~2K !5
1

~ i ṽ2ek!~ i ṽ2ek!1Dk
2

,

~55!

which differs fromF(K) by a factorDk .
As in the clean system, Eq.~54! differs from its BCS

counterpart (ns /m)BCS only by the overall prefactorDsc
2 ,

ns

m
5

Dsc
2

D2 S ns

mD
BCS

. ~56!

FIG. 7. Example of~a! the frequency renormalization2Sv
R and

~b! impurity average of the Green’s function2 Ḡ̄v
R for a d-wave

superconductor. The dashed and solid lines denote the real
imaginary parts, respectively. The full impurity band for2Sv

R is
shown in the inset. The parameters used arem50.92, t' /t i
50.01, ni50.02,u51, D50.08. The energy unit is 4t i , the half
bandwidth.
01451
t-

For d-wave superconductors, (ns /m)BCS;A2BT or A
2BT2 at very low T, depending on whether the system
clean or dirty. Bearing in mind thatDsc

2 /D2512Dpg
2 /D2

;12C8T3/2, we have

ns

m
;A2BT2CT3/2 ~clean!,

;A2BT22CT3/2 ~dirty!, ~57!

at very lowT. In other words, pair excitations lead to a ne
T3/2 term in the lowT superfluid density.

B. Renormalization of the frequency by impurity scattering
and the density of states

Except in the Born limit, foru*4t i , impurity scattering
usually introduces a sharp resonance close to the Fermi l
in the frequency renormalization for ad-wave supercon-
ductor. In addition, it induces an impurity band outside t
main particle band. Both the low-energy resonance and
high-energy impurity band arise from the vanishing of t
real part of the denominator of the impurityT matrix, Eq.
~39!, while the imaginary part is small. In Fig. 7 we show a
example of~a! the retarded, impurity induced renormaliz
tion of the frequency,2Sv

R5ṽR2v and~b! the correspond-
ing impurity average of the single-particle Green’s functio

2 Ḡ̄v
R , which is related to the density of states byN(v)

522 Im Ḡ̄v
R . The curves for2Sv

R corresponding to the im-
purity band are replotted in the inset, to show the stro
renormalization of the frequency inside the impurity ban
~The curves for2Sv8 have been offset so that2Sv508 50.

nd FIG. 8. Evolution of ~a! the frequency renormalization
2ImSv

R and ~b! the impurity average of the Green’s functio

2ImḠ̄v
R with u for a d-wave superconductor at fixedg5niu

2

50.02. A resonance develops in2ImSv
R as u deviates from the

Born limit. The weak scattering~Born limit! is more effective in
filling in the DOS within the gap. The parameters used arem50.9,
t' /t i50.01,D50.0945.
2-9
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QIJIN CHEN AND J. R. SCHRIEFFER PHYSICAL REVIEW B66, 014512 ~2002!
This offset is compensated by a shift in the chemical pot
tial m.! The van Hove singularity and its mirror image v
particle-hole mixing are clearly seen in the density of sta
and are also reflected in2Sv

R as the small kinks in Fig. 7~a!.
The real part2Sv8 is usually neglected in most non-sel
consistent calculations.15 It is evident, however, that it has
very rich structure, and, in general, cannot be set to zer
any self-consistent calculations. This conclusion holds e
in the presence of exact particle-hole symmetry, as can
easily told from Eq.~39!.

For u,0, the low-energy resonance in2Im Sv
R will ap-

pear on the positive energy side in Fig. 7~a!. Regardless of
the sign ofu, the resonance peak will become sharper asni
decreases and asuuu increases. For largeruuu, the resonant

frequency will be closer tov50, where2Im Ḡ̄v
R is small

because of thed-wave symmetry; A smallerni further re-

duces2Im Ḡ̄v
R . Both factors help minimize the imaginar

part of the denominator of Eq.~39! and thus lead to a stron
ger resonance. It should be emphasized that a resonance
does not show up in2Im Ḡ̄v

R since the resonance i
2Im Sv

R requires that2Im Ḡ̄v
R be small at the resonanc

point.
The location of the impurity band is sensitive to the si

and strength of impurity scattering. Foru,0, the impurity
band on the negative energy~left! side of the plot. Asuuu gets
smaller, the impurity band merges with the main band; asuuu
gets larger, it moves farther away, with a much stron
renormalization ofv. For largeuuu, the spectral weight un
der the impurity band in Fig. 7~b! is given by 2ni , and the
weight in the main band is reduced to 2(12ni). This leads
to a dramatic chemical potential shift as a function of t
impurity concentrationni ~as well asu). For u,0, the im-
purity band will always be filled, so that increasingni pushes
the system farther away from the particle-hole symmetry.
u.0, on the contrary, the impurity band is empty, and t
system becomes more particle-hole symmetrical asni in-
creases from 0, and reaches the particle-hole symmetry~in
the main band! at ni512n. This fact implies that Pe´pin and
Lee’s assumption of an exact particle-hole symmetry is
justified so that their prediction of a divergingN(v) asv→0
is unlikely to be observed experimentally. It should be me
tioned that the appearance of the impurity band has not b

FIG. 9. Evolution of the DOSN(v) for a d-wave supercon-
ductor ~a! with u at ni50.02 and~b! with ni in the unitary limitu
51000. There is a dip atv50 for smallni or smallu. The param-
eters used arem50.9, t' /t i50.01,D50.0945.
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shown in the literature, largely because most authors con
trate on the low-energy part of the spectra only, and do
solve for the full spectrum of the renormalization ofv self-
consistently.

In the Born limit, only the productg5niu
2 is a meaning-

ful parameter, notni or u separately. In Fig. 8, we plot~a! the
frequency renormalization2Im Sv

R and~b! the impurity av-

erage of Green’s function2Im Ḡ̄v
R as a function ofv for

various values ofu but with a fixedg50.02. ~Note: whenu
is small, this requires an unphysically largeni .) In the Born
limit, these two quantities are identical up to a constant
efficient. Asu increases, a resonance develops in2Im Sv

R at
smallv. 2Im Sv

R and2Im Ḡ̄v
R become very different, and a

impurity band develops gradually (u50.2 andu50.5), until
it splits from the main band (u51). At fixed g, the Born
limit is more effective in filling in the DOS in the mid-rang
of v within the gap and smearing out the coherence qu
particle peaks, whereas the largeu limit is more effective in
filling in the DOS in the vicinity ofv50 but keeping the
quasiparticle peaks largely unchanged. In addition, the m
band becomes narrower at largeu than that in the clean sys
tem or the Born limit, so that part of the spectral weight h
now been transferred to the impurity band. Also note that
DOS atv50 is essentially zero in Fig. 8~b! becauseni is
very small whenu becomes large for the current choice
g50.02.

The effects of the scattering strengthu and the impurity
densityni on the DOS are shown in Figs. 9~a! and ~b!, re-
spectively. For the effect ofu in Fig. 9~a!, we choose an
intermediateni50.02. And for the effect ofni , we focus on
the unitary limit, and chooseu51000. There is a dip in the
DOS atv50 in both the smallu and smallni cases, mim-
icking a fractional power-law dependence onv. At higherni
and higheru, the DOS is filled in mainly at smallv.

Shown in Fig. 10 are the residue DOS at the Fermi lev
N(0), as afunction of ~a! the impurity concentrationni for
different values ofu from the unitary limitu51000 through
u510, 5, 3, 2, down to 1, and~b! as a function of the scat
tering strengthu for ni50.005, 0.01, 0.02, 0.03, and 0.0
Figure 10~a! indicates that below certain ‘‘critical’’ value o
ni , N(0) remains essentially zero. This behavior is also i
plied by the presence of the dip at smallni in Fig. 9~b!. The

FIG. 10. Residue DOSN(0) at the Fermi level as a function o
~a! ni for u51000, 10, 5, 3, 2, and 1, and of~b! u for ni50.005,
0.01, 0.02, 0.03, and 0.05. Also plotted in~a! is N(0) as a function
of g(5ni) in the Born limit. The parameters used arem50.9,
t' /t i50.01,D50.0945.
2-10
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PAIRING FLUCTUATION THEORY OF HIGH-Tc . . . PHYSICAL REVIEW B 66, 014512 ~2002!
‘‘critical’’ value for ni in Fig. 10~a! is clearly scattering
strength dependent. The smalleru, the larger this value. A
replot ~not shown! of these curves in terms of log10N(0) as a
function of 1/ni reveals that for smallni , N(0) vanishes
exponentially ase2A/ni, whereA is a constant. For compari
son, we also show in Fig. 10~a! the Born limit as a function
of g(5ni). As one may expect, the Born limit is rather di
ferent from the rest, since it is equivalent to a very smalu
!1 and unphysically largeni . A similar activation behavior
of N(0) as a function ofu is seen in Fig. 10~b!, where the
‘‘critical’’ value for u is stronglyni dependent. The asymme
try between positive and negativeu reflects the particle-hole
asymmetry atm50.9. It should be noted that it is not realist
to vary u continuously in experiment.

An earlier experiment by Ishidaet al.26 suggests tha
N(0) varies asni

1/2. In our calculations, however,N(0) does
not follow a simple power law as a function ofni . The curve
for u51000 in Fig. 10~a! fits perfectly withani

a2b, with
a'0.175, for 0.002,ni,0.05. The damping of the zer
frequency~not shown!, 2ImSv50

R , also fits this functional
form very well, witha'0.61. The exponents are different fo
different values ofu. Our calculation for theni dependence
of N(0) is consistent with the result of Fehrenbacher27 in
thatN(0,ni) it is stronglyu dependent. However, it does n
seem likely that the simple power lawN(0);ni

1/2 may be
obtained in an accurate experimental measurement. Fu
experiments are needed to double check this relationship
tweenN(0) andni .

From Figs. 7–10, we conclude that for very smallni and
u, the zero-frequency DOSN(0) is exponentially small. At
high ni , N(0) is finite in both the Born and the unitary limi
However, for certain intermediate values ofni and u @e.g.,
u;1 in Fig. 9~a!, and ni&0.002 in Fig. 9~b!#, N(v) van-
ishes with~very small! v according to some fractional powe
va wherea,1. We see neither the universal power laws
N(v) predicted by Senthil and Fisher,17 nor the divergent
DOS predicted by Pe´pin and Lee18 and others.28

When the values ofu andni are such thatN(v);va with
a,1, one may expect to see a fractional low-T power law in

FIG. 11. Behavior ofTc ,m(Tc) ~left inset!, and D(Tc) ~right
inset! as a function of the impurity scattering strengthu at n
50.85, t' /t i50.01, 2g/4t i50.5, andni50.05.
01451
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the superfluid density. However, such a power law is
robust as it is sensitive to the impurity density for a giv
type of impurity. The situation with a negativeu is similar to
Fig. 9.

For given chemical potentialm and the total excitation
gapD, the calculation of the frequency renormalization wi
impurities does not necessarily involve the concept of
pseudogap. It is essentially the ‘‘self-consistent’’ impuri
T-matrix treatment by Hirschfeldet al.15 except that we now
have to solve for both the real and imaginary parts ofSv

R

simultaneously in a self-consistent fashion. Our numeri
results agree with existing calculations in the literature.

Finally, we emphasize the difference between the s
consistent impurityT-matrix treatment of the one-impurity
problem13,29 and the current many-impurity averaging. F
the former case, the impurityT-matrix will be given by Eq.

~37a! but with Ḡ̄v replaced byḠ̄v
0 , i.e., the impurity average

of the clean G0(K). As a consequence, the position of th
poles of Tv is independent of the renormalized DOS, a
therefore a resonance peak may exist at lowv in the DOS,13

whereas it cannot in the current many-impurity case.

C. Effects of the impurity scattering on Tc and the pseudogap

In this section, we study the influence of impurity scatt
ing on the behavior ofTc and the pseudogapDpg as a func-
tion of the coupling strength as well as the hole doping c
centration. First, we study the effect of the scattering stren
u and whether it is repulsive (u.0) or attractive (u,0). In
Fig. 11, we plotTc as a function ofu, for a pseudogapped
d-wave superconductor withni50.05. The corresponding
curves form and D5Dpg(Tc) are shown in the upper lef
and upper right insets, respectively. All three quantities,Tc ,
m, andD, vary with u. For either sign ofu, both Tc andD

FIG. 12. Evolution of~a! Dpg(Tc), ~b! Tc , andm(Tc) ~inset!, as
a function of the impurity concentrationni for both positive (u
5100) and negative (u52100) scattering strength in the unitar
limit, the Born limit (u51,g5ni), and intermediateu521. Here
n50.85, t' /t i50.01, and2g/4t i50.5.
2-11
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QIJIN CHEN AND J. R. SCHRIEFFER PHYSICAL REVIEW B66, 014512 ~2002!
are suppressed by increasinguuu. It should be emphasize
that the chemical potentialm in the two ~large6u) unitary
limits does not meet, nor doesTc or D. This is because a
~large! negativeu creates afilled impurity band below the
main band, and is effective in bringing down the chemi
potential, whereas a positiveu creates anempty impurity
band above the main band, and tends to raisem toward the
particle-hole symmetrical point,m51. This result cannot and
has not been observed in previous, non-self-consistent ca
lations where the real part of frequency renormalization is
to zero.

In Fig. 12, we compare the effect of the impurity conce
tration for different scattering strengths: the Born limit, bo
unitary limits (u56100), and intermediateu521. Both
~b! Tc and~a! Dpg(Tc) are suppressed by increasing impur
density. This is natural in a model where the pseudo
originates from incoherent pair excitations. As will be se
below,Dpg(Tc) is suppressed mainly becauseTc is lowered.
Except in the Born limit, the chemical potentialm is fairly
sensitive toni , as shown in the inset. It is clear that th
scattering in the Born limit is the most effective in suppre
ing Tc . In comparison with experiment,30 calculations at the
AG level ~i.e., the Born limit! tend to overestimate theTc
suppression by as much as a factor of 2. This is in go
agreement with the current result in the unitary limit.
large ni for large positiveu, the system is driven to the
particle-hole symmetrical point, where the effective p
mass changes sign. It is usually hard to suppressTc by pair-
ing at the particle-hole symmetrical point, as indicated by
solid curve in the lower panel. In fact, exactly at this poi
the linear V term a08 in the inverseT-matrix expansion
vanishes, so that one needs to go beyond the current app
mation and expand up to theV2 term. Large negative
u52100 is more effective in suppressingTc and D than
intermediate negativeu521, in agreement with Fig. 11 an
the DOS shown in Figs. 9~a! and 10.

FIG. 13. Behavior ofTc , m(Tc) ~lower inset!, andD(Tc) ~up-
per inset! as a function of2g/4t i in the unitary limit for u5
2100 andni50 ~solid curve!, 0.02~dotted!, 0.05~dashed!, and 0.1
~dot-dashed!. For comparison, curves forg50.05 in the Born limit
are also plotted~long-dashed!. Impurity scattering in the Born limit
is more effective in suppressingTc at relatively weak coupling. The
other parameters aren50.85, t' /t i50.01.
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There is enough evidence that zinc impurities are attr
tive scatterer for electrons in the cuprates.27 Therefore we
concentrate ourselves on negativeu scattering in the unitary
limit. Plotted in Fig. 13 areTc ~main figure!, m ~lower inset!,
and D as a function ofg for increasingni50,0.02,0.05,0.1
with u52100. Also plotted for comparison are the resu
assuming the Born limit withg50.05. Clearly, the Born
limit is more effective in suppressingTc at relatively weak
coupling, 2g/4t i&0.75, consistent with Fig. 12. BothTc
and D are suppressed continuously withni . However, it
should be noted that a largerni helpsTc to survive a larger
2g/4t i . This is mainly because the filled impurity band
largeni pushes the system far away from particle-hole sy
metry ~seem in the lower inset!, and reduces the effectiv
fermion density, so that the pair mobility is enhanced and
pair mass does not diverge until a larger2g/4t i is reached.

To make contact with the cuprates, we use the n
double-occupancy condition associated with the Mott insu
tor physics, as in Ref. 9, so that the effective hopping int
ral is reduced tot i(x)'t0x, wherex512n is the hole con-
centration, andt050.6 eV is the hopping integral in the ab
sence of the on-site Coulomb repulsion. We assu
2g/4t050.047, which isx independent. Then we can com
puteTc , m, andD5Dpg(Tc) as a function ofx. The result
for Tc ~main figure! andD ~inset! is shown in Fig. 14 for the
clean system andni50.02 and 0.05. In the overdoped re
gime,Tc , as well as the smallD, are strongly suppressed b
impurities. This provides a natural explanation for the e
perimental observation thatTc vanishes abruptly at largex; it
is well known that high crystallinity, clean samples are n
available in the extreme overdoped regime. On the ot
hand, neitherTc nor D is strongly suppressed in the high
underdoped regime, where the gap is too large. At this po
experimental data in this extreme underdoped regime are
not available. Our result about the suppression ofTc andD in
the less strongly underdoped regime (x.0.1) are in agree-
ment with experimental observations31,32 and other
calculations.30

FIG. 14. Behavior ofTc andD(Tc) ~inset! as a function of the
hole doping concentrationx in the unitary limit for u52100 and
ni50 ~solid curve!, 0.02 ~dotted!, and 0.05~dashed!. The param-
eters are2g/4t050.047, t' /t i50.003.
2-12
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It should be noted, however, that in our simple mod
we do not consider the fact that disorder or impurities m
reduce the dimensionality of the electron motion and th
suppressTc . Furthermore, since induced local spin a
Kondo effects have been observed near zinc sites in b
zinc-doped YBCO ~Refs. 33 and 34! and zinc-doped
Bi2Sr22xLaxCuO61d ,35 this raises an important questio
whether zinc can be treated as a nonmagnetic impurity.

D. Gaps and superfluid density belowTc

in the presence of nonmagnetic impurities

In this subsection, we study the effect of nonmagne
impurities on the behavior of the excitation gapD, the order

FIG. 15. Behavior of the superfluid densityns /m and the exci-
tation gapD ~inset! in a d-wave BCS superconductor as a functio
of temperatureT/Tc

0 for impurity concentrationni50 ~clean,
solid curve!, 0.02 ~dotted!, and 0.05~dashed! in the unitary limit
u52100. Tc

050.0416 is theTc in the clean system. The param
eters aren50.85,2g/4t i50.3, andt' /t i50.01.

FIG. 16. Behavior of the superfluid densityns /m and the vari-
ous gaps~inset! in a d-wave pseudogapped superconductor a
function of temperatureT/Tc

0 for impurity concentrationni50
~clean, solid curve!, 0.02 ~dotted!, and 0.05~dashed! in the unitary
limit u52100. HereTc

050.0414. The parameters aren50.85,
2g/4t i50.5, andt' /t i50.01.
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parameterDsc , and the pseudogapDpg as well as the chemi-
cal potentialm as a function of temperature in the superco
ducting phase. The numerical solutions for these quanti
are then used to study the temperature dependence o
superfluid densityns /m at various impurity levels. We con
centrate on the unitary limit, which is regarded as relevan
the cuprates. To be specific, we usen50.85, t' /t i50.01,
andu52100 in the calculations presented below.

We first study the impurity effect in the BCS case, witho
the complication of the pseudogap. Plotted in Fig. 15 are
superfluid densityns /m ~main figure! and the corresponding
gapD in a d-wave BCS superconductor as a function of t
reduced temperatureT/Tc

0 for the clean system~solid
curves!, impurity density ni50.02 ~dotted!, and ni50.05
~dashed! at 2g/4t i50.3. HereTc

050.0416 is theTc in the
clean case. As expected, bothTc andD(T), as well asns /m,
are suppressed by impurity scattering. In agreement w
experiment,16,36 the low-T normal fluid density is linear inT
in the clean case, and becomes quadratic in the two d
cases. The curves are very similar to the in-plane penetra
depth measurement on Zn doped, fully oxygena
YBa2Cu3O7 by Panagopouloset al.37

Now we add pseudogap for the underdoped cuprates.
show in Fig. 16 the temperature dependence ofns /m ~main
figure! and various gaps~inset! in a d-wave pseudogappe
superconductor for impurity concentrationni50 ~clean,
solid curve!, 0.02 ~dotted!, and 0.05~dashed! in the unitary
limit at 2g/4t i50.5. As the order parameter develops belo
Tc , the pseudogap decreases with decreasingT. This reflects
the fact that the pseudogap in the present model is a mea
of the density of thermally excited pair excitations. The to
gapD, the order parameterDsc , and the superfluid density
ns /m are suppressed by increasingni , similar to the BCS
case above. However, at givenT,Tc , the pseudogapDpg
remains roughly unchanged. Furthermore, the low-T power
law for the superfluid density is different from the BCS cas
as predicted in Eq.~57!. It is now given byT1T3/2 andT2

1T3/2 for the clean and dirty cases, respectively. Due to

a

FIG. 17. Zero-temperature superfluid density (ns /m)0 and the
gapD0 ~inset! in a d-wave superconductor as a function of impuri
concentrationni in the unitary limit (u52100, solid line! and in
the Born limit (g5ni , dashed line!. The parameters aren50.85,
2g/4t i50.5, andt' /t i50.01.
2-13
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presence of theT3/2 term, the lowT portion of the curves for
ni50.02 and 0.05 are clearly not as flat as in Fig. 15. N
ertheless, it may be difficult to distinguish experimenta
T21T3/2 from a pureT2 power law. ThisT3/2 contribution of
the pair excitations has been used to explain successfully9 the
quasiuniversal behavior of the normalized superfluid den
ns(T)/ns(0) as a function ofT/Tc . We have also found38,39

preliminary experimental support for thisT3/2 term in low-T
penetration depth measurement in the cuprates as we
organic superconductors. Systematic experiments are ne
to further verify this power-law prediction.

A careful look at the values of the zero-temperature
perfluid density (ns /m)0 for different values ofni in both
Figs. 15 and 16 suggests that in the unitary limit, (ns /m)0
drops faster withni whenni is still small. This is manifested
in a systematic study of (ns /m)0 as a function ofni , as
shown in Fig. 17, withu52100~solid curve!. This behavior
has been observed experimentally.40 Also plotted in the inset
is the corresponding zero-temperature gapD0 versusni .
Clearly, the sloped(ns /m)/dni is much steeper asni ap-
proaches zero, very different from the behavior ofD0. This
demonstrates thatns /m is influenced more by the DOS tha
by the gap size. A very small amount of impurities m
strongly suppress (ns /m)0. This conclusion is significant in
data analysis of the penetration depth measurement, e
cially when theT50 value of penetration depth is not me
sured directly.41 For comparison, we also plot the corr
sponding curves in the Born limit. While the gap
suppressed faster, in contrast to unitary case, the s
d(ns /m)/dni is smaller for smallerni .

IV. DISCUSSION

In Sec. II, we have used the approximation Eq.~23! to
bring the single-particle self-energy and thus the gap eq
tion into a BCS-like form. This approximation derives fro
the divergence of theT matrix tpg(Q) asQ→0, which is the
pairing instability condition. The spirit of this approximatio
is to ‘‘put’’ the incoherent, excited pairs into the condensa
by settingQ50. The contribution of these pseudo-Coop
pairs to the single-particle excitation gap is calculated
Eqs.~15! and~51!, weighted by the Bose function. Therefo
the incoherent pairs and the zero-momentum condensat
not distinguished from each other in terms of the sing
particle self-energy, as they add up to a total excitation g
However, they are distinct when phase-sensitive quant
are involved, e.g., in the calculation ofTc and of the super-
fluid density.

With this approximation, there is a close analogy betwe
the Feynman diagrams in the current pairing fluctuat
theory in Sec. II and its BCS counterpart in the Append
When the finite momentum pair propagators are removed~or
‘‘pushed into the condensate’’! from Figs. 3–6, these dia
grams will become their BCS counterpart in Figs. 18–
~The diagram for BCS pairing vertex is not shown in t
Appendix.!

This approximation is in general good when the gap
large in comparison withT, and when the impurity concen
tration is low. When the gap is small, the contribution of t
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incoherent pair excitations is usually small, and does
have a strong effect onTc , so thatTc is roughly determined
by its BCS mean-field solution. Whenni is large, the Fermi-
onic frequency renormalization is strong, and the pair disp
sion also becomes highly damped. In this case, approxi
tion Eq. ~23! may not be quantitatively accurate.

Even without the complication of impurities, incohere
pairs are not expected to deplete completely the spec
weight within the two quasiparticle peaks of the spect
function.42,6 This, however, cannot be captured by the a
proximation Eq.~23!. Unfortunately, we still do not know ye
how to solve the Dyson’s equations without this approxim
tion due to technical difficulties.

Another simplification comes from thed-wave symmetry
of the cuprate superconductors under study. Although
have kept the theoretical formalism general for boths andd
wave in Sec. II, the pairing vertex renormalization drops o
when we finally carry out numerical calculations ford-wave
superconductors. Fors-wave superconductors, one wou
have to include self-consistently one more complex equa
for the renormalization ofDk , when solving for the renor-
malization ofv. And Eqs.~37a! and ~37c! also look much
more complicated than Eq.~39!. Nevertheless, since there
no node in the excitation gap fors wave, the numerics is
expected to run faster.

It is well known that for d-wave superconductors, th
Anderson’s theorem43 breaks down.44 For Anderson’s theo-
rem to hold, it requires that the gap and the frequency
renormalized in exactly the same fashion. This condition c
be satisfied~approximately! only in weak-coupling, isotropic
BCS s-wave superconductors, for which the real part of t
frequency renormalization is negligible. Since the frequen
v is a scalar, this condition is violated when the gapDk has
any anisotropic dependence onk. Furthermore, when the ga
is considerably large in comparison with the band width
that the upper limit of the energy integral cannot be exten
to infinity, this condition will not be satisfied, either. In bot
cases,Tc will be suppressed.

V. CONCLUSIONS

In this paper, we extend the pairing fluction theory
superconductors in the presence of nonmagnetic impuri
Both the pairing and impurityT matrices are included an
treated self-consistently. We obtain a set of three equat
for @Tc , m, D(Tc)# or (m, Dsc , Dpg! at T,Tc , with the
complex equations for the frequency renormalization.
consequence, we are able to study the impurity effects
Tc , the order parameter, and the pseudogap. In particular
carry out calculations ford-wave superconductors and app
to the cuprate superconductors. Instead of studying
physical quantities with all possible combinations of the p
rametersni , u, g, andn, we mainly concentrate on the neg
tive u unitary limit, which is regarded as relevant to the zi
impurities in the cuprates.27

Calculations show that in addition to the low-energy res
nance in the imaginary part of the renormalized frequenc
considerably largeuuu leads to a separate impurity band, wi
a spectral weight 2ni . The real part of the frequency reno
2-14
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malization, in general, cannot be set to zero in a s
consistent calculation. The chemical potential varies with
impurity concentration, so that the assumption of ex
particle-hole symmetry is not justified when one studies
impurity effects. One consequence of this chemical poten
shift is that the repulsive and attractive unitary scatter
limits do not meet as has been widely assumed in the n
self-consistent treatment in the literature. Unitary scatte
fill in the DOS mostly in the smallv region, whereas Born
scatterers do in essentially the whole range within the gap
smallni and/or smallu, there is a dip atv50 in the DOS, so
thatN(v) vanishes as a fractional power ofv, which may in
turn contribute a fractional power law for the low-T tempera-
ture dependence of the penetration depth.

Both Tc and the pseudogapDpg(Tc) are suppressed b
impurities. In this respect, Born scatterers are about twice
effective as unitary scatterer. Treating zinc impurities as u
tary scatterers explains why the actualTc suppression is only
half that predicted by calculations at the AG level~i.e., in the
Born limit!. In the overdoped regime, the gap is small, a
therefore the superconductivity can be easily destroyed b
small amount of impurities. In contrast, it takes a larg
amount of impurities to destroy the large excitation gap
the underdoped regime.

The reasonDpg(Tc) is suppressed is mainly becauseTc is
suppressed. In fact, for a givenT,Tc , the pseudogap re
mains roughly unchanged~actually it increases slightly!. The
suppression of the total excitation gap arises from the s
pression of the order parameter. The density of incohe
pairs, as measured bynp , slightly increases for not-so-larg
ni . This supports the notion that nonmagnetic impurities
not mainly break incoherent pairs. Instead, they scatter
Cooper pairs out of the condensate.45

Our self-consistent calculations show that in the unit
limit, the low-T superfluid density is quadratic inT in a BCS
d-wave superconductor, in agreement with existing calcu
tions and experiment. Strong pair excitations add an a
tional T3/2 term, with preliminary experimental support. As
function of increasingni , the zero-T superfluid density de-
creases faster at first for unitary scatterers, whereas the
posite holds for scattering in the Born limit. The former b
havior is in agreement with experiment.
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APPENDIX: IMPURITY DRESSING FOR BCS THEORY AT
THE ABRIKOSOV-GOR’KOV LEVEL

In this Appendix, we present the impurity dressing for
BCS superconductor, following Abrikosov-Gor’kov,22,24 but
in a more general form, namely, we do not assumeḠ2v

52Ḡv . This will make it easier to understand the curre
theory in the presence of strong pairing correlations, as th
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is a strong similarity between the impurity dressing diagra
for both BCS theory and the pairing fluctuation theory.

For a pure BCS superconductor, we have the Gor’k
equations,

G0
021~K !G0~K !512DkF

0†~K !, ~A1a!

G0
021~2K !F0†~K !5Dk* G0~K !. ~A1b!

At the AG level, the relationship between the impuri
dressed Green’s functionsG and F is represented by the
Feynman diagrams shown in Fig. 18. Define the impur
averageḠv as in Eq.~19!, and

F̄v
† 5ni(

k8
uu~k2k8!u2F†~K8!, ~A2!

as well as their complex conjugate. Note that Fig. 18 is
tually Fig. 105 in Ref. 24. Without giving details, we give th
result following AG:

~ iv2ek2Ḡv!G~K !1~Dk1F̄v!F†~K !51, ~A3a!

~ iv1ek1Ḡ2v!F†~K !1~Dk* 1F̄v
† !G~K !50. ~A3b!

Define i ṽ5 iv2Ḡv , i ṽ52 iv2Ḡ2v , D̃k5Dk1F̄v , and
D̃k* 5Dk* 1F̄v

† . Then we obtain

G~K !5
i ṽ2ek

~ i ṽ2ek!~ i ṽ2ek!1D̃k* D̃k

, ~A4a!

F†~K !5
D̃k*

~ i ṽ2ek!~ i ṽ2ek!1D̃k* D̃k

. ~A4b!

For d wave, the first equation becomes Eq.~40!. Note that
G(K) is no longer symmetrical inv in general as a conse
quence of impurity scattering, butF(K) still is, sinceF(K)
involves6v pairs.

The above result can be easily extended to self-consis
impurity T-matrix calculations, by replacing the AG-leve

FIG. 18. Impurity dressing at the Abrikosov-Gor’kov level i
BCS theory.

FIG. 19. Replacement scheme from the AG level impurity sc
tering to self-consistentimpurity treatment in BCS theory.
2-15
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impurity scattering with the self-consistent impurityT matri-
ces, as shown in Fig. 19. The relationship between the re
lar and anomalous impurityT matrices Tv and TD† are
shown in Fig. 20. One can easily write down the correspo
ing equations, as follows:

Tv5u1uḠ̄vTv2uF̄̄vTD†, ~A5a!

FIG. 20. Relationship between impurityT matricesTv andTD†

in BCS theory.
s

-

ett

.

r,
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TD†5uF̄̄v
† Tv1uḠ̄2vTD† . ~A5b!

Finally, one has

Tv5
u~12uḠ̄2v!

~12uḠ̄v!~12uḠ̄2v!1u2F̄̄vF̄̄v
†

, ~A6a!

TD†~v!5
u2F̄̄v

†

~12uḠ̄v!~12uḠ̄2v!1u2F̄̄vF̄̄v
†

, ~A6b!

where Ḡ̄5(kG(K), F̄̄†5(kF
†(K), and similarly for their

complex conjugate. Note these two equations are form
identical to Eqs.~37a! and~37c!, except that the currentTD†

contains the factorD already.
Now with the new definitioni ṽ5 iv2Sv , i ṽ52 iv

2S2v , D̃k5Dk1SD , and D̃k* 5Dk* 1SD* , as well asSv

5niTv andSD* 5niTD†, Eqs.~A4! for G andF remain valid.
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