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It is well known that conventional pairing fluctuation theory at the Hartree level leads to a normal-state
pseudogap in the fermionic spectrum. This pseudogap arises from bosonic degrees of freedom which appear at
T*, slightly above the superconducting transition temperatyreOur goal is to extend this Hartree approxi-
mated scheme to arrive at a generalized mean-field theory of pseudogapped superconductors for all tempera-
tures T. While an equivalent approach to the pseudogap has been derived elsewhere using a more formal
Green'’s function decoupling scheme, in this paper we reinterpret this mean-field theory and BCS theory as
well, and demonstrate how they naturally relate to ideal Bose gas condensation. Here we recast the Hartree
approximated Ginzburg-Landau self-consistent equations Tamaatrix form, from which we infer that the
condition that the pair propagator have zero chemical potential &tdll.. is equivalent to a statement that the
fermionic excitation gap satisfies the usual BCS gap equation. This recasting makes it possible to consider
arbitrarily strong attractive coupling, where bosonic degrees of freedom appEarcansiderably abové, .

The implications for transport both above and beldw are discussed. Below, we find two types of
contributions. Those associated with fermionic excitations have the usual BCS functional form. That they
depend on the magnitude of the excitation gap, nevertheless, leads to rather atypical transport properties in the
strong-coupling limit, where this gafas distinct from the order parametés virtually T independent. In
addition, there are bosonic terms arising from noncondensed pairs whose transport properties are shown here
to be reasonably well described by an effective time-dependent Ginzburg-Landau theory.
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[. INTRODUCTION more detail below. Indeed, bosonic degrees of freedom, as-
sociated with fermion pairs, and the existence of a fermionic
In this paper we address the physics of the pseudogagxcitation gap are two sides of the same coin. The gap or
state on the basis of a beyond-BCS mean-field theory. Oysseudogap in the fermionic excitation spectrum reflects the
approach represents a natural extension to arbitrarily stronfgct that extra energy is needed to break bosons, or fermion
coupling constantg of time-dependent Ginzburg-Landau pairs, apart. When approached from abodWgijs suppressed
(TDGL) theory when the quartic terms are treated at therelative to its strict BCS counterpafty the existence of this
Hartree approximation level. We also explore the brokennormal-state pseudogap, as a consequence of the lowering of
symmetry phase, incorporating the effects of a Hartree apthe fermionic density of states neBg. When approached
proximation to pairingor equivalently, excitation-gagdluc-  from below, one readily sees that the superfluid density will
tuations forT<T. in a fashion that is necessarily compatible not vanish atT*, where the fermionic gap disappears, but
with their description abové,. A central assumption in our instead at a lower temperatufe, as a consequence of ad-
work is that the ground state belongs to the generalized BCSitional (beyond BC$ bosonic excitations of the condensate.
like theory introduced by Leggettand further analyzed by In conventional(i.e., long coherence length) three-
Nozieres and Schmitt-Ridkand others. In this way, one ar- dimensional superconductors, these noncondensed pairs are
rives at a simple reinterpretation of BCS theory as a limitingvirtually undetectable. However, there are two mechanisms
case of a more general theory of ideal Bose gas condensfor enhancing their effects: reduced dimensionality, often
tion. In contrast to true Bose systems, here, however, fermiwith disorder(see the recent reviéwby Larkin and Varla-
onic degrees of freedom are never absent: the conditiomov which addresses Gaussian pair fluctuadiomsd in-
Mpair=0, for T<T, is equivalent to the constraint imposed creased attractive coupling constafi associated with short
by the BCS gap equation on the excitation ge{¥). &. If by “the fluctuation regime” we mean the temperature
Several key points need to be made. The observation of eange where bosonic degrees of freedom are present, then in
pseudogap T>T.) deriving from Hartree approximated the second mechanism one is effectively extending this re-
treatment of “pairing” fluctuations dates back to the early gime up toT*, which could be as much as an order of
1970's, with the work of Abeles and co-worker®atton?®  magnitude higher thafi;. In the vicinity of Bose condensa-
and Hassing and Wilkin$ Pairing fluctuations can be alter- tion there are divergences in various transport properties, but
natively viewed as fluctuations in the magnitude of the fer-even away fronT, closer toT*, bosonic contributions may
mionic excitation gap, that is, “gap fluctuations.” Most im- dominate over their fermionic counterparts, leading to highly
portantly, at the Hartree level, these are to be distinguishednconventional transport characteristics, as will be outlined
from order-parameter fluctuations, as will be discussed irhere.
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The Hartree approximatiéi®! and its T-matrix  varying degrees. The strongest support for the relevance of
extensiofi® are previously well established routes for obtain-our viewpoint (which effectively sidesteps Mott effegtss
ing a pseudogap state in homogeneous superconddctorghe anomalously short coherence lengthThis suggests a
Throughout this paper we call the latter “extended Hartregdreakdown of strict BCS physics, which, at the very least,
theory.” Nevertheless, there is considerable emphasis in theeeds to be understood and characterized, on its own, inde-
current literature on approaches to the pseudogap based gndent of Mott effects. To support this breakdown is the
an alternative phase fluctuation scenafidhe contrast be- highly non-BCS temperature dependence of the
tween these two schemes should be emphasized. In tHgeasureth'® excitation gapA—not so different from that
former case one is dealing with noncondensed bosons, whigfhown in Fig. 3 below. Although transport calculations and
are associated with fluctuations in the fermioeixcitation ~ interpretations of transport data are often based on a BCS
gap A(r,t) (say, measured relative to the spatially uniformground state, rather little attention has been paid in the past
or mean-field order paramejem the latter case, one is deal- to the anomalous behavior @f(T) and its implications for
ing with fluctuations in the phase of the complesder pa-  transport. In this paper we address this omission.
rameterA (r,t). At a beyond-BCS level these two channels
are distinguishable X# Ay, but, as in any mean-field Il. ABOVE T, AT WEAK COUPLING
theory, the order parameter is taken to be spatially uniform.
By contrast, the phase fluctuation scheme is based on order-
parameter fluctuations around the strict BCS state (
=A.). Generally, order-parameter fluctuation approaches The Ginzburg-Landa(GL) free-energy functional in mo-
are appropriate when the separation between the mean-fieldentum space is given By
onset temperaturé* and the actual instability temperature NO)V
T. is small. If this temperature difference is not small, it is B 2 2 5
more appropriate to derive an improved mean-field theory Fl¥]= B2 % W ol*(e+alQq|+£19%)
first!® and then append fluctuation effects, if they are called

A. Overview of Hartree approximated Ginzburg-
Landau theory

for. This is the philosophy of the present approach in which 1

at a mean-field level, the separation betw@énand T, can + 25 % b2,0,0,¥0, Y0, Y0, Y0, +0,-qy
be arbitrarily tuned via the size of the attractive coupling :

constant. (1)

Finally, we emphasize a contrast between the present a
proach and previous work by Nozieres and Schmitt-Rink
and by Randerif.Both groups studied the effects of pre-

formed pairs or noncondensed bosons, presuming a BCS-li .
P P g eedback effects from the quartic term are neglectgd,

ground state with arbitrary attractive couplimg We will - . ) .
assume this ground state as well. These other studies wepel/T (s is setto 1, andN(0) is the density of states at the

conducted at the level of Gaussian pair fluctuations, so thatc'™! 1evel in the normal state. We approximate the quartic
pseudogap effects were absent in the pair propagator. Mord€rm so that or_lly paired terms are included in the last addend
over, an approximate form for the number equation was as2f Ed- (1) leading to

sumed as weft* Essential to the physics we will be discuss-

ing is a pseudogap in the fermionic spectrum, which helps to i Z D1 P P E P A
decouple the bosonic and fermionic degrees of freedom. This 7Y - B
pseudogap leads to relatively long-lived bosons, without the

need to invoke unphysically strong coupling. A gap in the _ 1 2
fermionic spectrum inhibits the decay of bosons into fermi- - 2_ﬂz
ons, simply because there are very few low-energy fermionic

states to decay into. As a consequence, bosonic degrees of 2

freedom are evident over a much wider temperature rangesnat there is no factor of 2 in the first term on the right-hand
above and belowl;, onceg is beyond the weak-coupling gjge of the above expression reflects the fact that we use

regime. Hartree rather than the Hartree-Fock approximation. As

In this paper, we make no contact with experiments ing, ,nqg elsewheré, bj=bgo can be approximated by
high-temperature superconductors. The goal here is to dem- ! e

onstrate the simple physics, as well as the genesis of paftoda,090,0 Where bo=[N(0)V/7*]§£(3). To further sim-
fluctuation approaches, as distinguished from phase fluctuglify the quartic term, we apply the mean-field approxima-
tion schemes. It is useful to emphasize that we are focusintion, writing | W o|?= (| ¥ 40| %) + 8| ¥ oo|* and neglecting in

in the present paper on the nature of the superconductivitizq. (2) terms of order 6|\Ifqo|2)2. This leads to

(below T;) and its implications abovd .. While we pre-

sume a generalized BCS ground st@keit, with arbitraryg bg
and self-consistent fermionic chemical potentiabther E %
ground states have been contemplated in the cuprate litera-
ture which accommodate the physics of the Mott insulator toThe contributior’(|\lfqo|2> is determined self-consistently via

P/\?here\IfQ are the Fourier components of the order parameter
P(r,t), Q=(1Q,,q), e=(T-T*)/T*, a=#/8T, & is the
L coherence lengthT* is the critical temperature when

by W] %W, %+ > byl Wq|*|.
{7 T

1
|\I’q0|2_§<|‘yq0|2> Z <|q,q’0|2>- (3)
q
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f DWe AFIYI|w 4|2

(1¥ql?)= (4)

f DWe AFLYI

when we replace the quartic term in Ed) by Eq. (3). It
follows that

b -1
ey S <|wq,o|2>+siq2} .

ql
)
If we sum Eq.(5) over g and identify =(|W4l|%) with

<|q,q0|2>: N(O)VT
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To compare with GL theory we expand these equations to
first order in the self-energy correctidfiThe T matrix can
be written in terms of the attractive coupling constgras

B?A?, we obtain a self-consistency equation for the energy

“gap” (or pseudogapA aboveT,.

B 1 bo ot
BzAZ‘% N(OVT E+N(0)VBZA2+§1q2} . (©

1
202_ _
e §N<0>VT—upan(T>+fiq2’ 7
where
Hoan(T) = — e 20 g2n2 ®)
/-Lpa|r( )=—¢€ N(O)VB .

B g
M= T 50 Q +9ox(Q) 12
where
Xo(Q)=2, Go(Q-K)Go(K)¢§_qz- (13)
Defining
A2=—§ t(Q) (14)
we arrive at(see Appendix A
S(K)~—Go(—K)AZg5. (15)

The results of Appendix A can be used to derive a self-

consistency condition oA? in terms of the quantityy(0)

(first order inY), which satisfies
5x(0)=—bo(BA)?, (16)

implying that

Note that the critical temperature is renormalized downward

with respect toT* and satisfies
;pair(Tc):O- 9

B. Introduction to T matrix: T=T., small A(T,.)

Equations(7)—(9) are the central equations derived from

By(0)=— bo f d3q 1
X(0)= NO)TJ (27)% e+ &2~ 5x(0)/N(0) '
17

which coincides with the condition derived earlier in E6).
Finally, defining

the Hartree approximated GL scheme. They describe how the

excitation gapA(T) and the quan'[ity;pair behave above,

but near T.. We now rewrite these equations using a

T-matrix approach.

A central quantity inT-matrix schemes is the pair suscep-

tibility. Here we take this function to be of the fofm
x<Q>=; Go(Q—K)G(K)0E g, (10)

where Gy is the bare Green’s function ar@ is the full or

dressed Green'’s function which depends on the self-energy

3 (K) given by

2(K>=§ t(Q)Go(Q—K)@f_ - (12)

Here and throughout we use the conventialg

=TZig 2q. In the above expressions, represents a gen-

eralized(for example s- or d-wave function symmetry fac-

tor. While there are two otheF-matrix approaches in the

literature, oné® in which y is related t0G,G,, and one
which is even more widely usédin which y is related to

1 ox(0)

we may interpret the vanishing &ﬁpair as the condition that
atT=T,

ﬁpair(Tc):O- (19
It follows from Egs.(16), (18), and(8) that
;pairzﬁpaira (20

so the above condition fdf; is in agreement with that found
earlier[Eq. (9)] and the effect of a finité&\(T,) (self-energy
correction is a shift downward in the critical temperature
relative to its valuggiven by T*) in the A(T;)=0 limit.

IIl. BELOW T.: WEAK COUPLING
A. Hartree approximated GL theory for small A(T,), T=T,

The left-hand side of Eq(5) may be interpreted as the
number density of bosons of momentumSince w4 (T¢)

GG, only the GG, scheme is simply connected to the =0, theq=0 level becomes macroscopically occupied once

Hartree-GL approach.

the system enters the superconducting regiof,=af .. To
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support this assertion we investigate the behavior of
Mpair(T) for T=T_ . We separate out thg=0 term in Eq. B2A§¢o=f
(6) and write

dg 1 1
(2m)2 NoVT ¢2g2”

(27)

Just as in the ideal Bose gas probleN?(T) is constrained
T 1 N T 1 (via the pair chemical-potential conditign ,..(T) is con-
T N(O)V _; & N0V _; ] Jrgzqz' strained through the self-consistent Hartree condition and
pair pair = 51 (21  thus one may deduce the condensate weight, or supercon-
ducting order parameteX,_q(T).

AZ

Equation(8) leads to another constraint dn which yields

. B. Behavior near T=0 where A(T) is no longer small
T-T _

T2
= T* ~ Mpair

c

AZ

) (22) A useful observation can be made at this time. We have
just shown that in the Hartree theoty(T) assumes the BCS
value in the vicinity of, but below] .. One expects on very
general grounds that sufficiently far away from, pair
“fluctuation” effects are irrelevant and that the system is
described by strict BCS theorfin this regimeA(T) is no
longer a small parametg¢rThus we may infer that every-

wherec=b,/[N(0)V]. Differentiating both the above equa-
tions with respect tad one obtains the following expression

for dpupai, /dT:

dipair where belowT,
aT A(T)=AgedT), T=T, (28
A_Z_ T so that the excitation gap is given by the BCS vafi/hat
3 T T is different from strict BCS theory, however, is that
T T 1 T A(T.)#0. (29)

— > — +—

2 N(O)V ( — . 242\2 C
N(O)Vupair 470 OV Fpair t £10°) This is the sole effect of pair fluctuations beldvy. Never-

(23)  theless it has important consequences, because it reflects the
presence of noncondensed bosons belgwwhich, in turn,

The numerator of E(23) is negative in the vicinity ofl ., mirror their normal-state counterparts

sincecA?/T?<T/T*. At T, the first term in the denomina-
tor diverges (IV up,, is @ finite number in the thermody-
namic limit), and as also found elsewhérempai,/dT

=0 (T=T.). Since ﬁpair cannot be positivdthat would s :

/ ) : ) ) gas condition at all temperatures beldw. This follows
r_nak_e the rlg.ht-hand side of E(p) negativg, and its der'v‘_} from the analysis in Appendix B in which it is shown that the
tive is negative or zero, we conclude that,, must remain  BCS gap equation is associated with a divergence offthe
zero in the vicinity of, but below];, where the GL descrip-  matrix defined in Eq(12), at Q=0 for all temperatures be-

C. T-matrix scheme belowT .

We now show that Eq28) is connected to the ideal Bose

tion is applicable: low T,. Thust,/(0)=0 implies
Hpair(T)=0, T=T, . (24) Ppai(T)=0, T<Te. (30
This implies, following Eq.(8), In order to satisfy this gap equation, together with an inde-
pendent constraint on the number of finite momentum pairs,
€ NV one must incorporate a broken symmetry,.# 0, which we
A%(T)=— b ? (25 now reformulate within oul-matrix theory. BelowT .
0
This resu[t was previously obtained in Ref. 11. Itis impo'rtant S(K)= 2 t(Q)Gy(Q— K)(Pﬁ_q/z (31)
because it shows that when the system readheabe exci- Q

tation gapA(T) assumes the BCS or mean-field value.
We notice strong analogies with Bose-Einstein condens
tion (BEC) in an ideal Bose gas. Her¥? plays the role oN,

can be decomposed into two contributions: the “pseudogap”
%nd superconducting components via

the total number of bosons, which beloly contains two g
components, one associated with the condensjte, and thg(Q) = T7gx(Q) Q#0 (32
the other with the noncondensed patféio. The latter are
like the excited states of the BEC system. We write A2,
R - ted Q=== 3(Q), (33
—=2g=0 q#0-
It follows from Egs.(6), (26), and(24) that t=tpgttsc. (34
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FIG. 1. Schematic plot of the full excitation gap and order
parameter . vs reduced temperatui@T* for the weak-coupling
case.

By defining

Aﬁgs—g tog(Q) (35)
and using the divergence ofQ) at Q=0 to evaluate Eq.
(31), we retrieve the BCS-like self-energy

S(K)~—Go(—K)A2p? (36)

with
AZ=AZ+AZ. (37)
For smallA(T,) andT~T,., Egs.(30), (35), and (37) are

manifestly equivalent to their GL counterpartgith wpqi
corresponding tQupair, ™ Age 10 Ag—g and A pg 10 Ago);
they give a completedescription of the system by determin-
ing the full excitation gap\, order parameteA., and the
amplitude of propagating paifghe pseudogapA .

IV. EXTENDED HARTREE APPROXIMATION:
ARBITRARILY STRONG COUPLING ¢

PHYSICAL REVIEW B 68, 174517 (2003
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FIG. 2. Schematic plot of the full excitation gayp and order
parameted . vs reduced temperatuf@T* for the strong-coupling
case.

tant additional constraint that needs to be appended on the
fermionic chemical potentiglk.

The resulting equations greatly simplify at and beldw
because of the vanishing of the pair chemical potential. We
summarize the above discussion by presenting expressions
(appropriate to the superconducting stdfer the gap and
chemical potential,

1-2f(E,)

-1 2_
+; 2, ¢k 0, (39

n=2§k‘, [F(EQ) +v{1—2f(Ep)}]. (39)
The former follows from the vanishing d);gl(O) in Eq.(32)
and the latter froon=22G(K). The quantityv, is the
coherence factov2=3(1—€/E,) with e,=k?/(2m)—pu
andE, is the fermionic excitation energy which depends on
the magnitude of the superconducting order paraméter
and the pseudogap energy scalg;:

Ev=Ver+A%(k),

(40)

We have demonstrated above that there is a simplwhere A%(k)=Aj (k)+AZ(k)=A%pf. The important

T-matrix scheme involving the pair susceptibilityc Gg)

quantity A ,4(T) here is deduced following E¢35).

which is equivalent to Hartree approximated GL theory both At @ physical level the parameter that should be a}ssoci-
above and beloW . (Moreover, there is a natural extension ated with strong or weak coupling ®*/T;. However,T* is
down toT=0.) This equivalence has been proven providedrequently difficult to quantify. An alternative parameter for

we restrict ourselves to small(T,.), where GL approaches
are applicabldsee Fig. L

There is no reason, however, that tihanatrix scheme
cannot be considered for arbitrary coupling constgnor
equivalently largeA(T.) where conventional GL theory is

no longer appropriate. In this regime the separation between
T* andT,. can be extremely large. In this way, a pseudogap
in the fermionic spectrum occurs at a temperature much

characterizing the strength of the coupling i&
=A(T.)/A(T=0). This is more readily accessed experi-
mentally. It should be seen from Fig. 1 that the BCS limit

1

S
R
higher than the Bose condensation temperaliyrésee Fig. §0‘5 . (,3,4 :
2). As in conventional GL theory, thipseudogap reflects -=- 0=0.6
bosonic degrees of freedo®nce bosons are metastable it e
takes a finite excitation energy to create fermions from them. o} o 1

All the appropriateT-matrix equations have been pre-
sented abovd.See Eqs(10) and (32)—(37).] Note that the
only technical difference between the cases of weak and FiG. 3. Implications of the ideal Bose condensation condition
strong coupling is in the details of the expression for the (u,,,=0, whenT<T,) for the excitation gaps. Each of the curves
matrix itself (see Appendix B There is, however, an impor- corresponds to different coupling constant strengths.

/T,

174517-5



STAJIC, IYENGAR, CHEN, AND LEVIN PHYSICAL REVIEW B68, 174517 (2003

corresponds ta\ (T.)/A(0)~0, whereagfollowing Fig. 2 will be discussed in more detail below. In other instances the
in the strong-coupling regimaA(T.)/A(0)~1. Figure 3 in-  bosonic contributions are singulagr nearly so, in the vicin-
dicates how the temperature dependence of the gap vari@dy of T, and TDGL calculations are appropriate fog<T
with the strength of the coupling, or alternatively with <T*, as well as folT<T,. In the remainder of this section
This is an important plot because it epitomizes, perhapsye focus only on the bosonic terms.

more than any other how dramatic are the differences from

strict BCS theory. The challenge, then, is to accommodate B. TDGL above and belowT,

the results in this figure into transport and other calculations i ) i

within the superconducting phase. We thus turn to dynamical A\t @ microscopic level, one can expand thenatrix for
effects associated with noncondensed bosons. noncondensed pairs at smali

B _ag q°
V. EFFECTIVE TDGL THEORY FOR STRONG- tod(a,0)=a 1+i N Q= 507+ Kpai
0

2h)

(41)

In this section we investigate the applicability of an effec-" order to pe conS|§tent with the "”e"’?r dynamics of TDGL,
e quadratic terms if) are neglected in what follows. The

tive time-dependent Ginzburg-Landau theory as a basis f fici . . Td d ithouah
characterizing thelynamicsof our excitation-gap or pairing coe _|_C|ents in Eq(41) are in general depen ent, although,
significantly belowT*, the most important temperature de-

fluctuations. This discussion is relevant to transport calculaz ) ) . o
tions associated with bosonic degrees of freedom. Quite gefR€Ndence is associated with,;;, which is zero a;( and be-
erally, we may view TDGL as a generic equation of motion/OW Tc and negative abové.. The temperaturd™ corre-
for describing bosons interacting with a reservoir of fermi-SPONds to the onset of a resonant structure inTthsatrix.
onic pairs. This equation of motion can be associated with NiS Onset temperature is reliably computed without includ-
the long wavelength, low-frequency behavior of the pairlnd Pseudogap effects—thus, at the Gaussian approximation
propagator off matrix, and it has a validity both above and level. Resonance effeé'ﬂs(reflecu'nglth? |n|t|§1I formqtlon of
below T,, as long as bosonic degrees of freedom are relanetastable palisapter via the rafucaolao', which (at flxng
tively stable. nearT*) can be mcregsed by increasing the coupling con-
In the presence of a pseudogap, the situation is Compnsta!ntg. The larger is this parame_ter the more pronpunced are
cated by the fact that the order parameter is generally differPair resonances. Stated alternatively, as the coupling constant
ent from the excitation gap. This is illustrated clearly in Figs.d increases the propagating componaftoecomes increas-
1 and 2. Thus, beloW,, one has to take care to distinguish ingly more important than the diffusive teray,. Indeed,
between the fluctuations in each of the two channels. Byimilar observations were made by Randéria.
contrast, abovd ., bosonic degrees of freedom are uniquely We now proceed to the more detailed analysis of the co-
associated with fluctuations in the fermionic excitation gap efficient ag, slightly above and at all below T,. Well
Order-parameter fluctuations in the presence of a finite\gap aboveT, (but belowT*) more detailed numerical calcula-
at T, have been addressed elsewl@rét. is conceptually tions are required®?® and these demonstrate tha§ in-
straightforward, but difficult to implement. Such fluctuations creases witf as pseudogap effects diminish. At our leading-
also alter critical exponents within a generally narrow “criti- order approximation as in Eq36), we do not distinguish
cal fluctuation” regime. between lifetimes associated with the condensed and non-
We will not consider these order parameter fluctuationsondensed bosons. For the purposes of comptirand the
here, but rather presume thi{, is spatially uniform, as in a various energy gaps beloW., this has been shown to be a
mean-field theoretic approach. The bosons of interest to ugasonable approximatiGAZ but it clearly misses important
are noncondensed pairs which in turn lead to fluctuations iphysics associated with the onset of true phase cohefénce.
the fermionic excitation gap. A variation in the number of In this approximation the finite momentum pairs are ex-
pairs leads to a variation in the excitation gap simply  tremely long-lived[see Eqs(B1) and (D1)]. Consequently,
because one has to pull apart the constituents of the pairs tg is zero. Formally, this result comes from the fact that the
create fermions. Moreover, our mean-field the@gsociated imaginary part of the pair susceptibilify(0,Q) has a higher
with a BCS-like ground statg provides a considerable sim- power than linear dependence €n If, instead we introduce
plification, because pairing fluctuation bosons are essentialljas in Appendix D a finite lifetime to distinguish the contri-

free; they interact with fermions but not directly with each pytions from condensed and noncondensed bosons
other. Once there are boson-boson interacti@msyond-

mean-field theory then necessarily there is important cou- A2 @2 Aggqﬂﬁ
pling to order-parameter fluctuations. 2 (K)=
Fermionic degrees of freedom also contribute to transport

and thermodynamics, but there is no simple phenomenologye find a nonvanishirf§ TDGL coefficientag aboveT,.
(or counterpart of TDG) for addressing these terms. When

A. Overview

—, (42
wte wotetly

the boson contributions to transport are snisdly, as in the N(0)y
thermal conductivity, the fermionic terms cannot be ne- ag=—2 (43
glected, and these have to be computed diagrammatically, as Abg
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5 - T - T - ciated with TDGL theory to describe bosonic transport at

- u= 1?80 1 temperatures below*, not just those limited to the imme-
4 —_————u=- -

diate vicinity of Bose condensation,.TThis provides some
microscopic support for a recent phenomenological
approack® which addresses Nernst and other-normal state
transport coefficients in underdoped cuprates.

VI. GENERALIZED APPROACH TO TRANSPORT: T-
MATRIX THEORY BELOW T,

We turn now to transport properties beldw, beginning
with the superfluid density. It should be clear from Figs. 1
and 2 that the order parameter and the excitation gap are to

or / T be distinguished in the superconducting state. We can thus
< [ rd //" say that the sam@&, as calculated in Sec. Il via the self-

4 / //’//” T consistency conditions at th@xtendegl Hartree-GL level
r ,;:3’/ . will show up, for example, img(T). In particular the super-

2 7 ;,;;;’ . fluid density must necessarily couple to the pair fluctuations
L . in the superconducting state in such a fashion hgT)

0 : L : I : reflects the superconducting order parameter, rather than the
0 0.05 " 0.1 0.15 fermionic excitation gap. This coupling of pair fluctuations

to ps(T) can be contrasted with the way in which collective

FIG. 4. TDGL coefficients), andaj, vs impurity concentration ~ (Phas¢ mode contributions enter intp (T) at the BCS
n; , for several values of scattering strengtfom the unitary to the ~ level. These terms are only required to preserve general
Born limit, in a self-consistent-matrix treatmentRef. 25, where ~ gauge invariance and these bosons do not affgathen it is
the nonmagnetis-wave scattering potential is assumed as given bycomputed in the transverse gauge. The pair fluctuations we
u(x) =ud(x). discuss here are necessary for a consistent calculation of the

superfluid density, even in the transverse gauge.
In this section we decompose the transport contributions

Below T, however, the existence of a condensate leadfto two types of excitations of the condensate: fermionic
to ag=0, even for the more general self-energy of E42).  and bosonic. It is well knowhthat bosonic contributions to
These arguments are presented in Appendix D. However, theansport coefficients in théess self-consistentGaussian-
presence of even a small amount of disorder is sufficient tdfDGL theory of pairing fluctuations are associated with
restore a linear in frequency imaginary term in the TDGLAslamazov-Larkin diagrams. The lowest-orddrmatrix
expansion of th& matrix. These observations were made bytheory introduces additional diagrams called the “Maki-
Chen and Schrieffé? In Fig. 4, we present a figure from Thompson” and “density-of-states” contributions. These lat-
their work which illustrates how the frequency-dependenter two may be viewed afermionic contributions.
contributions to thel matrix evolve with impurity concen- Given the self-energy and form of self-consistdnina-
tration, for different scattering strengths. trix, Ward identities can be used to characterize the fermionic

In this way one establishes an effective TDGL descriptionand bosonic contributions to transport, at the extended Har-
for the noncondensed boson dynamics both above and belomee level. Again, Aslamazov-Larkifinterpreted as associ-
T.. It should be stressed, however, that the character of thisted with noncondensed bospramd Maki-Thompson dia-
theory changes on either side Bf. grams(interpreted as associated with fermionic excitatjons

The observation that the pairs live very much longer tharare present, but both contain bare as well as dressed Green’s
anticipated by, say, Gaussian level calculations is a consdunctions. The fact that the combinati@G, appears plays
quence of the fermionic pseudog&g In this way, the dif- an important role throughout our discussion. This pair sus-
fusive componenti.e., the parametesg) remains small for  ceptibility is related to the usual Gor’kdv function.
an extended range of temperatures abdye and becomes Because of the form of the pair susceptibility and the fact
even smallerimpurity limited) below T.. This reflects the that belowT., wupai=0, we show below that the fermionic
fact that as the fermions acquire a larger gap, the bosons liierms combine to yield the usual BCS contributions to trans-
longer and the two degrees of freedom become progressivefort, which now depend on the full gap, as distinct from
more distinct. These same effects are underlined by our eathe order parameteh,.. That the fermionic contributions
lier observation thaT ., as distinguished from*, must be conspire to be of the BCS form may seem natural at one
computed by including the feedback effects of the fermionidevel, but on another level this is highly nontrivial since at
pseudogap on the bosonic propagator. This is precisely rerery strong couplingd is essentiallyT independent below
flected in Eqs(38) and(39) which, together with Eq(37), T., as can be seen from Fig. 3. Thus, the fermionic contri-
must be solved to determinE.. Because of the possibility butions to transport are nearlyindependent, in striking con-
of a large separation betwedrf and T, (asg is progres- trast to what is found in the BCS or weak-coupling limit. To
sively increasedone may extend the simple dynamics asso-demonstrate how the bosonic and fermionic contributions en-
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g pIpe We consider the in-plane penetration depth which is ex-
________ pressed in terms of the locdbtatio electromagnetic re-

9y Y = pg + t * sponse kerneK (0) in linear-response theofy,

AL2=KXX<0)=(%) —Py0), (46)

XX

whereK is defined by

3,(Q)= PWAV<Q>—(3) A(Q)=—K,(QALQ),

m ©
(47)
and the current-current correlation function
FIG. 5. (a) Self-energy contributions anh) response diagrams
for the vertex correction correspondingXg,. Heavy lines are for B Qs )
dressed, while light lines are for bare Green's functions. Wavy lines Pu(Q)= o dre™n’(j . (a,7)],(—a,0)
indicatet .
— _ EM
ter, we begin with a formulation of the superfluid density in - 2; A (KK+Q)G(K+Q)N,
the presence of general self-energy effects.
X (K+Q,K)G(K). (48
A. Superfluid density: General formalism in transverse gauge Here the bare vertex is given by
The electromagnetic response in our extended Hartree 1
theory is constructed from the two additive contributions to _v _ 4
g ; MK, K+Q)=V, =—|k+ 5], 49
the self-energy shown in Fig(&. The superconducting self- ( Q)= Weiraz m 2 49

energy . contains an anomalous reversal of the ferr‘n'onwhere, for simplicity, we have used the dispersion for jellium

line due to the cregﬂon of a conden;ed pair. Moreover, n the last step, although the generalization to the lattice is
contrast to conventional fluctuation diagrams, the quantltystraightforward. The electromagnetic vertex can be written in

tng d_epends onone fuI_I and one barg Green’s function. Quferms of the corrections coming from the two self-energy
aim is to derive a consistent formulation of electrodynamics

using a machinery that includes self-energy effétg. In components as

contrast to, say, the usual treatment of superconducting state AEM= )+ SApgt SAsc, (50)
generalized Ward identities at the BCS level, the matrix )

Green’s function(Nambu-Gor’koy approach is not appro- where 5A, is the pseudogap term.

priate here since,, does not have a counterpart in the For illustrative purposes we specialize to the casel
anomalous channel. Indeed, the Nambu-Gor'kov schemE®S Occurs inswave pairing in this section. The general,
would seem to be problematic at the outset, since it is nof* 1 case is discussed in Appendix C. We introduce the
clear whether to associate or A, with the “F” function. ~ SUPerconducting vertex contribution given by

The choice of our particular pair susceptibilitgimply re- )

lated toF without the gap prefactpiis a way of circumvent- OAsdK+Q,K)=A5Bo(~K=Q)Go( —KIMK,KFQ).

) ) (51
ing this problem.
We define the superfluid density in terms of the mag- At the Q—0 limit, it satisfies
netic London penetration depiy as
9%5(K)
— 8A (K, K)=——= (52
2 ak
n 2= toC s (44)
- m This equation should be contrasted with the T, Ward
. . o _ identity
where uq is the magnetic permittivity. For convenience, we
will set up=e=c=1. Note on a latticen/m should be re- 9% pg(K)
placed by SApg(K K)=—2 — (53
N P The difference in sign between Ed$2) and (593) is funda-
<_) =2> Ck e (w=xY,2), (45  mental and arises from the anomalous nature othedia-
m/,, K dkudk, gram. Indeed, Eq(53) is equivalent to the statement that

aboveT, the paramagnetic and diamagnetic current contri-
whereny is the fermion density distribution in momentum butions to theQ=0 response precisely cancel. This cancel-
space. For the quasi-two-dimensidi2a)) square lattice, the lation appears in the superfluid density calculation presented
in-plane mass tensor is diagonal, amdrf),,= (n/m),, . in the following section. By contrast E¢52) expresses the

174517-8



PSEUDOGAP STATE IN SUPERCONDUCTORS . PHYSICAL REVIEW B 68, 174517 (2003

failure of this cancellation for the superconducting compo-contribution associated with the pseudogap self-energy. Al-
nent, which is naturally associated with a Meissner effect. though the derivation becomes more complicated for general
The vertex 6A,y may be decomposed into Maki- ¢, Eq. (53 is obtained for both the superconducting and
Thompson(MT) and two types of Aslamazov-Larkin (AL.  normal states.
AL,) diagrams, whose contribution to the response is shown
here in Fig. %b). We write B. Superfluid density: T-matrix approximation
SApg=SAyT+ OAG + 6AL (A). (54) The final expression for the superfluid density is obtained

i i ) _ by rewriting Eq.(45) by integration by parts,
Using conventional diagrammatic rules one can see that the

MT term has the same sign reversal as the anomalous super- [ n D
conducting diagram. Here, however, the pairs in question are 5) =2; Tk Ik G(K)
noncondensed and their internal dynamias t,q as distin- ap a""B
guished.fromt_sc) r_equires additional AL_ and AL, terms as de, IG(K)
well, which will ultimately be responsible for the absence of = —22 ok
a Meissner contribution from this normal-state self-energy K e B
effect. . . . 2 Je€y [ ey ﬁng 9Zsc
Note that the AL diagram is specific to the extended =-2> G (K)W W+T+ ik
Hartree scheme, in which the field couples to the fall K a 0B B B
appearing in thd matrix through a verteX. It is important (62
to distinguish the vertexA from the full electromagnetic . .
(EM) vertex of Eq.(50). In particular, we write Note here the surface term vanishes in all cases.
By inserting Eqs.(62) and (48) in Eq. (46) one can see
A=N+ A g~ A, (55  that the pseudogap contributionrig/m drops out by virtue

where the sign change of the superconducting testative g;Eq. (61). The in-plane superfluid is isotropic and is given

to AEM) is a direct reflection of the sign in E¢2).

We now show that fotp=1 there is a precise cancellation n Je 9% (K)
between the MT and AL pseudogap diagrams &=0. —==2> GZ(K)—k SN s(K,K)y— =
Analogous results foko#1 are presented in Appendix C. m K Ky Ky
This cancellation follows directly from the Ward identity

(63

Equation(63) can be readily evaluated using the super-
Q.)\(K,K+Q)=Ggl(K)—Ggl(K+Q), (56) conducting vertex and the superconducting self-energy
So(K)=—A2Go(—K)e? associated with ou6 Gy-based
T-matrix approach. In addition, we introduce an approxima-

Q-[SAL (K,K+Q)+ A yr(K.K+Q)]=0  (57) tion in our evaluation of5 via Eq. (36), to find
AL ! 1

which implies

so that A% (K,K)=—8Ayur(K,K) is obtained exactly ne A2 [1+42f(E)
from theQ—0 limit. 5222 = | g ()
L . k E k
Similarly, it can be shown that k
— — 2 9 2 J 2
Q-AKK+Q) =G {K)-G Y{K+Q). (59 v %) @E_%a_;k£ _ (64)
The above result can be used to infer a relation analogous to X .
Eq. (57) for the AL, diagram, leading to This result includes the general factor for thek depen-
dence of the gap and order parameter, whereas it has been
OApy(K,K) == 5Au1(K,K), (59 neglected above in Eqg¢51)—(61), where it substantially

which expresses this pseudogap contribution to the vertekomplicates the analysis. _
entirely in terms of the Maki-Thompson diagram shown in  Note that in the absence of a pseudogdag., at weak
Fig. 5(b). It is evident thatsAyt is simply the pseudogap COUPIiNG, Asc=A. Then Eq.(64) is just the usual BCS for-

counterpart ofsA., satisfying mula. More generally, we can define a relationship
92 pg(K) ng\ A2 [ngBCs
—6AMT(K:K)_T (60) E):F(E , (65)
Therefore, one observes that forTe where (15/m)BCSis just (ng/m) with the overall prefactor
I3 pg(K) A2, replaced with A? in Eqg. (64). Obviously, in the
SApg(KK) = — 1 — (61)  pseudogap phasen{/m)EB¢Sdoes not vanish &k . That the

results are so similar to their BCS counterparts is due to our
which establishes that E¢53) applies to the superconduct- Hartree treatment of pairing fluctuations.
ing phase as well. As expected, there is no direct Meissner Finally, from Egs.(37) and(65) we may write
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ns) B
=
Here the first term represents the contributiomgdrom the =A?Go(—K—Q)A(K+Q,K)Go(—K). (73
usual fermions, albeit with an unusuildependence of the

gap (see Fig. 3. The second term indicates thag is addi- ~ This term, combined with the density-of-states contribution
tionally depressed by bosonic pair excitations which ensuréom X, indicates that the fermionic contributions to general
that ng vanishes prematurely a,, rather than af*. transport coefficients are to be calculated within a BCS

Finally, from Eq.(53) we can infer that the self-energy framework, but with the full gap\, which is to be distin-
approximation of Eq.(36) implies an approximation on guished from the order parameter. Though these contribu-
SA,,, So that tions to transport are formally similar to BCS theory, thEir

dependence may differ considerably due to the weale-
SAwT(K,K)=~A2 Go(—K)Go(—K)A(K,K). (67) ~ Pendence of in the strong pseudogap regime. _
To characterize the direct contribution from bosonic de-

We build on this internal consistency argument in what fol-grees of freedom to transport, which are associated with AL

Alzjg) (ns) BCS 5Afermi0n4K.K+Q)

s (66) B
A m =0AnT(K,K+Q)+ A (K, K+ Q)

pg:

lows away fromQ=0. diagrams, we must treat their full dynamics. We define
C. Q#0 electrodynamics SAposond K, K+ Q)= EA}\L(K,K +Q)+ 5AiL( K,K+Q)
(74)

The realQ#0 part of the in-plane optical conductivity
can be expressed as and turn now to the bosonic contribution to conductivity.
a()=0"mP,(iQ,—Q+i0"), (69
D. TDGL approach to bosonic transport
which is related to the superfluid density through freim

ule We have just seen that to a good approximation the con-

tributions to the EM response of diagrams other than the AL
and AL, terms enter as in BCS theory but with the full gap
Ns E - _(n A. Equation(66) allows us to separate out the BCS contri-
+ o(Q)dQ . (69 . : BCS it
m  mJo m bution with full gap, called iGs/m)=~>, from the additional
“bosonic” contribution. The BCS terms also satisfy a sum

Just as for the superfluid density, the optical conductivity'ule relating the ac conductivity and superfluid density,
involves the same set of Maki-Thompson and Aslamazovanalogous to Eq69),
Larkin diagrams. In this section we will regroup terms so as

XX

to identify explicit fermionic and bosonic contributions, Ng BCS 9o rw _ n
— + —f g'ermiony 0) dQ=|—| . (75
EM m m™Jo m XX

A=Y=+ 5Afermions+ 5Abosons- (70)
Similarly, it follows that the optical conductivity contains Using these sum rules along with E¢€6) and Eq.(71), we
two contributions, can deduce that the integrated conductivity of the bosons is

well approximated by

O_(Q):O_fermionS(Q)_’_o.bosoan)’ (71)

_ 2 (= A2 (ng\BCS
where ¢'¢"™°"S comes from theh+ SAfermions POrtion of —f dQ gPosong (), T)= —ng(—s) (T). (76
the vertex. mJo Ac\m

It is not unreasonable to take E@7) a step further and

apply it to general, so that(below T.) The bosons make a maximum contributionTat. At this

temperature, bosons can account for as much as 90% of the
~A?2 —K— — spectral weight in a strongly pseudogapped superconductor
P KF Q)= ApgGol ~K=QIGof K))\(K+Q,I8.2) with T*/T.=10, while their contribution vanishes in the
weak-coupling limitT* —T.. The boson weight vanishes at
In effect what this approximation is saying is that for fermi- T=0 at all couplings as a consequence of the condensation
onic degrees of freedom the bosons enter primarily as anf all bosonic pairs. This pairing fluctuation bosonic contri-
excitation-gap contribution. This approximation is justified bution is not limited to a narrow region nedg, but extends
by the same reasoning that leads to &), using the diver-  well into the superconducting state.
gence oft,4(Q) at Q=0. We define the bosonic responBg,s.,as the contribution
From Eq.(72) and Eq.(52) it follows that the pseudogap to P given by 8A,sons These terms each involve a pair of
and superconducting condensate terms add in a natural waymatrices, and to leading order in frequenBy,s,,may be
to introduce the full excitation gaj: written as
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away from the Bose condensation temperature. The simplest

Phosod Q)=—2> [3A; (K,K+Q) physical picture that allows for an exactly solvable conduc-
: tivity in the presence of quantum dissipation assumes that the
+6A% (K,K+Q)]G(K+Q) bosons interact with a reservoir kfcalized® fermion pairs
(treated as having ideal gas Bose-Einstein statjstithis
X NMK+Q,K)G(K) gives rise to a boson self-enery () without introducing
vertex corrections to the electromagnetic response. Such a
~ > AP, P)tyg(P+Q)A(P,P)tyy(P). model yield$® an ac conductivity given by
P

2

(77) ey (2
o W)=5(°2 | 5

Here A, is the vertex fort,, approximated as

a/ dE. ~ b(E)—b(E+Q)
AP PI~27p, (78) < | A ERmE S

where we have used tllematrix expansion of Eq41). The
quantity A,=zA,(P,P) wherez=1 in the normal stafeand  Hereb(E) is the Bose statistical function arkl=—2 ImB
is modified in the superconducting state. Reasonable estis the boson spectral function. The boson propagator is given
mates ofz(T) below T, may be obtained from Ed69). by B(q,Q) 1=Q—g%2M* + u* —35(Q). The boson ver-

If we presume Eq(77) holds for a range of low frequen- tex here is the velocitpy/M*. The boson self-energy arises
cies we may infer a simple expression for ttie-plang ac  from scattering processes into and out of the thermal reser-

(80)

conductivity vair.
X To compare with the pairing theory, we note that while the
1 p boson self-energy in the above model arises from scattering
b _ 12 2 X
oM = 5289"(28) Ep: (M) into the reservoir, the self-energy of bosons in the pairing

model (whose imaginary part we may regard ast[;rjn)
dE~ ~ b(E)—b(E+Q) arises from pair dissociation and recombination processes.
X f ZA(p’E)A(p'E“LQ) ) ' We note, however, that fundamental differences between fer-
mion pairs and true bosons remain in the analytic structure of

79 the respectivel matrix and boson propagat@. For true

where we now useTA(p,Q)z—ZImtpg(p,QJriO) for the bosqns, the.real and imagingry parts_S:g obey qumers—
bosonic spectral function. More generally, at higher frequen/<ronig relations and vanish in the high-energy i|m|t.*The
cies the internal fermionic structure via tfiedependence of propage;torB then reduces to its bare forn(}l(—q /%M
the boson vertex must be included. This structure results #*) - The T matrix has the structure, =g~ "+x
from the individual coupling of radiation to each constituentWhere the pairing susceptibility satisfies the same causality
fermion in the pair. However, it is reasonable to assume thagonstraints. The vanishing of in the high-energy limit
the compositeness of the pairs will not be resolved by radialeaves the asymptotg,—g and theT matrix loses all en-
tion of wavelengths larger than the pair size or frequencie§r9y and momentum structure due to the dissociation of all
below the pair-breaking energy. Forq=0 andQ <A, then pairs. However, this difference is not expected to be relevant
we argue the bosonic vertex functions are well approximatedPr conductivity calculations done below the pair-breaking
by the velocityp/M (or a constant multiple therepfindeed, ~ €nergy scale.
for calculations of the ac conductivity, Varlamov and We now consider the evaluation of E(/9) using the
co-workef® have argued that an analogous approximatiorexpandedr matrix of Eq.(41), neglecting the2? term. Dis-
(for Gaussian fluctuationss valid nearT, where the pole Sipation ino at nonzero frequencies requira§+0, which
structure of thel matrix causes its frequency dependence tddelow T, requires impurity scattering, as discussed in Ap-
dominate that of the Green’s functions at the vertices. At thgpendix D. Here, we focus on the behavior of the conductivity
extended Hartree level this pole structure is present at angs a function of the ratia=ag/a;, which in turn enters
belowT, due to the vanishing gi,;, . Relative to Gaussian 1'(q,{2) in the expanded-matrix approximatiorfEq. (B2)]
theory, theQ dependence of the boson vertices will be fur-as»{). We note here that in the TDGL approach for Gauss-
ther suppressed fofl<<A through the appearance of the ian fluctuations nedf, this ratio is typically largéof order
gapped fermion propagat@ in all vertex subdiagrams. (E/T.)] due to the fact thaa/ is a measure of particle-hole
The result derived above for the bosonic contribution toasymmetry. As shown earlier in Fig. 4, tends in the ex-
the ac conductivity is essentially the same as would obtainended Hartree theory to increase rapidly from zero, becom-
from true bosons, except for the constant fa(z:tgfr. To see ing of order unity with the introduction of a modest concen-
this we review the ac conductivity in a system of free bosondration of impurities.
of chargee*, massM*, and chemical potentigt*, in con- TDGL calculations are typically done in the classical re-
tact with a reservoir of fermion pairs. This calculatibrep-  gime Q<T, which allows the simplificatior b(E)—b(E
resents a generalization of standard TDGL-like schemestQ)]/Q—T/[E(E+Q)] in Eg. (79). The conductivity be-
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low T, is then found to have the characteristz >  temperature-independent gay(T).

dependendé for all values ofv: At this extended Hartree level, fluctuations in the order
parameterA ;. and in the excitation gap represent distinct
boso 2 2M\ Y2[ 1+ 12\ 12 channels for bosonic effects in the superconducting state. It
g rm)*gzez-r a (81D is more convenient to decompose these into “condensed”

and “noncondensed” bosons. The latter are the focus of the
To compute the conductivity in the superconducting state upresent paper, and we refer to these as “pair fluctuations” as
to Q~A, however, requires the inclusion of quantum statis-distinct from fluctuations of the order parameter. Order-
tical factors whenA>T_, in which case thev parameter parameter fluctuations were discussed in the context of our
affects the frequency dependenceodPs°" While the low- extended Hartree theory in earlier wdtkNoncondensed
frequency limiting behavior i€2 Y2 independent ofv, o  bosons are present above and beldy but absent(like
falls faster thanQ)~*? outside the classical regime before fermionic excitationsat T=0. These long-lived, metastable
crossing over to)'? behavior at higher frequencies. This states, even aboVk, (albeit, belowT*), are associated with
crossover may extend over a large frequency range, dependur extended Hartree treatment that introduces a pseudogap
ing on the value ob, so that generally is characterized by in the fermionic spectrum. This “gap” then inhibits dissocia-
QY2 at low frequencies and a long high-frequency tailtion of the bosons into fermions.
which cannot be integrated to infinity. Since the integrated The dynamics of these noncondensed bosons is reason-
bosonic weight is finite, it is reasonable to expect that thigably described by time-dependent Ginzburg-Landau theory.
expression for the conductivity is cut off above the pair-While the microscopic character of this TDGL changes
breaking scaldat several timesA(0)], where the TDGL abruptly from above to below,, this approach offers a very
formulation is known to break down. powerful techniqué°3for addressing the pair fluctuation
or bosonic contributions to transport. In this paper we have
applied these results to calculations of the ac conductivity.
Vil. CONCLUSIONS One could equally well address the thermal conductivity and
This paper is based on the observation that the BCSve can anticipate some of the ensuing conclusions. When
ground-state wave function has a more general validity. both bosonic and fermionic excitations are preseat, away
By increasing the strength of the attractive interactions, sufrom T=0), we expect that the Wiedemann-Franz law is
perconductivity in this state progressively takes on the charviolated. Because of the associated soft energy scale, bosonic
acter of Bose-Einstein condensation. That the sdme)  contributions to the thermal conductivity are considerably
wave function can apply to a system where pair formationsmaller than their counterparts for the electrical conductivity.
and pair condensation are associated with different energip this way the thermal conductivity in the superconduct-
scales provides support for the notion that there exists ég state should be well approximated by considering only
mean-field theory of a more general nature than that of stridBCS-like contributions, but with the anomalous temperature-
BCS theory. In the more general case the various energies @ependent excitation gap shown in Fig. 3. Moreover, because
the BCS picture are no longer degenerdié#T, and A  the bosonic contributions are unimportantdinwe expect to

#Age. recover the well-known universal restfifor this property.
In this paper we have shown that this generalization ofThis is not necessarily true for the electrical conductivity.
BCS physics is to be found in a treatm&hof pair fluctua- In this paper we have not made reference to specific

tion effects at the Hartree level. This establishes that th@hysical systems where our mean-field theory may have

excitation gapA (T,) is nonzero, or equivalently that there is some applicability. In addition to short coherence length su-

a pseudogap, even in the weak-coupling limit, as was obperconductorsiamong these the high-temperature cupnates

served experimentally many years ag6oing beyond this the present picture may also be releVant’ to fermionic

previous work and into the broken-symmetry phase, a selfsuperfluidity in atomic trap experiments.

consistent analysis leads to the condition that the pair chemi-

cal potentialu,a;, =0 for T<T., and that this is equivalent ACKNOWLEDGMENTS
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able belowT.. This behavior is schematically illustrated in

Figs. 1 and 2. APPENDIX A: T MATRIX FOR SMALL A AT WEAK
Because it exists in conjunction with fermionic degrees of COUPLING

freedom, the ideal Bose character found here supports true o

superconductivity. This is demonstrated here by calculations |f we replace the dressed Green's function in Eif) by

of the superfluid density. More generally, transport propertieshe bare Green’s functioG,, we obtain

contain two types of contributions from both fermionic and

bosonic excitations. At finite temperatures, the fermionic to(q, Q)= 9 - 1 1 '
terms are well approximated by the usual BCS contributions 1+9x0(Q) N(O) e+a|Q,|+ £2g?
to transport but with a highly non-BCS-like, often (A1)
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The self-energy. (K) is then given by

2(K>=§ t(Q)Go(Q—K)@f_ - (A2)

To calculate the pair susceptibility to the first order in self-

energy, we write the dressed Green’s function in @€) as
G=Gy+ G2 Gy, which gives the first-order correction

5X(Q):; Go(Q—K)Go(K)Z(K)Go(K).  (A3)

Sincet(Q) is sharply peaked arourfd=0 we disregard the
momentum dependence 6, in Eqg. (A2), and obtain

3 (P)~—Go( —K)AZgg, (A4)
where
d3q
Azz—f ———t(q,w,=0). A5
(27T)3 (9,0 ) ( )
Putting this back into EqA3) we find
d3q
o1(0) =~ bop?a?=bo/T? [ L t(q,0,-0),
(2m)3
(A6)

where by /T?=3G3(K)G3(—K)@2=N(0)7£(3)/8(wT)?
(this last equality holds only fos-wave pairing. Using the
expression for thd matrix corrected by x(0) via Eq.(12)

1
t = — y A7
(Q N(O) e+a|Q,|+ £5g2— 6x(0)/N(0) (A7)
the self-consistency equation reads
b d3q 1
5X(O):_N(;)TJ 3 2.2 :
(0) (2m)3 e+ E2g%— 65x(0)/N(0)
(A8)

APPENDIX B: T MATRIX FOR ARBITRARY A, BELOW
T. FOR GENERAL COUPLING

From Eq.(36) and Gy(P)=1/(iw,—€,) we find G(P)
=(iwn+ €y)/[(iw)*—E]]. Heree, is the electron normal-
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the (0.Q)=g" 1+ x(q,Q)
q°
=a192+ aé Q_ W+Mpair+irq’9 .

(B2)

The linear contributior(q) is absent due to the inversion
symmetry @« —q) of the system.

In the weak-coupling limit, the ratia//a, is vanishingly
small; when the system has exact particle-hole symmetry
(e.g., a 2D tight-binding band at half-filling with a nearest-
neighbor hopping a; vanishes. In this case the dispersion
determined via

tpg(0,0)=0 (B3)
is linear ing, 4~cq, which shows up in the dispersion,
only in the very weak coupling limdr where there is exact
particle-hole symmetry.

In the absence of particle-hole symmetry,camcreases,
ay/a; increases, thuay() gradually dominates and we find
the important resultﬂq~q2. For any finiteg and arbitrarily
small g, the dispersion is always quadratic, at the lowest
energies.

We are interested in the moderate- and strong-coupling
cases, where we can drop thgQ)? term in Eq.(B2), and
hence we have

r—1

ch)
tpg(q!Q)_ Q_Qq+ﬂpair+irq’()’ (B4)
where
2
q
Qqu (BS)

is quadratic. This defines the effective pair madssBelow
T., we have
Mpair(T)zoa T<T.. (B6)

Using Eq.(B1) this condition can be shown to be equivalent
to Eq. (38), the familiar BCS gap equation.

state dispersion measured with respect to the chemical poaAppPENDIX C: REVISITING THE SUPERFLUID DENSITY

tential u, while E,= \/ezp-i- Achzp. Thus after performing the

Matsubara sum and analytical continuatidd,—Q+i0*,
Eqg. (10) becomes

1-f(Ex) —f(ek—q)
Ek+ 6"(,(:|_S-l_i()Jr
f(E)—flex—q)

- Uk
Ek_Ek_q‘|‘fZ‘f'|0Jr

ug

x(a,Q)=2

k

(Pﬁ—q/Z' (B1)

WITH @#1

The electromagnetic response vertex is given by(EQ).
For a generalp# 1, the superconducting vertex contribution
is given by

SAsdK+Q,K)=AZGo(—K—Q)Go(—K)
XNMK,K+Q)¢r@irq- (CY)

This can be obtained by proper vertex insertion to the super-

In the long wavelength, low-frequency limit one can expandconducting self-energy in Fig.(8&.

the inverseTl matrix as

At the Q—0 limit, it satisfies
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92 (K) 5 ) valid to linear order inQ. Adding these results, the terms
k- OAKK) = A Go( —K) Vi depending on the derivative of cancel, leading to
EﬁAéC(K,K) (CZ) Q5Apg(KyK+):Epg(KJr)_Epg(K) (Cg)
valid to linear order inQ. TakingQ—0, we obtain Eq(61)

The minus sign reflects the fact tha\;. alone does not .
in the text.

satisfy the generalized Ward identity in the transverse gauge, Note that the various vertex terms in the above equations

as a consequence of the Meissner effect. To recover fuIcl:ontain corrections from the derivative gfat Q=0 only in

gauge invariance, the collective mode contribution has to b'ﬁwe spatial components and not in the scalar or temporal

included. Nevertheless, one can define, in the transverse
gauge component.

ABCS= )+ SA” . (C3 APPENDIX D: IMAGINARY PART OF THE INVERSE

s¢ T-MATRIX BOSONIC LIFETIME NEAR T.AND BELOW
This is not the EM vertex of BCS theory, but it automatically In thi dix. for defini . .
satisfies the generalized Ward identity in the BCS case. This nt 'Sh appe_n X, Tor ae m;}teness_, Wf] ass | avelpalr
circumvents the complication of collective modes, which ul-gaﬁo tth:t'(rﬁqkz; 'Zn(;(r)S(zze)l)r,t V(;'f tehrg ('i)n 'Zr%:mg?rar an_g e.EBy
timately make no contribution to the transverse response. (Bll) 8ve obltaingtlhe pr ression inv X using £q.

The vertexdA,g is given by Eq.(54). Now we define the P

full vertex, which is distinct from the EM verteAEM,

an
I, o=— 1—f(E ) —f(er_o) JUPS(E QO
AGGK) = [MF 8A gy SALICKK ), 6.0 a{); {[1-F(E)—f(ex g JUFS(Ext e —q— Q)

SAL(K,K )= — SAed(K,K )~ A2Go( — K) V¢, FLHEO eIk B gt D oicge.
(4 (DY)

where the sign change of the superconducting teetative ~ For small()<T, and settingyj=0 we can expand the Fermi
to AEM) is a direct reflection of the sign in EGC2). The  functions to first order irf}:
temporal component ol is defined similarly, but with no
correction coming from derivatives a@fy .

Invoking the Ward identity for the bare Green'’s function
Gy, Eq. (56), we obtain

ar
Fo,n=—§Q; [f"(Ep)UiS(Ex+ e— Q)
0

+1(E)vEs(E— e+ Q) ]ef
Q- MTpg(KuK+): _[Epg(KJr)_Epg(K)]

=_—0. D2
_; tpg(P)GO(P_K)q.Vk(Pifp/Z ( )

(C5) Here I'(0,Q)) reflects the rate of decay of noncondensed
bosons into a bare and a dressed fermion. & fienctions in
to linear order inQ. Taking Q—0, we obtain the above expression determine the energies of these fermi-
S ons e, andE, to be of order %+ A%¢2)/Q). At tempera-
92 pg(K) 2 tures of interest T<T, and T=T.), away from the nodes
ok MTpg(K,K)JFEP: tog(P)Go(P—K) V@i pi (where g, =0) and forQQ<A this energy is large. The only
appreciable contribution then comes from parts of the Fermi
~ = MT4(K,K) = A2 Go(—K) Vet (C6)  surface near the nodesf angular width of the order of

This is a generalization of E460) to a generalp# 1. dgl?ozli(%lg)]gasdggh(g power than linear ift depen-
” 0~ Y-

The AL; diagram can be similarly evaluated using Eg.

(56). It can also be shown that the generalized Ward identit)fer-rhIS result is improved upon by including the effects of

mion-boson scattering. Quite generally in the absence of
Q-AKK+Q)=G XK)—G YK +Q) 7 impurity scattering one finds that

. . . . 1

holds to linear order ifQ. This allows the evaluation of the al=—— 27 (K. — €)' D3
AL, diagram, with the result o2 2k: eiAtk.—ea)l (e, (b3

where A(k,E)=—2ImG(K,iw,—E+i0") is the fermion
spectral function. Fermion-boson scattering broadens the
=2[3pg(K1) =2 pg(K)] spectral function and\(k,—€,)f’(€y) is generally nonzero
in the normal state for ak, implying thataj#0. One way

+> tpg(P)GO(P_K)q'VKQDE—p/Z (cg)  toimplement this is to introduce an inverse lifetimyeinto
P the expression for the pseudogap self-energy

Q-(AL;+AL,)(K,K,)
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2 2 2 2
AS(:QDk Apg(»Dk
wte wtetiy

2050k
(0’ —EQ*+ 7Y (0= e’
As is evident from Eq.(D5), the quasiparticle peaks are
broadened as a result of a nonzero Thus, aboveTl, the

leading to the following expression for the spectral functionimaginary part of the invers& matrix (or, equivalently, of
A(k,w), aboveT,: the pair susceptibilityis now

2(K)= (D4) Ak, w)=

(D3

1-f(Q— equ)_f(equ)
[(Q_Equ)z_ Eﬁ]2+ '}’2(9_ €k—q

Imy(a,0) =T(6,0) = A, - )zsoﬁwi_qlz- (D6)
€k

Since the quasiparticle peaks are broadened, the boson c@hus we can infer thaaj=0. Nevertheless, a small amount
now decay into states near the Fermi surface not only neasf impurity scattering will restore a nonvanishiag, since
the nodes but everywhere else on the Fermi surf¢@f)) it is likely to produce a nonzera(k,—€,) in Eq. (D3). In
is now linear inQ) and the coefficient of proportionality is thed-wave case, the impurity renormalized imaginary part of

easily found to be the pair susceptibility has the following forfn:
9 yAS f'(e0) ek .
—=Imt™1(0,0)[g_o=— =2 . " 0% )= — do nGR o
o T % Ajeetayie x"(9,Q+i0%) ; 5 M@, KA~ w,q-K)
(D7) ,
X[F(Q=w)=f(w)]ei_gp2, (D11)

The second term in the denominator of the summand in the

above expression can be safely neglected i$ taken to be R i ,
much smaller than\ 4, since the main contribution to the where both In&™ (the spectral function of the full Green's

sum comes from the vicinity of the Fermi surfageheree, funct?on G) andA, (the spect.ral funqtion o.f the bare Green'’s
is small. The only place where this term is not negligible in function Go) are dressed with the impurity self-energy. To
comparison withA% o? is in a small region near the nodes see the order of magnitude of this effect, we make a crude
(angular widthoc yT/kA ). However, this correction can approximation of this formula by assuming that only the full
also be neglected. and pt%érefore ' G is dressed by impurities but n@&, which is equivalent to

9 ' the statement that expressidoD3) with renormalizedA is
valid. We model the impurity self-energy in the Born limit by

y 1 Simp(@)=—is|w| (as is reasonable close to the Fermi sur-
0= 5 , (D8) face in thed-wave casg wheresis a dimensionless constant
4TApg & cosﬁi parametrizing the concentration of scatterers. Assunsing
2T <1 (clean limid, we obtain

which, assuming thaffT<u, after a standard procedure
gives, as expected, a nonzero result

s|e |A2¢?
Ak —q)= -2l oy
, NO)y DY
a0~ A2 (D9) . . . . . . o
Pg which, in conjunction with Eq.(D3) and identifying

. . —sl|e | with y yields an expression identical to E(D7).
Below T howeverA(k, — €) in Eq.(D3) vanishes due to  Using reasoning similar to that leading to EB9), we arrive

the sharpness of the superconducting self-energy, as is easjly the following estimate foa;, in the presence of impurities:
checked by inspecting the expression for the spectral func-

tion below T, following from the self-energy EqD4),
=21 2N(0)ST (D13

ag=2In —.

20] ery(w+ €)? 0 A2

(0F €0 (0~ ER)*+ 9 (0~ g~ Agh) | _ .
(D10 More complete numerical results are shown in Fig. 4.

Ak,w)=
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