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We show how recent angle resolved photoemission measurements addressing the Fermi arcs in the cuprates
reveal a very natural phenomenological description of the complex superfluid phase. Importantly, this phenom-
enology is consistent with a previously presented microscopic theory. By distinguishing the order parameter
and the excitation gap, we are able to demonstrate how the collapse of the arcs below Tc into well defined
nodes is associated with the smooth emergence of superconducting coherence. Comparison of this theory with
experiment shows good semiquantitative agreement.
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In the past most of the interest in lower Tc cuprate super-
conductors has focused on the exotic, non-Fermi-liquid nor-
mal phase. In a recent paper by Kanigel et al.,1 angle-
resolved photoemission spectroscopy �ARPES� experiments
on several underdoped samples of Bi2Sr2CaCu2O8 �Bi2212�
were used to establish key features of the superconducting
phase. In particular, it was reported1 that �i� the ARPES-
measured excitation gap, ��k ,T� is roughly constant in tem-
perature from T=0 to above Tc. �ii� Below Tc, ��k� displays
the d-wave point nodes which broaden into Fermi arcs above
Tc, with the change occurring within the width of the resis-
tive transition at Tc. �iii� It is claimed2 that the energy scale
of the excitation gap is T�, or the pseudogap3,4 onset tem-
perature, and that the Fermi arc-length scales with T /T�

above Tc. From �i� it is inferred that �iv� “the energy gap is
not directly related to the superconducting order parameter.”

These latest experiments have underlined the fact that the
superfluid phase is itself very complex in the presence of a
normal-state gap or “pseudogap.”3,4 Some theories5,6 seem to
suggest that the already large pseudogap becomes the order
parameter immediately below Tc, which would seem to im-
ply an �unphysical� jump in the order parameter and in the
superfluid density, ns. In our approach we show how these
important photoemission observations reveal a more natural
description of the superfluid phase. We then review a micro-
scopic model consistent with this phenomenology which has
been demonstrated4 to be compatible with a variety of other
experiments and show that it yields good semiquantitative
agreement with a large number of different representations of
these recent photoemission data.

Our microscopic scheme is based on a BCS–Bose-
Einstein condensation �BEC� crossover scenario4,7 and is dis-
tinct from the phase fluctuation scenario.5,8,9 It has been
argued10 to be appropriate to the cuprates because of their
very short coherence length. We emphasize the generic fea-
tures of our framework. One assumes that there are attractive
interactions that lead to pairing which, in turn, gives rise to a
gap in the fermionic spectrum. Noncondensed pairs above Tc
contribute to this excitation gap, �, just as do condensed
pairs. Thus, we infer that below Tc, � contains two contribu-
tions, �sc from condensed and �pg from noncondensed pairs.
Since the pair density is associated with the square of the
gap, these contributions add in quadrature to yield

�2 = �sc
2 + �pg

2 . �1�

The same equation is consistent with points �i� and �iv�
above. Note that the superfluid density ns�T� is observed to
vanish smoothly as Tc is approached from below, which re-
quires that the superconducting order parameter �sc turn on
continuously as in a second-order phase transition. We then
conclude that because the excitation gap ��k ,T� is roughly a
constant in T across Tc, there must be another component to
the excitation gap below Tc, which compensates for the T
dependence in �sc�T�. The simplest approach is to think of
this term �i.e., �pg

2 �T�� as a “fluctuation” contribution of the
form ��2�− ���2.

The normal-state analysis of ARPES experiments has al-
ready made substantial use6,11,12 of a broadened BCS form13

for the fermion self energy

�pg�k,�� =
�k,pg

2

� + �k + i�
− i�0. �2�

Here the broadening ��0 and “incoherent” background con-
tribution �0 reflect the fact that noncondensed pairs do not
lead to true off-diagonal long-range order. We adopt a
tight-binding model for the band dispersion �k, although the
detailed band structure is of no importance in our calcula-
tions, which address ARPES data points along the Fermi
surface �k=0. We define �k,pg=�pg�k, and we introduce
�k=cos�2��, to reflect the d-wave k dependence along the
Fermi surface.

In contrast to earlier scenarios5,6 here we distinguish the
superfluid from the normal phases via an additional compo-
nent of the self-energy arising from the condensate �sc so
that

��k,�� = �pg�k,�� + �sc�k,�� �3�

�sc�k,�� =
�k,sc

2

� + �k
, �4�

with �k,sc=�sc�k. �sc is associated with long-lived con-
densed Cooper pairs and so it is of the same form as �pg
but without the broadening. With this self-energy in
Green’s functions, the resulting spectral function, A�k ,��
=−2 Im G�k ,�+ i0� can be readily determined. One can see
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that the spectral function at all k contains a zero at �=−�k
below Tc, whereas it has no zero above Tc. This dramatic
effect of superconducting coherence will be reflected in the
disappearance of Fermi arcs below Tc.

Since �pg represents a contribution from thermal bosonic
fluctuations, it should vanish in the ground state and roughly
be of the general form

�pg
2 �T� = �T/Tc���2�Tc�, T 	 Tc. �5�

Using this equation one can determine Tc as the lowest tem-
perature at which �sc=0. The exponent � in general varies
between 3 and 3/2, which corresponds to linear and quadratic
pair dispersion, respectively. What is important is not the
value of �, but that at Tc the order parameter vanishes, and
the term �pg accounts for the entire excitation gap ��Tc�.

In the underdoped regime, because ��T����Tc�, it would
appear that the smooth vanishing of the superfluid density ns
at Tc introduces a challenge for theory. In one-gap
scenarios5,6 �which seem to assume �sc�Tc

−�=��Tc
−�� one

needs to demonstrate explicitly why there is no discontinuity
in ns at Tc. By including two gap parameters below Tc, we
arrive at a natural understanding of ns. Importantly, it is only
the condensed pairs which contribute to the Meissner mag-
netic screening, as expected, so that ns
�sc

2 , which thus van-
ishes smoothly at Tc. Indeed, this is a natural consequence if
one considers superconductivity as Bose condensation of
Cooper pairs. The noncondensed pairs discussed above con-
tribute to the destruction of ns in addition to the usual fermi-
onic terms.14 These bosonic contributions are clearly re-
quired since the number of fermionic excitations �
T /�� is
smaller than the total fermion number for all T	Tc. The
phase fluctuation scenario8 similarly invokes bosonic excita-
tions to destroy ns at Tc.

We will show below that, at a semiquantitative level, we
can address ARPES data by assuming for all T�T�

1 + U�
k

1 − 2f�Ek�
2Ek

�k
2 = 0, �6�

Here Ek=	�k
2 +�k

2, with �k=��k; U�0 is the pairing inter-
action strength,14 and f�x� is the Fermi function. The ratio
��T� /��0� as a function of T /T� is then given by a nearly
universal curve independent of the doping concentration, x.
In the underdoped regime, ��Tc� is large so that Eq. �6� is
consistent with a very high T��Tc and a roughly constant
gap within the superfluid phase.

We briefly present a T-matrix approach from which Eqs.
�1�–�6� were previously derived, noting that more details can
be found elsewhere.4 The BCS-like constraint in Eq. �6� can
be interpreted as equivalent to the BEC condition that the
noncondensed pairs have zero chemical potential pair=0 at
and below Tc. This determines the form of the noncondensed
pair propagator tpg�Q�=U / �1+U��Q�� such that tpg�0�=� at
T	Tc, where ��Q�=�KG0�Q−K�G�K��k−q/2

2 , is the pair sus-
ceptibility. Here G and G0 are the full and bare Green’s
functions, respectively. To make direct association with Eq.
�6�, we drop the � and �0 term �which are more important
above than below Tc� in Eq. �2� and arrive at ��k ,��
��k

2 / ��+�k� for T	Tc. This reasonable approximation can

be used to determine the form for G, and establish an equiva-
lence between Eq. �6� and the BEC condition pair=0.

To establish the validity of Eqs. �2� and �4�, we note
that there are two contributions to the full T-matrix
t= tpg+ tsc where the condensate contribution tsc�Q�
=−

�sc
2

T ��Q�. Similarly, we have for the fermion self-energy
��K�=�sc�K�+�pg�K�=�Qt�Q�G0�Q−K��k−q/2

2 , from which
Eq. �4� follows at once. A vanishing chemical potential
means that tpg�Q� diverges at Q=0 when T	Tc. Thus, in the
superfluid phase only, we approximate13,15 �pg�K� to yield
�pg�K��−G0�−K��k,pg

2 , where �pg
2 
−�Q�0tpg�Q�. We thus

may write �pg�k ,��=�k,pg
2 �T� / ��+�k�+small corrections,

where we accommodate the corrections13 with the broaden-
ing factor � and additional term �0. This is necessary in
order to address the concrete fermion spectral function. In
this way, Eq. �2� then follows. Finally, at small four-vector
Q
�� ,q�, we expand the inverse of tpg, after analytical con-
tinuation, to obtain a simple quadratic dispersion4 for the
pairs �q�q2 / �2M��, implying �=3 /2.

To illustrate the simple physics, we do not attempt to do
detailed curve fitting. We use one set of parameters for all
doping x. Thus, in our numerical results we take only �0 and
��95 K� as adjustable to optimize overall fits to the multiple
data sets. More concretely, we obtain the universal curve
��T� /��0� as a function of T /T� from Eq. �6�, say, at optimal
doping, and use the experimentally known value of ��0� at
given doping concentration x to determine an input T� and
input gap ��T�. This value of T� is to be distinguished from
the T� obtained in ARPES experiments, here called Tex

� . For
our tight binding, quasi-two-dimensional lattice, Eq. �6�
yields 2��0� /T��4.3. In ARPES experiments, Tex

� is deter-
mined as the temperature where � and � are roughly equal
so that there is no observable density depletion at the Fermi
level. The experimentally deduced ratio from ARPES data2 is
slightly larger than 5 for moderately underdoped samples,
and increases with underdoping. A higher ratio of 8 has been
observed in local STM measurements.16 The next step theo-
retically is to use the known Tc to determine �pg�T� and
�sc�T� below Tc, using Eqs. �5� and �1�. One can then deter-
mine an “experimental” Tex

� and spectral gap following the
ARPES prescription for given parameters � and �0.

To make this determination, we choose our adjustable pa-
rameters �0 and � via a rough fit to ARPES data near
Tc��95 K� at optimal doping. Since �0 is primarily gov-
erned by the particle-hole channel,11 we take it to be inde-
pendent of doping and T, and given by �0=26 meV. The
broadening parameter � depends primarily on temperature.
Consistent with scattering rate measurements in the
literature,17,18 we take �=26 meV at 95 K, with
�=��95 K��T /95 K� above Tc and �=��Tc��T /Tc�3 below
Tc for given doping x, as used earlier.19 Finally, this yields a
ratio 2��0� /Tex

� =5.6�5.7 for the cases presented
below, consistent with experiment.2 Throughout �=0 and
� /4=45° denote the antinodal and nodal directions, respec-
tively. In order to compare with ARPES data, we convolve
the spectral function with a Gaussian instrumental broaden-
ing curve with a standard deviation �=3 meV, given by the
ideal ARPES resolution.

In the inset to Fig. 1�b� we plot the various gap param-
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eters �sc, �, and �pg as a function of temperature below Tc
and slightly above, for a typical underdoped system. Here for
definiteness we have chosen �=3 /2 in Eq. �5�. It can be seen
that, as T is lowered below Tc, the total excitation gap � is
essentially a constant while �sc increases from 0 at Tc to
reach the full gap value at T=0. By contrast, �pg monotoni-
cally decreases to 0.

In Figs. 1�a� and 1�b�, we plot the spectral function A���
for �k=0 �on the Fermi surface� at and slightly below Tc,
respectively, and for different angles. To illustrate the phys-
ics, here we do not include the ARPES instrumental broad-
ening. Just below Tc, the sharp dip at �=0 is associated with
the onset of a very small condensate, which nevertheless
leads to a depletion of the spectral weight at the Fermi level.
The coherence associated with the order parameter is better
illustrated near the nodal region where a gap, absent at Tc,
appears as T decreases, as shown for �=32° in the upper
inset. A closer inspection of the shape of A��� in Fig. 1�b�
suggests that A��� cannot be described by a simple broad-
ened BCS spectral function.

Figure 2 presents a plot of the spectroscopic gap for an
underdoped cuprate with x=0.125 as a function of angle and
for various temperatures below �dashed curves� and above Tc
�solid curves�. Here the spectral gap is given by half the
peak-to-peak distance in the spectral function, and is smaller
than the input gap ��T�. For T�Tc, since the gap is roughly
T independent, the various curves tend to coalesce. Above
Tc, the extended range of zero gap value around �=45°
gives rise to the Fermi arcs.6,12 This is due to the presence of
�. The rapid deviation of the �red dashed� T=0.99Tc curve

from the �black solid� T=Tc curve indicates a collapse of the
Fermi arc, leading to the protected nodes below Tc, reflecting
the emergence of superconducting order below Tc. This fig-
ure should be compared with Fig. 2 of Ref. 1.

In Fig. 3 we plot the relative loss of spectral weight
L���=1− I�0� / I����, defined following Ref. 1, at the antin-
ode �=0 as a function of T for different doping concentra-
tions, where I���
A���. This determines Tex

� as where L�0�
vanishes. The lower left inset presents plots of L��� as a
function of � for various temperatures while the upper right
inset illustrates the antinode behavior L��=0� as a function
of T /Tex

� . Above Tc the dependence is linear in T, reflecting a
linear T dependence in �. Illustrated in the upper inset is a
considerable universality above Tc as a function of T /Tex

� ,
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FIG. 1. �Color online� Spectral function A��� for x=0.125 at �a�
T=Tc and �b� 0.95Tc at different angles � along the Fermi surface
of a cuprate superconductor, where � increases by 4.5° from 0° to
45° along the direction of the arrow. The upper inset shows the
temperature dependence of A��� at �=32° near the node, with
T /Tc=1, 0.99, 0.95, 0.9, 0.8, 0.6, and 0.3 in the direction of the
arrow. Shown in the lower inset are the gaps vs T below Tc. The
effects of phase coherence are more pronounced in the nodal region
of the Fermi surface, where the gap is small.
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which provides a prediction for future ARPES data analysis.
As the temperature decreases, the abrupt jump at Tc reflects
the onset of phase coherence, as in Fig. 2. Here the x=0.1
and x=0.135 lines are close to the data for the 67 and 80 K
samples in the upper panel of Fig. 4 in Ref. 1.

Finally, Fig. 4 shows the sharp collapse of the Fermi arcs
from above to below Tc; we plot the percentage of arc length
as a function of T /Tex

� and for different doping concentra-
tions from the optimal to the underdoped regime. The small
nonvanishing arc length at low T reflects the finite ARPES
resolution. As a consequence of the Fermi arc collapse below
Tc, the nodes are “protected.” In addition, there is a clear
universality seen in the normal state, in good agreement with
the central features observed experimentally, shown in Fig. 4
of Refs. 1 and 2. Since the mean-field equation is only a
crude approximation above Tc, it is reasonable to allow Tex

�

to vary slightly, as we have done here, to compare semiquan-
titatively with the data. By contrast with Ref. 1, however, our
curves are not strictly straight lines, reflecting the nonlinear-
ity of the gap as a function of �−� /4, as also found in Ref.
6; this seems to be consistent with Fig. 4 of Ref. 2.

The microscopic approach4 considered here is associated
with stronger-than-BCS attractive interactions which lead to
small pair size. A major consequence of this theory �as well
as the equivalent phenomenology which ARPES experiments
lead us to infer� is that pseudogap effects persist below Tc in
the form of noncondensed pair excitations of the condensate.
Importantly, this leads to two contributions to the self-energy
below Tc �see Eq. �4��. We find that the collapse of the Fermi
arcs is not to be associated with an abrupt disappearance �as
assumed elsewhere6� of the inverse pair lifetime �, appearing
in �pg, but rather it reflects the gradual emergence of the
condensate, appearing in �sc, to which the finite momentum
pairs are continuously converted as T decreases.
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FIG. 4. �Color online� Fermi arc length as a function of T /Tex
�

for doping concentrations from optimal to underdoping for a cu-
prate superconductor. Fermi arc length is typically finite above Tc

and drops to zero upon the onset of phase coherence. The normal
state portions of the curves is close to universal, in agreement with
Ref. 2. The comparison in the inset between the theory with a
slightly �15%� enlarged Tex

� and experimental data �symbols�
�Ref. 1� shows a good semiquantitative agreement.
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