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Pseudogap state in superconductors: Extended Hartree approach to time-dependent
Ginzburg-Landau theory
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It is well known that conventional pairing fluctuation theory at the Hartree level leads to a normal-state
pseudogap in the fermionic spectrum. This pseudogap arises from bosonic degrees of freedom which appear at
T* , slightly above the superconducting transition temperatureTc . Our goal is to extend this Hartree approxi-
mated scheme to arrive at a generalized mean-field theory of pseudogapped superconductors for all tempera-
tures T. While an equivalent approach to the pseudogap has been derived elsewhere using a more formal
Green’s function decoupling scheme, in this paper we reinterpret this mean-field theory and BCS theory as
well, and demonstrate how they naturally relate to ideal Bose gas condensation. Here we recast the Hartree
approximated Ginzburg-Landau self-consistent equations in aT-matrix form, from which we infer that the
condition that the pair propagator have zero chemical potential at allT<Tc is equivalent to a statement that the
fermionic excitation gap satisfies the usual BCS gap equation. This recasting makes it possible to consider
arbitrarily strong attractive coupling, where bosonic degrees of freedom appear atT* considerably aboveTc .
The implications for transport both above and belowTc are discussed. BelowTc we find two types of
contributions. Those associated with fermionic excitations have the usual BCS functional form. That they
depend on the magnitude of the excitation gap, nevertheless, leads to rather atypical transport properties in the
strong-coupling limit, where this gap~as distinct from the order parameter! is virtually T independent. In
addition, there are bosonic terms arising from noncondensed pairs whose transport properties are shown here
to be reasonably well described by an effective time-dependent Ginzburg-Landau theory.

DOI: 10.1103/PhysRevB.68.174517 PACS number~s!: 74.20.2z, 74.25.Fy, 74.72.2h
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I. INTRODUCTION

In this paper we address the physics of the pseudo
state on the basis of a beyond-BCS mean-field theory.
approach represents a natural extension to arbitrarily str
coupling constantsg of time-dependent Ginzburg-Landa
~TDGL! theory when the quartic terms are treated at
Hartree approximation level. We also explore the brok
symmetry phase, incorporating the effects of a Hartree
proximation to pairing~or equivalently, excitation-gap! fluc-
tuations forT,Tc in a fashion that is necessarily compatib
with their description aboveTc . A central assumption in ou
work is that the ground state belongs to the generalized B
like theory introduced by Leggett,1 and further analyzed by
Nozieres and Schmitt-Rink2 and others. In this way, one a
rives at a simple reinterpretation of BCS theory as a limit
case of a more general theory of ideal Bose gas conde
tion. In contrast to true Bose systems, here, however, fe
onic degrees of freedom are never absent: the cond
mpair50, for T<Tc is equivalent to the constraint impose
by the BCS gap equation on the excitation gapD(T).

Several key points need to be made. The observation
pseudogap (T.Tc) deriving from Hartree approximate
treatment of ‘‘pairing’’ fluctuations dates back to the ea
1970’s, with the work of Abeles and co-workers,3 Patton,4,5

and Hassing and Wilkins.6 Pairing fluctuations can be alte
natively viewed as fluctuations in the magnitude of the f
mionic excitation gap, that is, ‘‘gap fluctuations.’’ Most im
portantly, at the Hartree level, these are to be distinguis
from order-parameter fluctuations, as will be discussed
0163-1829/2003/68~17!/174517~16!/$20.00 68 1745
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more detail below. Indeed, bosonic degrees of freedom,
sociated with fermion pairs, and the existence of a fermio
excitation gap are two sides of the same coin. The gap
pseudogap in the fermionic excitation spectrum reflects
fact that extra energy is needed to break bosons, or ferm
pairs, apart. When approached from above,Tc is suppressed
~relative to its strict BCS counterpart! by the existence of this
normal-state pseudogap, as a consequence of the lowerin
the fermionic density of states nearEF . When approached
from below, one readily sees that the superfluid density w
not vanish atT* , where the fermionic gap disappears, b
instead at a lower temperatureTc , as a consequence of ad
ditional ~beyond BCS! bosonic excitations of the condensat

In conventional ~i.e., long coherence lengthj) three-
dimensional superconductors, these noncondensed pair
virtually undetectable. However, there are two mechanis
for enhancing their effects: reduced dimensionality, oft
with disorder~see the recent review7 by Larkin and Varla-
mov which addresses Gaussian pair fluctuations! and in-
creased attractive coupling constant,2,8,9associated with shor
j. If by ‘‘the fluctuation regime’’ we mean the temperatu
range where bosonic degrees of freedom are present, th
the second mechanism one is effectively extending this
gime up to T* , which could be as much as an order
magnitude higher thanTc . In the vicinity of Bose condensa
tion there are divergences in various transport properties,
even away fromTc , closer toT* , bosonic contributions may
dominate over their fermionic counterparts, leading to hig
unconventional transport characteristics, as will be outlin
here.
©2003 The American Physical Society17-1
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The Hartree approximation6,10,11 and its T-matrix
extension4,5 are previously well established routes for obta
ing a pseudogap state in homogeneous superconduc3

Throughout this paper we call the latter ‘‘extended Hart
theory.’’ Nevertheless, there is considerable emphasis in
current literature on approaches to the pseudogap base
an alternative phase fluctuation scenario.12 The contrast be-
tween these two schemes should be emphasized. In
former case one is dealing with noncondensed bosons, w
are associated with fluctuations in the fermionicexcitation
gap D(r ,t) ~say, measured relative to the spatially unifor
or mean-field order parameter!. In the latter case, one is dea
ing with fluctuations in the phase of the complexorder pa-
rameterDsc(r ,t). At a beyond-BCS level these two channe
are distinguishable (DÞDsc), but, as in any mean-field
theory, the order parameter is taken to be spatially unifo
By contrast, the phase fluctuation scheme is based on o
parameter fluctuations around the strict BCS stateD
5Dsc). Generally, order-parameter fluctuation approac
are appropriate when the separation between the mean
onset temperatureT* and the actual instability temperatu
Tc is small. If this temperature difference is not small, it
more appropriate to derive an improved mean-field the
first13 and then append fluctuation effects, if they are cal
for. This is the philosophy of the present approach in wh
at a mean-field level, the separation betweenT* andTc can
be arbitrarily tuned via the size of the attractive coupli
constant.

Finally, we emphasize a contrast between the present
proach and previous work by Nozieres and Schmitt-Rin2

and by Randeria.8 Both groups studied the effects of pr
formed pairs or noncondensed bosons, presuming a BCS
ground state with arbitrary attractive couplingg. We will
assume this ground state as well. These other studies
conducted at the level of Gaussian pair fluctuations, so
pseudogap effects were absent in the pair propagator. M
over, an approximate form for the number equation was
sumed as well.14 Essential to the physics we will be discus
ing is a pseudogap in the fermionic spectrum, which help
decouple the bosonic and fermionic degrees of freedom. T
pseudogap leads to relatively long-lived bosons, without
need to invoke unphysically strong coupling. A gap in t
fermionic spectrum inhibits the decay of bosons into ferm
ons, simply because there are very few low-energy fermio
states to decay into. As a consequence, bosonic degre
freedom are evident over a much wider temperature ran
above and belowTc , onceg is beyond the weak-coupling
regime.

In this paper, we make no contact with experiments
high-temperature superconductors. The goal here is to d
onstrate the simple physics, as well as the genesis of
fluctuation approaches, as distinguished from phase fluc
tion schemes. It is useful to emphasize that we are focu
in the present paper on the nature of the superconduct
~below Tc) and its implications aboveTc . While we pre-
sume a generalized BCS ground state~albeit, with arbitraryg
and self-consistent fermionic chemical potential!, other
ground states have been contemplated in the cuprate li
ture which accommodate the physics of the Mott insulato
17451
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varying degrees. The strongest support for the relevanc
our viewpoint ~which effectively sidesteps Mott effects! is
the anomalously short coherence lengthj. This suggests a
breakdown of strict BCS physics, which, at the very lea
needs to be understood and characterized, on its own, i
pendent of Mott effects. To support this breakdown is t
highly non-BCS temperature dependence of
measured15,16 excitation gapD—not so different from that
shown in Fig. 3 below. Although transport calculations a
interpretations of transport data are often based on a B
ground state, rather little attention has been paid in the p
to the anomalous behavior ofD(T) and its implications for
transport. In this paper we address this omission.

II. ABOVE Tc AT WEAK COUPLING

A. Overview of Hartree approximated Ginzburg-
Landau theory

The Ginzburg-Landau~GL! free-energy functional in mo-
mentum space is given by6

F@C#5
N~0!V

b2 (
Q

uCQu2~e1auVnu1j1
2q2!

1
1

2b2 (
Qi

bQ1Q2Q3
CQ1

* CQ2
* CQ3

CQ11Q22Q3
,

~1!

whereCQ are the Fourier components of the order parame
C(r ,t), Q5( iVn ,q), e5(T2T* )/T* , a5p/8T, j1 is the
GL coherence length,T* is the critical temperature whe
feedback effects from the quartic term are neglectedb
51/T (kB is set to 1!, andN(0) is the density of states at th
Fermi level in the normal state. We approximate the qua
term so that only paired terms are included in the last add
of Eq. ~1! leading to

1

2b2 (
123

b123C1* C2* C3C11223

'
1

2b2 S (
1Þ2

b12uC1u2uC2u21(
1

b11uC1u4D .

~2!

That there is no factor of 2 in the first term on the right-ha
side of the above expression reflects the fact that we
Hartree rather than the Hartree-Fock approximation.
found elsewhere,6 bi j 5bQiQj

can be approximated by

b0dV i0
dV j0

whereb05@N(0)V/p2# 7
8 z(3). To further sim-

plify the quartic term, we apply the mean-field approxim
tion, writing uCq0u25^uCq0u2&1duCq0u2 and neglecting in
Eq. ~2! terms of order (duCq0u2)2. This leads to

b0

b2 (
q

S uCq0u22
1

2
^uCq0u2& D(

q8
^uCq80u2&. ~3!

The contribution̂ uCq0u2& is determined self-consistently vi
7-2
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^uCq0u2&5

E DCe2bF[C] uCq0u2

E DCe2bF[C]

~4!

when we replace the quartic term in Eq.~1! by Eq. ~3!. It
follows that

^uCq0u2&5
1

N~0!VT F e1
b0

N~0!V (
q8

^uCq80u2&1j1
2q2G21

.

~5!

If we sum Eq. ~5! over q and identify (q^uCq0u2& with
b2D2, we obtain a self-consistency equation for the ene
‘‘gap’’ ~or pseudogap! D aboveTc

b2D25(
q

1

N~0!VT Fe1
b0

N~0!V
b2D21j1

2q2G21

, ~6!

b2D25(
q

1

N~0!VT

1

2m̄pair~T!1j1
2q2

, ~7!

where

m̄pair~T!52e2
b0

N~0!V
b2D2. ~8!

Note that the critical temperature is renormalized downw
with respect toT* and satisfies

m̄pair~Tc!50. ~9!

B. Introduction to T matrix: TÉTc , small D„Tc…

Equations~7!–~9! are the central equations derived fro
the Hartree approximated GL scheme. They describe how
excitation gapD(T) and the quantitym̄pair behave above
but near Tc . We now rewrite these equations using
T-matrix approach.

A central quantity inT-matrix schemes is the pair susce
tibility. Here we take this function to be of the form9

x~Q!5(
K

G0~Q2K !G~K !wk2q/2
2 , ~10!

whereG0 is the bare Green’s function andG is the full or
dressed Green’s function which depends on the self-en
S(K) given by

S~K !5(
Q

t~Q!G0~Q2K !wk2q/2
2 . ~11!

Here and throughout we use the convention(Q
[T( iVn

(q . In the above expressionswk represents a gen
eralized~for example! s- or d-wave function symmetry fac
tor. While there are two otherT-matrix approaches in the
literature, one2,8 in which x is related toG0G0, and one
which is even more widely used17 in which x is related to
GG, only the GG0 scheme is simply connected to th
Hartree-GL approach.6
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To compare with GL theory we expand these equation
first order in the self-energy correction.18 The T matrix can
be written in terms of the attractive coupling constantg as

t~Q!5
g

11gx0~Q!1gdx~Q!
, ~12!

where

x0~Q!5(
K

G0~Q2K !G0~K !wk2q/2
2 . ~13!

Defining

D252(
Q

t~Q! ~14!

we arrive at~see Appendix A!

S~K !'2G0~2K !D2wk
2 . ~15!

The results of Appendix A can be used to derive a se
consistency condition onD2 in terms of the quantitydx(0)
~first order inS), which satisfies

dx~0!52b0~bD!2, ~16!

implying that

dx~0!52
b0

N~0!TE d3q

~2p!3

1

e1j1
2q22dx~0!/N~0!

,

~17!

which coincides with the condition derived earlier in Eq.~6!.
Finally, defining

m̃pair~T![
1

N~0!t~0!
52e1

dx~0!

N~0!
~18!

we may interpret the vanishing ofm̃pair as the condition that
at T5Tc

m̃pair~Tc!50. ~19!

It follows from Eqs.~16!, ~18!, and~8! that

m̄pair5m̃pair , ~20!

so the above condition forTc is in agreement with that found
earlier@Eq. ~9!# and the effect of a finiteD(Tc) ~self-energy
correction! is a shift downward in the critical temperatur
relative to its value~given byT* ) in the D(Tc)50 limit.

III. BELOW Tc : WEAK COUPLING

A. Hartree approximated GL theory for small D„Tc…, TÉTc

The left-hand side of Eq.~5! may be interpreted as th
number density of bosons of momentumq. Sincem̄pair(Tc)
50, theq50 level becomes macroscopically occupied on
the system enters the superconducting region, atT5Tc . To
7-3



o

-
n

-
-

n

s

and
con-

ve

is

-

s the

e

e
e
-

e-
irs,

ap’’
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support this assertion we investigate the behavior
m̄pair(T) for T'Tc

2 . We separate out theq50 term in Eq.
~6! and write

D25
T

N~0!V

1

2m̄pair

1 (
qÞ0

T

N~0!V

1

2m̄pair1j1
2q2

.

~21!

Equation~8! leads to another constraint onD, which yields

D25
T2

c S 2
T2T*

T*
2m̄pairD , ~22!

wherec5b0 /@N(0)V#. Differentiating both the above equa
tions with respect toT one obtains the following expressio
for dm̄pair /dT:

dm̄pair

dT

5

D2

T
2

T2

cT*

T

N~0!Vm̄pair
2

1 (
qÞ0

T

N~0!V

1

~2m̄pair1j1
2q2!2

1
T2

c

.

~23!

The numerator of Eq.~23! is negative in the vicinity ofTc ,
sincecD2/T2!T/T* . At Tc , the first term in the denomina
tor diverges (1/Vm̄pair is a finite number in the thermody
namic limit!, and as also found elsewhere6 dm̄pair /dT

50 (T5Tc). Since m̄pair cannot be positive@that would
make the right-hand side of Eq.~5! negative#, and its deriva-
tive is negative or zero, we conclude thatm̄pair must remain
zero in the vicinity of, but below,Tc , where the GL descrip-
tion is applicable:

m̄pair~T!50, T'Tc
2 . ~24!

This implies, following Eq.~8!,

D2~T!52
e

b0

N0V

b2
. ~25!

This result was previously obtained in Ref. 11. It is importa
because it shows that when the system reachesTc the exci-
tation gapD(T) assumes the BCS or mean-field value.

We notice strong analogies with Bose-Einstein conden
tion ~BEC! in an ideal Bose gas. HereD2 plays the role ofN,
the total number of bosons, which belowTc contains two
components, one associated with the condensateDq50

2 and
the other with the noncondensed pairsDqÞ0

2 . The latter are
like the excited states of the BEC system. We write

D25Dq50
2 1DqÞ0

2 . ~26!

It follows from Eqs.~6!, ~26!, and~24! that
17451
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b2DqÞ0
2 5E d3q

~2p!3

1

N0VT

1

j1
2q2

. ~27!

Just as in the ideal Bose gas problem,D2(T) is constrained
~via the pair chemical-potential condition!, DqÞ0(T) is con-
strained through the self-consistent Hartree condition
thus one may deduce the condensate weight, or super
ducting order parameterDq50(T).

B. Behavior near TÄ0 where D„T… is no longer small

A useful observation can be made at this time. We ha
just shown that in the Hartree theory,D(T) assumes the BCS
value in the vicinity of, but below,Tc . One expects on very
general grounds that sufficiently far away fromTc , pair
‘‘fluctuation’’ effects are irrelevant and that the system
described by strict BCS theory.@In this regimeD(T) is no
longer a small parameter.# Thus we may infer that every
where belowTc

D~T!5DBCS~T!, T<Tc , ~28!

so that the excitation gap is given by the BCS value.10 What
is different from strict BCS theory, however, is that

D~Tc!Þ0. ~29!

This is the sole effect of pair fluctuations belowTc . Never-
theless it has important consequences, because it reflect
presence of noncondensed bosons belowTc , which, in turn,
mirror their normal-state counterparts.

C. T-matrix scheme belowTc

We now show that Eq.~28! is connected to the ideal Bos
gas condition at all temperatures belowTc . This follows
from the analysis in Appendix B in which it is shown that th
BCS gap equation is associated with a divergence of thT
matrix defined in Eq.~12!, at Q50 for all temperatures be
low Tc . Thustpg

21(0)50 implies

mpair~T!50, T<Tc . ~30!

In order to satisfy this gap equation, together with an ind
pendent constraint on the number of finite momentum pa
one must incorporate a broken symmetryDscÞ0, which we
now reformulate within ourT-matrix theory. BelowTc

S~K !5(
Q

t~Q!G0~Q2K !wk2q/2
2 ~31!

can be decomposed into two contributions: the ‘‘pseudog
and superconducting components via

tpg~Q!5
g

11gx~Q!
, QÞ0 ~32!

tsc~Q!52
Dsc

2

T
d~Q!, ~33!

t5tpg1tsc . ~34!
7-4
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By defining

Dpg
2 [2(

Q
tpg~Q! ~35!

and using the divergence oft(Q) at Q50 to evaluate Eq.
~31!, we retrieve the BCS-like self-energy

S~K !'2G0~2K !D2wk
2 ~36!

with

D25Dsc
2 1Dpg

2 . ~37!

For smallD(Tc) and T'Tc , Eqs. ~30!, ~35!, and ~37! are
manifestly equivalent to their GL counterparts~with mpair

corresponding tom̄pair ,19 Dsc to Dq50 and Dpg to DqÞ0);
they give a complete9 description of the system by determin
ing the full excitation gapD, order parameterDsc , and the
amplitude of propagating pairs~the pseudogap! Dpg .

IV. EXTENDED HARTREE APPROXIMATION:
ARBITRARILY STRONG COUPLING g

We have demonstrated above that there is a sim
T-matrix scheme involving the pair susceptibility (GG0)
which is equivalent to Hartree approximated GL theory b
above and belowTc . ~Moreover, there is a natural extensio
down toT50.) This equivalence has been proven provid
we restrict ourselves to smallD(Tc), where GL approache
are applicable~see Fig. 1!.

There is no reason, however, that theT-matrix scheme
cannot be considered for arbitrary coupling constantg, or
equivalently largeD(Tc) where conventional GL theory i
no longer appropriate. In this regime the separation betw
T* andTc can be extremely large. In this way, a pseudog
in the fermionic spectrum occurs at a temperature m
higher than the Bose condensation temperatureTc ~see Fig.
2!. As in conventional GL theory, thispseudogap reflects
bosonic degrees of freedom. Once bosons are metastable
takes a finite excitation energy to create fermions from the

All the appropriateT-matrix equations have been pr
sented above.@See Eqs.~10! and ~32!–~37!.# Note that the
only technical difference between the cases of weak
strong coupling is in the details of the expression for theT
matrix itself ~see Appendix B!. There is, however, an impor

FIG. 1. Schematic plot of the full excitation gapD and order
parameterDsc vs reduced temperatureT/T* for the weak-coupling
case.
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tant additional constraint that needs to be appended on
fermionic chemical potentialm.

The resulting equations greatly simplify at and belowTc
because of the vanishing of the pair chemical potential.
summarize the above discussion by presenting express
~appropriate to the superconducting state! for the gap and
chemical potentialm,

g211(
k

122 f ~Ek!

2Ek
wk

250, ~38!

n52(
k

@ f ~Ek!1vk
2$122 f ~Ek!%#. ~39!

The former follows from the vanishing oftpg
21(0) in Eq.~32!

and the latter fromn52(KG(K). The quantityvk is the
coherence factorvk

25 1
2 (12ek /Ek) with ek5k2/(2m)2m

andEk is the fermionic excitation energy which depends
the magnitude of the superconducting order parameterDsc
and the pseudogap energy scaleDpg :

Ek5Aek
21D2~k!, ~40!

where D2(k)5Dpg
2 (k)1Dsc

2 (k)5D2wk
2 . The important

quantityDpg(T) here is deduced following Eq.~35!.
At a physical level the parameter that should be ass

ated with strong or weak coupling isT* /Tc . However,T* is
frequently difficult to quantify. An alternative parameter fo
characterizing the strength of the coupling isa
[D(Tc)/D(T50). This is more readily accessed expe
mentally. It should be seen from Fig. 1 that the BCS lim

FIG. 3. Implications of the ideal Bose condensation condit
(mpair50, whenT<Tc) for the excitation gaps. Each of the curve
corresponds to different coupling constant strengths.

FIG. 2. Schematic plot of the full excitation gapD and order
parameterDsc vs reduced temperatureT/T* for the strong-coupling
case.
7-5
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corresponds toD(Tc)/D(0)'0, whereas~following Fig. 2!
in the strong-coupling regimeD(Tc)/D(0)'1. Figure 3 in-
dicates how the temperature dependence of the gap v
with the strength of the coupling, or alternatively witha.
This is an important plot because it epitomizes, perha
more than any other how dramatic are the differences fr
strict BCS theory. The challenge, then, is to accommod
the results in this figure into transport and other calculati
within the superconducting phase. We thus turn to dynam
effects associated with noncondensed bosons.

V. EFFECTIVE TDGL THEORY FOR STRONG-
COUPLING LIMIT

A. Overview

In this section we investigate the applicability of an effe
tive time-dependent Ginzburg-Landau theory as a basis
characterizing thedynamicsof our excitation-gap or pairing
fluctuations. This discussion is relevant to transport calcu
tions associated with bosonic degrees of freedom. Quite g
erally, we may view TDGL as a generic equation of moti
for describing bosons interacting with a reservoir of ferm
onic pairs. This equation of motion can be associated w
the long wavelength, low-frequency behavior of the p
propagator orT matrix, and it has a validity both above an
below Tc , as long as bosonic degrees of freedom are r
tively stable.

In the presence of a pseudogap, the situation is com
cated by the fact that the order parameter is generally dif
ent from the excitation gap. This is illustrated clearly in Fig
1 and 2. Thus, belowTc , one has to take care to distinguis
between the fluctuations in each of the two channels.
contrast, aboveTc bosonic degrees of freedom are unique
associated with fluctuations in the fermionic excitation g
Order-parameter fluctuations in the presence of a finite gaD
at Tc have been addressed elsewhere.20 It is conceptually
straightforward, but difficult to implement. Such fluctuatio
also alter critical exponents within a generally narrow ‘‘cri
cal fluctuation’’ regime.

We will not consider these order parameter fluctuatio
here, but rather presume thatDsc is spatially uniform, as in a
mean-field theoretic approach. The bosons of interest to
are noncondensed pairs which in turn lead to fluctuation
the fermionic excitation gap. A variation in the number
pairs leads to a variation in the excitation gapD, simply
because one has to pull apart the constituents of the pai
create fermions. Moreover, our mean-field theory~associated
with a BCS-like ground state1! provides a considerable sim
plification, because pairing fluctuation bosons are essent
free; they interact with fermions but not directly with ea
other. Once there are boson-boson interactions~beyond-
mean-field theory!, then necessarily there is important co
pling to order-parameter fluctuations.

Fermionic degrees of freedom also contribute to transp
and thermodynamics, but there is no simple phenomeno
~or counterpart of TDGL! for addressing these terms. Whe
the boson contributions to transport are small~say, as in the
thermal conductivity!, the fermionic terms cannot be ne
glected, and these have to be computed diagrammaticall
17451
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will be discussed in more detail below. In other instances
bosonic contributions are singular,7 or nearly so, in the vicin-
ity of Tc and TDGL calculations are appropriate forTc,T
,T* , as well as forT<Tc . In the remainder of this section
we focus only on the bosonic terms.

B. TDGL above and belowTc

At a microscopic level, one can expand theT matrix for
noncondensed pairs at smallq,V

tpg
21~q,V!5a08Fa1

a08
V21S 11 i

a09

a08
D V2

q2

2M
1mpairG .

~41!

In order to be consistent with the linear dynamics of TDG
the quadratic terms inV are neglected in what follows. Th
coefficients in Eq.~41! are in generalT dependent, although
significantly belowT* , the most important temperature d
pendence is associated withmpair , which is zero at and be
low Tc and negative aboveTc . The temperatureT* corre-
sponds to the onset of a resonant structure in theT matrix.
This onset temperature is reliably computed without inclu
ing pseudogap effects—thus, at the Gaussian approxima
level. Resonance effects21 ~reflecting the initial formation of
metastable pairs! enter via the ratioa08/a09 , which ~at fixedT
nearT* ) can be increased by increasing the coupling c
stantg. The larger is this parameter the more pronounced
pair resonances. Stated alternatively, as the coupling con
g increases the propagating componenta08 becomes increas
ingly more important than the diffusive terma09 . Indeed,
similar observations were made by Randeria.8

We now proceed to the more detailed analysis of the
efficient a09 , slightly above and at allT below Tc . Well
aboveTc ~but belowT* ) more detailed numerical calcula
tions are required,22,23 and these demonstrate thata09 in-
creases withT as pseudogap effects diminish. At our leadin
order approximation as in Eq.~36!, we do not distinguish
between lifetimes associated with the condensed and n
condensed bosons. For the purposes of computingTc and the
various energy gaps belowTc , this has been shown to be
reasonable approximation,22,23but it clearly misses importan
physics associated with the onset of true phase coheren24

In this approximation the finite momentum pairs are e
tremely long-lived@see Eqs.~B1! and ~D1!#. Consequently,
a09 is zero. Formally, this result comes from the fact that t
imaginary part of the pair susceptibilityG(0,V) has a higher
power than linear dependence onV. If, instead we introduce
~as in Appendix D! a finite lifetime to distinguish the contri
butions from condensed and noncondensed bosons

S~K !5
Dsc

2 wk
2

v1ek
1

Dpg
2 wk

2

v1ek1 ig
, ~42!

we find a nonvanishing22 TDGL coefficienta09 aboveTc .

a095
N~0!g

Dpg
2

. ~43!
7-6
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PSEUDOGAP STATE IN SUPERCONDUCTORS: . . . PHYSICAL REVIEW B 68, 174517 ~2003!
Below Tc , however, the existence of a condensate le
to a0950, even for the more general self-energy of Eq.~42!.
These arguments are presented in Appendix D. However
presence of even a small amount of disorder is sufficien
restore a linear in frequency imaginary term in the TDG
expansion of theT matrix. These observations were made
Chen and Schrieffer.25 In Fig. 4, we present a figure from
their work which illustrates how the frequency-depend
contributions to theT matrix evolve with impurity concen-
tration, for different scattering strengths.

In this way one establishes an effective TDGL descript
for the noncondensed boson dynamics both above and b
Tc . It should be stressed, however, that the character of
theory changes on either side ofTc .

The observation that the pairs live very much longer th
anticipated by, say, Gaussian level calculations is a co
quence of the fermionic pseudogap.22,23 In this way, the dif-
fusive component~i.e., the parametera09) remains small for
an extended range of temperatures aboveTc , and becomes
even smaller~impurity limited! below Tc . This reflects the
fact that as the fermions acquire a larger gap, the bosons
longer and the two degrees of freedom become progress
more distinct. These same effects are underlined by our
lier observation thatTc , as distinguished fromT* , must be
computed by including the feedback effects of the fermio
pseudogap on the bosonic propagator. This is precisely
flected in Eqs.~38! and ~39! which, together with Eq.~37!,
must be solved to determineTc . Because of the possibility
of a large separation betweenT* and Tc ~as g is progres-
sively increased! one may extend the simple dynamics as

FIG. 4. TDGL coefficientsa08 anda09 vs impurity concentration
ni , for several values of scattering strengthu from the unitary to the
Born limit, in a self-consistentT-matrix treatment~Ref. 25!, where
the nonmagnetics-wave scattering potential is assumed as given
u(x)5ud(x).
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ciated with TDGL theory to describe bosonic transport
temperatures belowT* , not just those limited to the imme
diate vicinity of Bose condensation, Tc. This provides some
microscopic support for a recent phenomenologi
approach26 which addresses Nernst and other-normal st
transport coefficients in underdoped cuprates.

VI. GENERALIZED APPROACH TO TRANSPORT: T-
MATRIX THEORY BELOW Tc

We turn now to transport properties belowTc , beginning
with the superfluid density. It should be clear from Figs.
and 2 that the order parameter and the excitation gap ar
be distinguished in the superconducting state. We can
say that the sameTc as calculated in Sec. II via the sel
consistency conditions at the~extended! Hartree-GL level
will show up, for example, inrs(T). In particular the super-
fluid density must necessarily couple to the pair fluctuatio
in the superconducting state in such a fashion thatrs(T)
reflects the superconducting order parameter, rather than
fermionic excitation gap. This coupling of pair fluctuation
to rs(T) can be contrasted with the way in which collectiv
~phase! mode contributions enter intors(T) at the BCS
level. These terms are only required to preserve gen
gauge invariance and these bosons do not affectrs when it is
computed in the transverse gauge. The pair fluctuations
discuss here are necessary for a consistent calculation o
superfluid density, even in the transverse gauge.

In this section we decompose the transport contributi
into two types of excitations of the condensate: fermio
and bosonic. It is well known7 that bosonic contributions to
transport coefficients in the~less self-consistent! Gaussian-
TDGL theory of pairing fluctuations are associated w
Aslamazov-Larkin diagrams. The lowest-orderT-matrix
theory introduces additional diagrams called the ‘‘Mak
Thompson’’ and ‘‘density-of-states’’ contributions. These la
ter two may be viewed asfermioniccontributions.

Given the self-energy and form of self-consistentT ma-
trix, Ward identities can be used to characterize the fermio
and bosonic contributions to transport, at the extended H
tree level. Again, Aslamazov-Larkin~interpreted as associ
ated with noncondensed bosons! and Maki-Thompson dia-
grams~interpreted as associated with fermionic excitation!
are present, but both contain bare as well as dressed Gre
functions. The fact that the combinationGG0 appears plays
an important role throughout our discussion. This pair s
ceptibility is related to the usual Gor’kovF function.

Because of the form of the pair susceptibility and the f
that belowTc , mpair50, we show below that the fermioni
terms combine to yield the usual BCS contributions to tra
port, which now depend on the full gapD, as distinct from
the order parameterDsc . That the fermionic contributions
conspire to be of the BCS form may seem natural at o
level, but on another level this is highly nontrivial since
very strong couplingD is essentiallyT independent below
Tc , as can be seen from Fig. 3. Thus, the fermionic con
butions to transport are nearlyT independent, in striking con
trast to what is found in the BCS or weak-coupling limit. T
demonstrate how the bosonic and fermionic contributions

y
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ter, we begin with a formulation of the superfluid density
the presence of general self-energy effects.

A. Superfluid density: General formalism in transverse gauge

The electromagnetic response in our extended Har
theory is constructed from the two additive contributions
the self-energy shown in Fig. 5~a!. The superconducting self
energySsc contains an anomalous reversal of the ferm
line due to the creation of a condensed pair. Moreover
contrast to conventional fluctuation diagrams, the quan
tpg depends on one full and one bare Green’s function. O
aim is to derive a consistent formulation of electrodynam
using a machinery that includes self-energy effectsSpg . In
contrast to, say, the usual treatment of superconducting
generalized Ward identities at the BCS level, the ma
Green’s function~Nambu-Gor’kov! approach is not appro
priate here sinceSpg does not have a counterpart in th
anomalous channel. Indeed, the Nambu-Gor’kov sche
would seem to be problematic at the outset, since it is
clear whether to associateD or Dsc with the ‘‘F ’’ function.
The choice of our particular pair susceptibility~simply re-
lated toF without the gap prefactor! is a way of circumvent-
ing this problem.

We define the superfluid densityns in terms of the mag-
netic London penetration depthlL as

lL
225

m0e2ns

m
, ~44!

wherem0 is the magnetic permittivity. For convenience, w
will set m05e5c51. Note on a lattice,n/m should be re-
placed by

S n

mD
mn

[2(
k

]2ek

]km]kn
nk ~m5x,y,z!, ~45!

wherenk is the fermion density distribution in momentu
space. For the quasi-two-dimensional~2D! square lattice, the
in-plane mass tensor is diagonal, and (n/m)xx5(n/m)yy .

FIG. 5. ~a! Self-energy contributions and~b! response diagram
for the vertex correction corresponding toSpg . Heavy lines are for
dressed, while light lines are for bare Green’s functions. Wavy li
indicatetpg .
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We consider the in-plane penetration depth which is
pressed in terms of the local~static! electromagnetic re-
sponse kernelK(0) in linear-response theory,27

lL
225Kxx~0!5S n

mD
xx

2Pxx~0!, ~46!

whereK is defined by

Jm~Q!5PmnAn~Q!2S n

mD
mn

An~Q!52Kmn~Q!An~Q!,

~47!

and the current-current correlation function

Pmn~Q!5E
0

b

dt eiVnt^ j m~q,t! j n~2q,0!&

522(
K

Lm
EM~K,K1Q!G~K1Q!ln

3~K1Q,K !G~K !. ~48!

Here the bare vertex is given by

l~K,K1Q!5¹Wkek1q/25
1

m S k1
q

2D , ~49!

where, for simplicity, we have used the dispersion for jelliu
in the last step, although the generalization to the lattice
straightforward. The electromagnetic vertex can be written
terms of the corrections coming from the two self-ener
components as

LEM5l1dLpg1dLsc , ~50!

wheredLpg is the pseudogap term.
For illustrative purposes we specialize to the casew51

~as occurs ins-wave pairing! in this section. The genera
wÞ1 case is discussed in Appendix C. We introduce
superconducting vertex contribution given by

dLsc~K1Q,K !5Dsc
2 G0~2K2Q!G0~2K !l~K,K1Q!.

~51!

At the Q→0 limit, it satisfies

2dLsc~K,K !5
]Ssc~K !

]k
. ~52!

This equation should be contrasted with theT.Tc Ward
identity

dLpg~K,K !5
]Spg~K !

]k
. ~53!

The difference in sign between Eqs.~52! and ~53! is funda-
mental and arises from the anomalous nature of theSsc dia-
gram. Indeed, Eq.~53! is equivalent to the statement th
aboveTc the paramagnetic and diamagnetic current con
butions to theQ50 response precisely cancel. This canc
lation appears in the superfluid density calculation presen
in the following section. By contrast Eq.~52! expresses the

s
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PSEUDOGAP STATE IN SUPERCONDUCTORS: . . . PHYSICAL REVIEW B 68, 174517 ~2003!
failure of this cancellation for the superconducting comp
nent, which is naturally associated with a Meissner effec

The vertex dLpg may be decomposed into Mak
Thompson~MT! and two types of Aslamazov-Larkin (AL1 ,
AL2) diagrams, whose contribution to the response is sho
here in Fig. 5~b!. We write

dLpg[dLMT1dLAL
1 1dLAL

2 ~L!. ~54!

Using conventional diagrammatic rules one can see that
MT term has the same sign reversal as the anomalous su
conducting diagram. Here, however, the pairs in question
noncondensed and their internal dynamics~via tpg as distin-
guished fromtsc) requires additional AL1 and AL2 terms as
well, which will ultimately be responsible for the absence
a Meissner contribution from this normal-state self-ene
effect.

Note that the AL2 diagram is specific to the extende
Hartree scheme, in which the field couples to the fullG
appearing in theT matrix through a vertexL. It is important
to distinguish the vertexL from the full electromagnetic
~EM! vertex of Eq.~50!. In particular, we write

L5l1dLpg2dLsc , ~55!

where the sign change of the superconducting term~relative
to LEM) is a direct reflection of the sign in Eq.~52!.

We now show that forw51 there is a precise cancellatio
between the MT and AL1 pseudogap diagrams atQ50.
Analogous results forwÞ1 are presented in Appendix C
This cancellation follows directly from the Ward identity

Q•l~K,K1Q!5G0
21~K !2G0

21~K1Q!, ~56!

which implies

Q•@dLAL
1 ~K,K1Q!1dLMT~K,K1Q!#50 ~57!

so that dLAL
1 (K,K)52dLMT(K,K) is obtained exactly

from theQ→0 limit.
Similarly, it can be shown that

Q•L~K,K1Q!5G21~K !2G21~K1Q!. ~58!

The above result can be used to infer a relation analogou
Eq. ~57! for the AL2 diagram, leading to

dLpg~K,K !52dLMT~K,K !, ~59!

which expresses this pseudogap contribution to the ve
entirely in terms of the Maki-Thompson diagram shown
Fig. 5~b!. It is evident thatdLMT is simply the pseudogap
counterpart ofdLsc , satisfying

2dLMT~K,K !5
]Spg~K !

]k
. ~60!

Therefore, one observes that forT<Tc

dLpg~K,K !5
]Spg~K !

]k
, ~61!

which establishes that Eq.~53! applies to the superconduc
ing phase as well. As expected, there is no direct Meiss
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contribution associated with the pseudogap self-energy.
though the derivation becomes more complicated for gen
wk , Eq. ~53! is obtained for both the superconducting a
normal states.

B. Superfluid density: T-matrix approximation

The final expression for the superfluid density is obtain
by rewriting Eq.~45! by integration by parts,

S n

mD
ab

52(
K

]2ek

]ka]kb
G~K !

522(
K

]ek

]ka

]G~K !

]kb

522(
K

G2~K !
]ek

]ka
S ]ek

]kb
1

]Spg

]kb
1

]Ssc

]kb
D .

~62!

Note here the surface term vanishes in all cases.
By inserting Eqs.~62! and ~48! in Eq. ~46! one can see

that the pseudogap contribution tons /m drops out by virtue
of Eq. ~61!. The in-plane superfluid is isotropic and is give
by

ns

m
52(

K
G2~K !

]ek

]kx
FdLsc~K,K !x2

]Ssc~K !

]kx
G . ~63!

Equation~63! can be readily evaluated using the sup
conducting vertex and the superconducting self-ene
Ssc(K)52Dsc

2 G0(2K)wk
2 associated with ourGG0-based

T-matrix approach. In addition, we introduce an approxim
tion in our evaluation ofG via Eq. ~36!, to find

ns

m
52(

k

Dsc
2

Ek
2 F112 f ~Ek!

2Ek
1 f 8~Ek!G

3F S ]ek

]kx
D 2

wk
22

1

4

]ek
2

]kx

]wk
2

]kx
G . ~64!

This result includes the generalwk factor for thek depen-
dence of the gap and order parameter, whereas it has
neglected above in Eqs.~51!–~61!, where it substantially
complicates the analysis.

Note that in the absence of a pseudogap~i.e., at weak
coupling!, Dsc5D. Then Eq.~64! is just the usual BCS for-
mula. More generally, we can define a relationship

S ns

mD5
Dsc

2

D2 S ns

mD BCS

, ~65!

where (ns /m)BCS is just (ns /m) with the overall prefactor
Dsc

2 replaced with D2 in Eq. ~64!. Obviously, in the
pseudogap phase, (ns /m)BCS does not vanish atTc . That the
results are so similar to their BCS counterparts is due to
Hartree treatment of pairing fluctuations.

Finally, from Eqs.~37! and ~65! we may write
7-9
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STAJIC, IYENGAR, CHEN, AND LEVIN PHYSICAL REVIEW B68, 174517 ~2003!
S ns

mD5S 12
Dpg

2

D2 D S ns

mD BCS

. ~66!

Here the first term represents the contribution tons from the
usual fermions, albeit with an unusualT dependence of the
gap ~see Fig. 3!. The second term indicates thatns is addi-
tionally depressed by bosonic pair excitations which ens
that ns vanishes prematurely atTc , rather than atT* .

Finally, from Eq. ~53! we can infer that the self-energ
approximation of Eq.~36! implies an approximation on
dLpg , so that

dLMT~K,K !'Dpg
2 G0~2K !G0~2K !l~K,K !. ~67!

We build on this internal consistency argument in what f
lows away fromQ50.

C. QÅ0 electrodynamics

The realVÞ0 part of the in-plane optical conductivit
can be expressed as

s~V!5V21Im Pxx~ iVn→V1 i01!, ~68!

which is related to the superfluid density through thef-sum
rule

ns

m
1

2

pE0

`

s~V! dV5S n

mD
xx

. ~69!

Just as for the superfluid density, the optical conductiv
involves the same set of Maki-Thompson and Aslamaz
Larkin diagrams. In this section we will regroup terms so
to identify explicit fermionic and bosonic contributions,

LEM[l1dLf ermions1dLbosons. ~70!

Similarly, it follows that the optical conductivity contain
two contributions,

s~V!5s f ermions~V!1sbosons~V!, ~71!

where s f ermions comes from thel1dLf ermions portion of
the vertex.

It is not unreasonable to take Eq.~67! a step further and
apply it to generalQ, so that~below Tc)

dLMT~K,K1Q!'Dpg
2 G0~2K2Q!G0~2K !l~K1Q,K !.

~72!

In effect what this approximation is saying is that for ferm
onic degrees of freedom the bosons enter primarily as
excitation-gap contribution. This approximation is justifie
by the same reasoning that leads to Eq.~36!, using the diver-
gence oftpg(Q) at Q50.

From Eq.~72! and Eq.~52! it follows that the pseudogap
and superconducting condensate terms add in a natural
to introduce the full excitation gapD:
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dLf ermions~K,K1Q!

[dLMT~K,K1Q!1dLsc~K,K1Q!

5D2G0~2K2Q!l~K1Q,K !G0~2K !. ~73!

This term, combined with the density-of-states contributi
from l, indicates that the fermionic contributions to gene
transport coefficients are to be calculated within a B
framework, but with the full gapD, which is to be distin-
guished from the order parameter. Though these contr
tions to transport are formally similar to BCS theory, theirT
dependence may differ considerably due to the weakT de-
pendence ofD in the strong pseudogap regime.

To characterize the direct contribution from bosonic d
grees of freedom to transport, which are associated with
diagrams, we must treat their full dynamics. We define

dLbosons~K,K1Q![dLAL
1 ~K,K1Q!1dLAL

2 ~K,K1Q!
~74!

and turn now to the bosonic contribution to conductivity.

D. TDGL approach to bosonic transport

We have just seen that to a good approximation the c
tributions to the EM response of diagrams other than the A1
and AL2 terms enter as in BCS theory but with the full ga
D. Equation~66! allows us to separate out the BCS cont
bution with full gap, called (ns /m)BCS, from the additional
‘‘bosonic’’ contribution. The BCS terms also satisfy a su
rule relating the ac conductivity and superfluid densi
analogous to Eq.~69!,

S ns

mD BCS

1
2

pE0

`

s f ermions~V! dV5S n

mD
xx

. ~75!

Using these sum rules along with Eqs.~66! and Eq.~71!, we
can deduce that the integrated conductivity of the boson
well approximated by

2

pE0

`

dV sbosons~V,T!5
Dpg

2

D2 S ns

mD BCS

~T!. ~76!

The bosons make a maximum contribution atTc . At this
temperature, bosons can account for as much as 90% o
spectral weight in a strongly pseudogapped supercondu
with T* /Tc510, while their contribution vanishes in th
weak-coupling limitT* →Tc . The boson weight vanishes a
T50 at all couplings as a consequence of the condensa
of all bosonic pairs. This pairing fluctuation bosonic cont
bution is not limited to a narrow region nearTc , but extends
well into the superconducting state.

We define the bosonic responsePbosonas the contribution
to P given bydLbosons. These terms each involve a pair o
T matrices, and to leading order in frequency,Pbosonmay be
written as
7-10
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Pboson~Q![22(
K

@dLAL
1 ~K,K1Q!

1dLAL
2 ~K,K1Q!#G~K1Q!

3l~K1Q,K !G~K !

'(
P

Lt~P,P!tpg~P1Q!L̃t~P,P!tpg~P!.

~77!

HereLt is the vertex fortpg approximated as

Lt~P,P!'2
a08

M
p, ~78!

where we have used theT-matrix expansion of Eq.~41!. The
quantityL̃t5zLt(P,P) wherez51 in the normal state5 and
is modified in the superconducting state. Reasonable
mates ofz(T) below Tc may be obtained from Eq.~69!.

If we presume Eq.~77! holds for a range of low frequen
cies we may infer a simple expression for the~in-plane! ac
conductivity

sbosons~V!5
1

2
za08

2~2e!2(
p

S px

M D 2

3E dE

2p
Ã~p,E!Ã~p,E1V!

b~E!2b~E1V!

V
,

~79!

where we now useÃ(p,V)522Im tpg(p,V1 i0) for the
bosonic spectral function. More generally, at higher frequ
cies the internal fermionic structure via theQ dependence o
the boson vertex must be included. This structure res
from the individual coupling of radiation to each constitue
fermion in the pair. However, it is reasonable to assume
the compositeness of the pairs will not be resolved by ra
tion of wavelengths larger than the pair size or frequenc
below the pair-breaking energyD. Forq50 andV,D, then
we argue the bosonic vertex functions are well approxima
by the velocityp/M ~or a constant multiple thereof!. Indeed,
for calculations of the ac conductivity, Varlamov an
co-worker28 have argued that an analogous approximat
~for Gaussian fluctuations! is valid nearTc where the pole
structure of theT matrix causes its frequency dependence
dominate that of the Green’s functions at the vertices. At
extended Hartree level this pole structure is present at
belowTc due to the vanishing ofmpair . Relative to Gaussian
theory, theQ dependence of the boson vertices will be fu
ther suppressed forV,D through the appearance of th
gapped fermion propagatorG in all vertex subdiagrams.

The result derived above for the bosonic contribution
the ac conductivity is essentially the same as would ob
from true bosons, except for the constant factora08

2. To see
this we review the ac conductivity in a system of free boso
of chargee* , massM* , and chemical potentialm* , in con-
tact with a reservoir of fermion pairs. This calculation26 rep-
resents a generalization of standard TDGL-like schem
17451
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away from the Bose condensation temperature. The simp
physical picture that allows for an exactly solvable condu
tivity in the presence of quantum dissipation assumes that
bosons interact with a reservoir oflocalized26 fermion pairs
~treated as having ideal gas Bose-Einstein statistics!. This
gives rise to a boson self-energySB(V) without introducing
vertex corrections to the electromagnetic response. Suc
model yields26 an ac conductivity given by

s0~V!5
1

2
~e* !2(

p
S px

M*
D 2

3E dE

2p
Ã~p,E!Ã~p,E1V!

b~E!2b~E1V!

V
.

~80!

Hereb(E) is the Bose statistical function andÃ522 ImB
is the boson spectral function. The boson propagator is gi
by B(q,V)215V2q2/2M* 1m* 2SB(V). The boson ver-
tex here is the velocityp/M* . The boson self-energy arise
from scattering processes into and out of the thermal re
voir.

To compare with the pairing theory, we note that while t
boson self-energy in the above model arises from scatte
into the reservoir, the self-energy of bosons in the pair
model ~whose imaginary part we may regard as Imtpg

21)
arises from pair dissociation and recombination proces
We note, however, that fundamental differences between
mion pairs and true bosons remain in the analytic structur
the respectiveT matrix and boson propagatorB. For true
bosons, the real and imaginary parts ofSB obey Kramers-
Kronig relations and vanish in the high-energy limit. Th
propagatorB then reduces to its bare form (V2q2/2M*
1m* )21. The T matrix has the structuretpg

215g211x
where the pairing susceptibilityx satisfies the same causali
constraints. The vanishing ofx in the high-energy limit
leaves the asymptotetpg→g and theT matrix loses all en-
ergy and momentum structure due to the dissociation of
pairs. However, this difference is not expected to be relev
for conductivity calculations done below the pair-breaki
energy scale.

We now consider the evaluation of Eq.~79! using the
expandedT matrix of Eq.~41!, neglecting theV2 term. Dis-
sipation ins at nonzero frequencies requiresa09Þ0, which
below Tc requires impurity scattering, as discussed in A
pendix D. Here, we focus on the behavior of the conductiv
as a function of the ration[a09/a08 , which in turn enters
G(q,V) in the expandedT-matrix approximation@Eq. ~B2!#
asnV. We note here that in the TDGL approach for Gau
ian fluctuations nearTc , this ratio is typically large@of order
(EF /Tc)] due to the fact thata08 is a measure of particle-hol
asymmetry. As shown earlier in Fig. 4,n tends in the ex-
tended Hartree theory to increase rapidly from zero, beco
ing of order unity with the introduction of a modest conce
tration of impurities.

TDGL calculations are typically done in the classical r
gime V!T, which allows the simplification@b(E)2b(E
1V)#/V→T/@E(E1V)# in Eq. ~79!. The conductivity be-
7-11
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low Tc is then found to have the characteristicV21/2

dependence28 for all values ofn:

sboson~V!→ 2

3p
ze2TS 2M

V D 1/2S 11n2

n D 1/2

. ~81!

To compute the conductivity in the superconducting state
to V;D, however, requires the inclusion of quantum sta
tical factors whenD@Tc , in which case then parameter
affects the frequency dependence ofsboson. While the low-
frequency limiting behavior isV21/2 independent ofn, s
falls faster thanV21/2 outside the classical regime befo
crossing over toV1/2 behavior at higher frequencies. Th
crossover may extend over a large frequency range, dep
ing on the value ofn, so that generallys is characterized by
V21/2 at low frequencies and a long high-frequency t
which cannot be integrated to infinity. Since the integra
bosonic weight is finite, it is reasonable to expect that t
expression for the conductivity is cut off above the pa
breaking scale@at several timesD(0)], where the TDGL
formulation is known to break down.

VII. CONCLUSIONS

This paper is based on the observation that the B
ground-state wave function has a more general validity1,29

By increasing the strength of the attractive interactions,
perconductivity in this state progressively takes on the ch
acter of Bose-Einstein condensation. That the sameT50
wave function can apply to a system where pair format
and pair condensation are associated with different ene
scales provides support for the notion that there exist
mean-field theory of a more general nature than that of s
BCS theory. In the more general case the various energie
the BCS picture are no longer degenerate:T* ÞTc and D
ÞDsc .

In this paper we have shown that this generalization
BCS physics is to be found in a treatment4,6 of pair fluctua-
tion effects at the Hartree level. This establishes that
excitation gapD(Tc) is nonzero, or equivalently that there
a pseudogap, even in the weak-coupling limit, as was
served experimentally many years ago.3 Going beyond this
previous work and into the broken-symmetry phase, a s
consistent analysis leads to the condition that the pair che
cal potentialmpair50 for T<Tc , and that this is equivalen
to the statement that the excitation gapD(T) assumes the
BCS value at and belowTc . It follows from the fact that the
order parameter is necessarily zero atTc , that the excitation
gap and the superconducting order parameter are disting
able belowTc . This behavior is schematically illustrated
Figs. 1 and 2.

Because it exists in conjunction with fermionic degrees
freedom, the ideal Bose character found here supports
superconductivity. This is demonstrated here by calculati
of the superfluid density. More generally, transport proper
contain two types of contributions from both fermionic a
bosonic excitations. At finite temperatures, the fermio
terms are well approximated by the usual BCS contributi
to transport but with a highly non-BCS-like, ofte
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temperature-independent gapD(T).
At this extended Hartree level, fluctuations in the ord

parameterDsc and in the excitation gapD represent distinct
channels for bosonic effects in the superconducting stat
is more convenient to decompose these into ‘‘condens
and ‘‘noncondensed’’ bosons. The latter are the focus of
present paper, and we refer to these as ‘‘pair fluctuations
distinct from fluctuations of the order parameter. Ord
parameter fluctuations were discussed in the context of
extended Hartree theory in earlier work.20 Noncondensed
bosons are present above and belowTc , but absent~like
fermionic excitations! at T50. These long-lived, metastabl
states, even aboveTc ~albeit, belowT* ), are associated with
our extended Hartree treatment that introduces a pseud
in the fermionic spectrum. This ‘‘gap’’ then inhibits dissocia
tion of the bosons into fermions.

The dynamics of these noncondensed bosons is rea
ably described by time-dependent Ginzburg-Landau the
While the microscopic character of this TDGL chang
abruptly from above to belowTc , this approach offers a very
powerful technique26,30,31for addressing the pair fluctuatio
or bosonic contributions to transport. In this paper we ha
applied these results to calculations of the ac conductiv
One could equally well address the thermal conductivity a
we can anticipate some of the ensuing conclusions. W
both bosonic and fermionic excitations are present~i.e., away
from T50), we expect that the Wiedemann-Franz law
violated. Because of the associated soft energy scale, bos
contributions to the thermal conductivity are considera
smaller than their counterparts for the electrical conductiv
In this way the thermal conductivityk in the superconduct-
ing state should be well approximated by considering o
BCS-like contributions, but with the anomalous temperatu
dependent excitation gap shown in Fig. 3. Moreover, beca
the bosonic contributions are unimportant ink, we expect to
recover the well-known universal result32 for this property.
This is not necessarily true for the electrical conductivity.

In this paper we have not made reference to spec
physical systems where our mean-field theory may h
some applicability. In addition to short coherence length
perconductors,~among these the high-temperature cuprate!,
the present picture may also be relevant33–35 to fermionic
superfluidity in atomic trap experiments.
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APPENDIX A: T MATRIX FOR SMALL D AT WEAK
COUPLING

If we replace the dressed Green’s function in Eq.~10! by
the bare Green’s functionG0, we obtain

t0~q,Vn!5
g

11gx0~Q!
52

1

N~0!

1

e1auVnu1j1
2q2

.

~A1!
7-12
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The self-energyS(K) is then given by

S~K !5(
Q

t~Q!G0~Q2K !wk2q/2
2 . ~A2!

To calculate the pair susceptibility to the first order in se
energy, we write the dressed Green’s function in Eq.~10! as
G5G01G0SG0, which gives the first-order correction

dx~Q!5(
K

G0~Q2K !G0~K !S~K !G0~K !. ~A3!

Sincet(Q) is sharply peaked aroundQ50 we disregard the
momentum dependence ofG0 in Eq. ~A2!, and obtain

S~P!'2G0~2K !D2wk
2 , ~A4!

where

D252E d3q

~2p!3
t~q,vn50!. ~A5!

Putting this back into Eq.~A3! we find

dx~0!52b0b2D25b0 /T2E d3q

~2p!3
t~q,vn50!,

~A6!

where b0 /T25(KG0
2(K)G0

2(2K)wk
25N(0)7j(3)/8(pT)2

~this last equality holds only fors-wave pairing!. Using the
expression for theT matrix corrected bydx(0) via Eq.~12!

t~Q!52
1

N~0!

1

e1auVnu1j1
2q22dx~0!/N~0!

, ~A7!

the self-consistency equation reads

dx~0!52
b0

N~0!TE d3q

~2p!3

1

e1j1
2q22dx~0!/N~0!

.

~A8!

APPENDIX B: T MATRIX FOR ARBITRARY D, BELOW
Tc FOR GENERAL COUPLING

From Eq. ~36! and G0(P)51/(ivn2ep) we find G(P)
5( ivn1ep)/@( ivn)22Ep

2#. Hereep is the electron normal-
state dispersion measured with respect to the chemical
tentialm, while Ep5Aep

21D2wp
2. Thus after performing the

Matsubara sum and analytical continuationiVn→V1 i01,
Eq. ~10! becomes

x~q,V!5(
k

F 12 f ~Ek!2 f ~ek2q!

Ek1ek2q2V2 i01
uk

2

2
f ~Ek!2 f ~ek2q!

Ek2ek2q1V1 i01
vk

2Gwk2q/2
2 . ~B1!

In the long wavelength, low-frequency limit one can expa
the inverseT matrix as
17451
-

o-

d

tpg
21~q,V!5g211x~q,V!

5a1V21a08S V2
q2

2M
1mpair1 iGq,VD .

~B2!

The linear contribution~q! is absent due to the inversio
symmetry (q↔2q) of the system.

In the weak-coupling limit, the ratioa08/a1 is vanishingly
small; when the system has exact particle-hole symm
~e.g., a 2D tight-binding band at half-filling with a neares
neighbor hopping!, a08 vanishes. In this case the dispersio
determined via

tpg
21~q,V!50 ~B3!

is linear in q, Vq;cq, which shows up in the dispersion
only in the very weak coupling limitor where there is exac
particle-hole symmetry.

In the absence of particle-hole symmetry, asg increases,
a08/a1 increases, thusa08V gradually dominates and we fin
the important result:Vq;q2. For any finiteg and arbitrarily
small q, the dispersion is always quadratic, at the low
energies.

We are interested in the moderate- and strong-coup
cases, where we can drop thea1V2 term in Eq.~B2!, and
hence we have

tpg~q,V!5
a08

21

V2Vq1mpair1 iGq,V
, ~B4!

where

Vq[
q2

2M
~B5!

is quadratic. This defines the effective pair massM. Below
Tc , we have

mpair~T!50, T<Tc . ~B6!

Using Eq.~B1! this condition can be shown to be equivale
to Eq. ~38!, the familiar BCS gap equation.

APPENDIX C: REVISITING THE SUPERFLUID DENSITY
WITH wÅ1

The electromagnetic response vertex is given by Eq.~50!.
For a generalwÞ1, the superconducting vertex contributio
is given by

dLsc~K1Q,K !5Dsc
2 G0~2K2Q!G0~2K !

3l~K,K1Q!wkwk1q . ~C1!

This can be obtained by proper vertex insertion to the sup
conducting self-energy in Fig. 5~a!.

At the Q→0 limit, it satisfies
7-13
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]Ssc~K !

]k
52dLsc~K,K !2Dsc

2 G0~2K !“kwk
2

[dLsc8 ~K,K !. ~C2!

The minus sign reflects the fact thatdLsc alone does not
satisfy the generalized Ward identity in the transverse gau
as a consequence of the Meissner effect. To recover
gauge invariance, the collective mode contribution has to
included. Nevertheless, one can define, in the transv
gauge,

LBCS[l1dLsc8 . ~C3!

This is not the EM vertex of BCS theory, but it automatica
satisfies the generalized Ward identity in the BCS case. T
circumvents the complication of collective modes, which
timately make no contribution to the transverse response

The vertexdLpg is given by Eq.~54!. Now we define the
full vertex, which is distinct from the EM vertexLEM,

L~K,K1!5@l1dLpg1dLsc8 #~K,K1!,

dLsc8 ~K,K1!52dLsc~K,K1!2Dsc
2 G0~2K !“kwk

2 ,
~C4!

where the sign change of the superconducting term~relative
to LEM) is a direct reflection of the sign in Eq.~C2!. The
temporal component ofL is defined similarly, but with no
correction coming from derivatives ofwk .

Invoking the Ward identity for the bare Green’s functio
G0, Eq. ~56!, we obtain

Q•MTpg~K,K1!52@Spg~K1!2Spg~K !#

2(
P

tpg~P!G0~P2K !q•¹kwk2p/2
2

~C5!

to linear order inQ. TakingQ→0, we obtain

]Spg~K !

]k
52MTpg~K,K !1(

P
tpg~P!G0~P2K !“kwk2p/2

2

'2MTpg~K,K !2Dpg
2 G0~2K !“kwk

2 . ~C6!

This is a generalization of Eq.~60! to a generalwÞ1.
The AL1 diagram can be similarly evaluated using E

~56!. It can also be shown that the generalized Ward iden

Q•L~K,K1Q!5G21~K !2G21~K1Q! ~C7!

holds to linear order inQ. This allows the evaluation of the
AL2 diagram, with the result

Q•~AL11AL2!~K,K1!

52@Spg~K1!2Spg~K !#

1(
P

tpg~P!G0~P2K !q•“kwk2p/2
2 ~C8!
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valid to linear order inQ. Adding these results, the term
depending on the derivative ofw cancel, leading to

Q•dLpg~K,K1 !5Spg~K1!2Spg~K ! ~C9!

valid to linear order inQ. TakingQ→0, we obtain Eq.~61!
in the text.

Note that the various vertex terms in the above equati
contain corrections from the derivative ofw at Q50 only in
the spatial components and not in the scalar or temp
component.

APPENDIX D: IMAGINARY PART OF THE INVERSE
T-MATRIX BOSONIC LIFETIME NEAR Tc AND BELOW

In this appendix, for definiteness, we assumed-wave pair-
ing so thatwk52 cos(2f), wheref is the polar angle. By
taking the imaginary part of the inverseT matrix using Eq.
~B1! we obtain the expression

Gq,V5
p

a08
(

k
$@12 f ~Ek!2 f ~ek2q!#uk

2d~Ek1ek2q2V!

1@ f ~Ek!2 f ~ek2q!#vk
2d~Ek2ek2q1V!%wk2q/2

2 .

~D1!

For smallV!T, and settingq50 we can expand the Ferm
functions to first order inV:

G0,V52
p

a08
V(

k
@ f 8~Ek!uk

2d~Ek1ek2V!

1 f 8~Ek!vk
2d~Ek2ek1V!#wk

2

5
a09

a08
V. ~D2!

Here G(0,V) reflects the rate of decay of noncondens
bosons into a bare and a dressed fermion. Thed functions in
the above expression determine the energies of these fe
ons ek and Ek to be of order (V21D2wk

2)/V. At tempera-
tures of interest (T,Tc and T*Tc), away from the nodes
~wherewk50) and forV,D this energy is large. The only
appreciable contribution then comes from parts of the Fe
surface near the nodes~of angular width of the order of
AVT/D2), giving a higher power than linear inV depen-
dence ofG(0,V) anda0950.

This result is improved upon by including the effects
fermion-boson scattering. Quite generally in the absence
impurity scattering one finds that

a0952
1

2 (
k

wk
2A~k,2ek! f 8~ek!, ~D3!

where A(k,E)522ImG(k,ivn→E1 i01) is the fermion
spectral function. Fermion-boson scattering broadens
spectral function andA(k,2ek) f 8(ek) is generally nonzero
in the normal state for allk, implying thata09Þ0. One way
to implement this is to introduce an inverse lifetimeg into
the expression for the pseudogap self-energy
7-14
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S~K !5
Dsc

2 wk
2

v1ek
1

Dpg
2 wk

2

v1ek1 ig
~D4!

leading to the following expression for the spectral functi
A(k,v), aboveTc :
e

s

th

e

in
s

e

a
n
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A~k,v!5
2Dpg

2 wk
2g

~v22Ek
2!21g2~v2ek!2

~D5!

As is evident from Eq.~D5!, the quasiparticle peaks ar
broadened as a result of a nonzerog. Thus, aboveTc the
imaginary part of the inverseT matrix ~or, equivalently, of
the pair susceptibility! is now
Imx~q,V!5G~q,V!5gDpg
2 (

k

12 f ~V2ek2q!2 f ~ek2q!

@~V2ek2q!22Ek
2#21g2~V2ek2q2ek!2

wk
2wk2q/2

2 . ~D6!
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s
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o
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y
ur-
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g
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Since the quasiparticle peaks are broadened, the boson
now decay into states near the Fermi surface not only n
the nodes but everywhere else on the Fermi surface.G(0,V)
is now linear inV and the coefficient of proportionality i
easily found to be

]

]V
Imt21~0,V!uV5052

gDpg
2

T (
k

f 8~ek!wk
4

Dpg
4 wk

414g2ek
2

.

~D7!

The second term in the denominator of the summand in
above expression can be safely neglected ifg is taken to be
much smaller thanDpg , since the main contribution to th
sum comes from the vicinity of the Fermi surface~whereek
is small!. The only place where this term is not negligible
comparison withDpg

4 wk
4 is in a small region near the node

~angular width}AgT/Dpg). However, this correction can
also be neglected, and therefore

a095
g

4TDpg
2 (

k

1

cosh2
ek

2T

, ~D8!

which, assuming thatT!m, after a standard procedur
gives, as expected, a nonzero result

a095
N~0!g

Dpg
2

. ~D9!

Below Tc howeverA(k,2ek) in Eq. ~D3! vanishes due to
the sharpness of the superconducting self-energy, as is e
checked by inspecting the expression for the spectral fu
tion belowTc following from the self-energy Eq.~D4!,

A~k,v!5
2Dpg

2 wk
2g~v1ek!2

~v1ek!2~v22Ek
2!21g2~v22ek

22Dsc
2 wk

2!
.

~D10!
can
ar

e

sily
c-

Thus we can infer thata0950. Nevertheless, a small amou
of impurity scattering will restore a nonvanishinga09 , since
it is likely to produce a nonzeroA(k,2ek) in Eq. ~D3!. In
thed-wave case, the impurity renormalized imaginary part
the pair susceptibility has the following form:25

x9~q,V1 i01!52(
k
E

2`

` dv

2p
Im GR~v,k!A0~V2v,q2k!

3@ f ~V2v!2 f ~v!#wk2q/2
2 , ~D11!

where both ImGR ~the spectral function of the full Green’
functionG) andA0 ~the spectral function of the bare Green
function G0) are dressed with the impurity self-energy. T
see the order of magnitude of this effect, we make a cr
approximation of this formula by assuming that only the f
G is dressed by impurities but notG0 which is equivalent to
the statement that expression~D3! with renormalizedA is
valid. We model the impurity self-energy in the Born limit b
S imp(v)52 isuvu ~as is reasonable close to the Fermi s
face in thed-wave case!, wheres is a dimensionless constan
parametrizing the concentration of scatterers. Assumins
!1 ~clean limit!, we obtain

A~k,2ek!522
suekuD2wk

2

D4wk
414s2ek

4
, ~D12!

which, in conjunction with Eq. ~D3! and identifying
2sueku with g yields an expression identical to Eq.~D7!.
Using reasoning similar to that leading to Eq.~D9!, we arrive
at the following estimate fora09 in the presence of impurities

a0952 ln 2 N~0!
sT

D2
. ~D13!

More complete numerical results are shown in Fig. 4.
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