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We present a simple and systematic characterization of the radio frequency (rf) spectra of homoge-

neous, paired atomic Fermi gases at general temperatures T in the presence of final-state interactions. The

spectra, consisting of possible bound states and positive as well as negative detuning (�) continua, satisfy

exactly the zeroth- and first-moment sum rules at all T. We show how to best extract the pairing gap and

how to detect the � < 0 continuum arising from thermally excited quasiparticles, not yet seen experi-

mentally. We explain semiquantitatively recent rf experiments on ‘‘bound-bound’’ transitions, predicting

effects of varying temperature.
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The superfluid and normal phases in trapped Fermi gases
undergoing BCS to BEC crossover have presented us with
novel forms of superfluidity. An important characteristic of
any superfluid is the pairing gap which is best probed in the
gases using radio frequency (rf) spectroscopy. This tech-
nique has been addressed experimentally [1–3] as well as
theoretically [4–9]. The goal of this paper is to present a
single formalism for the rf spectra at all T and all frequen-
cies, including the final-state effects [6–9]. Armed with a
full understanding, we show how to extract the gap �ðTÞ.
By including the effects of finite T, not only does this lead
to a better experimental insight into the entire spectrum,
but it provides a basis for comparing and assessing differ-
ent theoretical approaches to BCS-BEC crossover.

A successful theory of a Fermi gas near unitarity not
only has a pairing gap which appears [4,5,7] at T� > Tc,
but also (i) exhibits a second order phase transition at Tc.
Studies of this smoothly varying (from above T� to T ¼ 0)
pairing gap, reminiscent of its counterpart in the high Tc

superconductors, may elucidate some of the physics of the
cuprates [10]. (ii) On physical grounds [4,5,7] it is clear
that the rf current Ið�Þ reflects the pairing gap �ðTÞ rather
than coherent superfluid order parameter �scðTÞ. At odds
with this first observation is the fact that all crossover
theories which include pairing fluctuations [11–14] except
the present one, lead to first order transitions at Tc. At odds
with the second observation is that alternative calculations
[8,9,15] of Ið�Þ consider only the T � 0 superfluid and/or
separately the normal phase even though, at T < T�, the
presence or absence of superfluid order in the rf spectra
should not lead to fundamentally different physics.

We consider a homogeneous system, relevant to recent
tomographic experiments [2]. We find at T � 0, the spec-
trum consists of (possibly) bound state contributions which
either appear at positive or negative detuning, � and, (al-
ways), positive as well as negative � continuum contribu-
tions which reflect � and the fermionic chemical potential
�. We emphasize the � < 0 continuum which derives
from thermally excited quasiparticles, first discussed in

Ref. [16]. A central finding is that it can be strongly
enhanced by final-state interactions and made visible in
future tomographic experiments. Near unitarity, these
bound state enhancements of the � < 0 continuum facili-
tate the extraction (using sum rules) of the gap � and the
chemical potential �. We explain semiquantitatively re-
cent low T experiments and make predictions for the
accompanying T dependences which should be observable.
The rf technique focuses on the three lowest energy

atomic hyperfine states (two of which are involved in the
pairing, while a third provides a final ‘‘excited’’ state for
one component of a pair). For definiteness, we first con-
sider a superfluid of pairs in the equally populated hyper-
fine 1–2 levels and apply a radio frequency !23 to excite
the atoms in state 2 to state 3. Based on linear response, [4–
6] our T-matrix-based formulation of the finite T rf prob-
lem is compatible (in the T ! 0 limit) with that of
Refs. [8,9].
The T-matrix used here (for the 1–2 channel) is consis-

tent [10,17] with the BCS-Leggett ground state equations
and involves one bare and one dressed Green’s function in
the form

t�1
12 ðQÞ ¼ g�1

12 þX
K

G1ðKÞG0
2ðQ� KÞ; (1)

t�1
13 ðQÞ ¼ g�1

13 þX
K

G1ðKÞG0
3ðQ� KÞ; (2)

where g12 and g13 parameterize the interaction between 1
and 2 and 1 and 3, respectively. We have introduced the
dressed Green’s function G ¼ ½ðG0Þ�1 ����1 and G0 is
the Green’s function of the noninteracting system. Here the
subscripts indicate the hyperfine levels, K � ði!l;kÞ,Q �
ði�n;qÞ are 4-momenta with

P
K � T

P
l

P
k , etc., and !l

and �n are fermion and boson Matsubara frequencies,
respectively. Throughout we take @ ¼ kB ¼ 1 and assume
a contact potential (so that the strict Hartree self-energy
vanishes) and a (nearly) empty population in the hyperfine
3 state so that G3ðKÞ � G0

3ðKÞ. As has been demonstrated

elsewhere [10], it is reasonable to take the self-energy (on
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the real frequency axis) in the Green’s functionsG1 andG2

to be of the generalized BCS form �ð!;kÞ � �2

!þ�k

although this approximation is not essential. Similarly,
we have shown [10] that, below Tc, �ðTÞ is constrained
by a BCS-like gap equation which can be written as 1þ
g12�12ð0Þ ¼ 0 where �12ðQÞ ¼ P

KG1ðKÞG0
2ðQ� KÞ, in

conjunction with a fermion number equation. More gen-
erally, the propagator for noncondensed pairs is of the form
t12ðQÞ ¼ g12=½1þ g12�12ðQÞ�.

In this way, one derives the usual gap (determining
�ðTÞ) and number [determining �ðTÞ] equations associ-
ated with generalized BCS theory. The difference between
the excitation gap �ðTÞ and the order parameter �scðTÞ is
associated [10] with noncondensed pair effects parameter-
ized by �2

pg, which enter as

�2
pgðTÞ ¼ �2ðTÞ � �2

scðTÞ ¼ �X
Q�0

t12ðQÞ: (3)

Thus, the pseudogap, �pg, persisting above Tc is self con-

sistently determined and Tc is deduced [10] as the T where
�scðTÞ first vanishes. We find Tc ¼ 0:25TF at unitarity.

The resulting diagram set for the rf response function,
DðQÞ, which depends on �ðTÞ is shown in Fig. 1. It is
convenient notationally to define a form of Gor’kov F
function in terms of the pairing gap as �G2ðKÞG0

1ð�KÞ ¼
�=ð!2

l þ E2
kÞ � FðKÞ where Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ �2ðTÞ

q
, and

�k ¼ �k ��, �k ¼ k2=2m. The first term on the right or
leading order term, D0ðQÞ, of the response function ap-
pears as the bubble and was introduced in Ref. [4]. It is
given byD0ðQÞ ¼ P

KG2ðKÞG0
3ðK þQÞ. From this we can

write the current (without final-state effects) as I0ð�Þ ¼
�ð1=�ÞImDR

0 ð�Þ. The second term on the right corre-

sponds to the Aslamazov-Larkin (AL) diagram [17] (called
DAL) which incorporates final-state effects. We neglect the
effects arising from the interaction between 2 and 3, as in
the approach in Ref. [6].

Because of the constraints imposed by the BCS-like gap
equation, t12ðQÞ diverges at Q ¼ 0 so that it is reasonable
to set Q in t12 to zero, i.e., t12ðQÞ � �ð�2=TÞ�ðQÞ. This
assumption, leading to the approximated form for�ð!;kÞ,
is not essential for understanding the physics but it does
greatly simplify the calculations [18]. For this reason we

adopt the counterpart assumption for evaluating DAL in
Fig. 1 which corresponds to introducing opposite momenta
�K for particles 1 and 2 in this diagram.
Writing out the AL diagram yields DALðQÞ ¼

½PKFðKÞG0
3ðK þQÞ�2t13ðQÞ. For the rf field, Q ¼

ði�n; 0Þ so that Dði�nÞ � DðQÞ. We take �3 satisfying
fð�k;3Þ ¼ 0, where �k;3 ¼ �k ��3. Then the rf current,

given by the retarded response function, is Ið�Þ �
�ð1=�ÞImDRð�Þ, where � � �þ���3, and

DðQÞ ¼ D0ðQÞ þ ½D2ðQÞ�2
m=4�a13 þD1ðQÞ : (4)

Here D2ðQÞ � P
KFðKÞG0

3ðK þQÞ and D1ðQÞ �P
KG1ðKÞG0

3ðQ� KÞ �P
kð1=2�kÞ. We note that

t�1
13 ðQÞ ¼ m=4�a13 þD1ðQÞ, where a13 (and a12) are the
s-wave scattering length in the 1–3 (and 1–2) channels,
respectively. In general, features in the rf spectra derive
from the poles and imaginary parts of D0ðQÞ, D1ðQÞ and
D2ðQÞ. We note that these three complex functions are the
same as their wave function calculation counterparts [9] if
the pairing gap � is chosen to be order parameter �sc and
T � 0. It is � not � that should be identified with the
experimental rf detuning. Here and below, we make use of
the fact that we can write

t�1
13 ð0Þ ¼ ðg�1

13 � g�1
12 Þ þ t�1

12 ð0Þ ¼ g�1
13 � g�1

12 : (5)

This leads to the central analytical result of this Letter,
which shows, how with final-state effects included, the rf
current can be written in a very compact and simple form

Ið�Þ ¼
�
1

g12
� 1

g13

�
2 I0ð�Þ
j�t�1;R
13 ð�Þj2

¼ � 1

�

�
m

4�a13
� m

4�a12

�
2 �2

�2
Im�tR13ð�Þ; (6)

where �tR13ð�Þ � tR13ð�Þ. This expression can be readily

extended to include the effects of population imbalance.
The simplicity of this result, which is built around strict
BCS mean field theory (except that �ðTÞ � �scðTÞ),
should make it accessible for general application, with-
out requiring complicated numerics. The calculations

are no more complex than those for I0ð�Þ ¼ ð1=�Þ�
ð�2=�2ÞIm�t�1;R

13 ð�Þ, since one generally calculates

Re�t�1;R
13 ð�Þ as well. Note that after some straightforward

algebra, one can show that when g13 ¼ g12 there is an
exact cancellation such that Ið�Þ � �ð�Þ.
Equations (6) make it clear that final-state effects in the

rf current directly reflect the T matrix in the 1–3 channel.
Thus, the spectrum may contain a bound state associated
with poles at �0 in t13, as determined by t�1

13 ð�0Þ ¼ 0. This
leads to the so-called ‘‘bound-bound’’ transition. In addi-
tion, there is a continuum associated with both the numera-
tor and denominator in the first of Eqs. (6), with each
contribution spanned by the limits of � ¼ �k � Ek, i.e.,

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p þ�Þ 	 � 	 0 and � 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p ��.

FIG. 1 (color online). Feynman diagrams for the rf response
function DðQÞ. The left bubble is the lowest order D0, whereas
the right diagram, DAL, is associated with final-state effects.
Here thin (thick) lines stand for bare (full) fermion propagators,
the dashed line for t12, approximated as the condensate, and
double wiggly line for t13. The numbers in blue indicate the
hyperfine levels.
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The continuum at positive frequencies is primarily associ-
ated with breaking a pair and promoting the state 2 to state
3. This represents the so-called ‘‘bound-free’’ transition.
On the negative detuning side, the continuum is primarily
associated with promoting to state 3 an already existing
thermally excited 2 particle. The spectral weight of the
negative continuum vanishes exponentially at low T as

e��=T . Therefore, there is a strong asymmetry in the con-
tinuum with the bulk of the weight on the positive fre-
quency side for low T. If the bound state falls within the
negative continuum, it will acquire a finite lifetime, and
decay quickly at high T.

Of importance, in assessing a theoretical framework for
computing the rf current are the two sum rules associated
with the total integrated current and the first moment or
‘‘clock shift’’ [6]. Using the Kramers-Kronig relations
between RetR13 and ImtR13, it is easy to prove that, not

only in the ground state, but also at finite temperature,
Eq. (6) satisfies

R
d�Ið�Þ ¼ n2 � n3 and

R
d��Ið�Þ ¼

�2 m
4� ð 1

a12
� 1

a13
Þ where n2 and n3ð¼ 0Þ are the density of

state 2 and 3 atoms, respectively. Then the clock shift is

�� ¼
R
d��Ið�ÞR
d�Ið�Þ ¼ �2

n2 � n3

m

4�

�
1

a12
� 1

a13

�
; (7)

which agrees with Ref. [6] when n3 ! 0. This sum rule is
satisfied only when a13 � 0 and when both diagrammatic
contributions are included. It is easy to show that at large �,

I0ð�Þ � ��3=2, ImtR13 � ��1=2, so that Ið�Þ � ��5=2, in

agreement with Ref. [8]. Clearly, the first moment of Ið�Þ
is integrable, whereas the first moment of I0ð�Þ is not.
Finally, Eq. (6) reveals that the spectral weight (including
possible bound states) away from � ¼ 0 will disappear
when the gap � vanishes.

Figures 2(a) and 2(b) illustrate the behavior of the spec-
trum Ið�Þ when the initial state 1–2 pairing is at unitarity
(i.e., at 834 G) and the final-state 1–3 pairing is on the BCS
side of the 1–3 resonance, for temperatures T=TF ¼ 0:1,
0.3, and 0.45. The parameters we use are taken from
Ref. [19]. The inset of Fig. 2(a) indicates the behavior in
the absence of final-state effects for the same temperatures.
The asymmetry of the continuum around � ¼ 0, discussed
earlier, is evident even in this leading order bubble dia-
gram. As T is raised the spectrum becomes more symmet-
ric. In Fig. 2(a), the final-state interaction 1=kFa13 ¼ �1 is
relatively weak, and there is no bound state. In contrast, at
1=kFa13 ¼ �0:5 (or TF � 6 �K) in Fig. 2(b), a bound
state emerges at low T (although it disappears at moderate
temperatures when the gap becomes small). For the low
TF � 2:5 �K used in Ref. [1], and taking 1=kFa13 ¼
�0:77 from the literature [19], we do not find a bound
state. These results are consistent with T ¼ 0 calculations
of Basu andMueller [9]. It should be stressed that, at 834 G
for a typical TF, when the bound-bound transition occurs, it
is barely separated from the asymmetric bound-free con-
tinuum, which is always present.

Figure 3 presents the analogous plots at different T for rf
transitions from an initial 1–3 superfluid with TF ¼
40 kHz at (a) 811 and (b) 750 G, which are on the BCS
side of the 1–3 resonance (which appears at 690 G). The
system is subject to an rf field promoting state 1 to state 2.
‘‘Bound-bound-like transitions’’ [20] now appear. In
Fig. 3(a), the bound state falls within the negative detuning
continuum. Importantly, the disappearance of the bound
state with temperature is preceded by a very unusual two-
peaked spectrum in the negative detuning regime, which is
seen at the two higher T. We can understand this unusual
structure as a combination of the peak from the negative
continuumwhich appears very close to � ¼ 0, (as also seen
in Fig. 2) and the nearby bound state peak. At even higher
T, the spectral weight will shift almost completely to the
region near � ¼ 0� and the bound state decays rapidly. As
� ! 0�, the negative continuum peak is a combined effect
of the vanishing Im�tR13 and the diverging factor 1=�2 in

Eq. (6). In Fig. 3(b), the bound state is outside the con-
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FIG. 2 (color online). rf current Ið�Þ as a function of rf detun-
ing � for transitions from unitarity 1=kFa12 ¼ 0 at 834 G to final
state (a) 1=kFa13 ¼ �1 and (b) �0:5 in the BCS regime,
corresponding to TF ¼ 31 and 124 kHz, respectively. The tem-
peratures are T=TF ¼ 0:1 (black solid), 0.3 (red dashed) and 0.45
(blue dot-dashed lines). Here Tc ¼ 0:25TF. The sharp lines next
to the right continuum in (b) correspond to bound states. Inset:
Lowest order rf current I0ð�Þ vs �.
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FIG. 3 (color online). rf current Ið�Þ as a function of detuning
� for 1 ! 2 transitions in a 1–3 superfluid of TF ¼ 40 kHz
(a) from 1=kFa13 ¼ �0:804 to final states 1=kFa23 ¼ 0 at
811 G, and (b) from 1=kFa13 ¼ �0:524 to 1=kFa23 ¼ 0:68 at
750 G, for different temperatures as labeled. Here Tc=TF ¼ 0:15
and 0.17, respectively. In (b) when T is high and � is small, the
two peaks around � ¼ 0 may not be resolvable experimentally.
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tinuum, and the binding energy is fairly insensitive to
temperature. We have chosen experimentally accessible
parameters here, so that the unusual double-peaked struc-
ture in Ið�Þ at � < 0 should be observable. Finally, we
emphasize that the highest T cases in Figs. 2 and 3 are at or
above Tc, so that the continuum appears only because there
exists a pseudogap in the fermionic spectrum.

Figure 4 addresses recent data [2] associated with 1–3
pairing and rf excitation from state 3 to state 2. The
calculations of Ið�Þ shown in the (black) solid curves in
all six panels were performed with experimental parame-
ters, and should be compared with Fig. 4 of Ref. [2]. To
help in the comparison a number of data points (normal-
ized to the same peak height) have been inserted. The sharp
bound states will, in the data, be broadened both instru-
mentally and from limited spatial and energy resolution.
Except for a slight broadening which we have ignored here,
our calculated black solid curves, which incorporate final-
state effects, can be seen to be in semiquantitative agree-
ment with experiment. We anticipate that at higher T (red
dashed lines), the negative � continuum states should start
to become apparent. If seen, this will add further support
for the present calculations, in addition to the reasonable, a
posteriori agreement shown here.

Finally, we note that the most practical way to extract the
pairing gap �ðTÞ near unitarity, within the BCS-Leggett
crossover formalism, is using the sum rule in Eq. (7). If one

integrates the precise theoretical values in Fig. 3(a) (with-
out any experimental broadening) from � ¼ �2TF to � ¼
þ2TF, the accuracy is within�20%. We find the accuracy
is improved if one exploits final-state effects to create a
bound state in the negative continuum as in Fig. 3(a). These
observations lend underlying support to the importance of
the present calculations and point out that future experi-
ments should not focus exclusively on situations where
final-state effects can be neglected. Finally, we note that,
together with the � > 0 continuum threshold which ap-

pears at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p ��, one can also determine � and
hence the important factor �.
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1131 (2004).

[5] Y. He, Q. J. Chen, and K. Levin, Phys. Rev. A 72, 011602
(R) (2005); Y. He, C. C. Chien, Q. J. Chen, and K. Levin,
Phys. Rev. A 77, 011602(R) (2008).

[6] Z. Yu and G. Baym, Phys. Rev. A 73, 063601 (2006);
G. Baym, C. J. Pethick, Z. Yu, and M.W. Zwierlein, Phys.
Rev. Lett. 99, 190407 (2007).

[7] M. Punk and W. Zwerger, Phys. Rev. Lett. 99, 170404
(2007).

[8] A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. 100,
010402 (2008).

[9] S. Basu and E. J. Mueller, Phys. Rev. Lett. 101, 060405
(2008).

[10] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, Phys. Rep.
412, 1 (2005).

[11] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger,
Phys. Rev. A 75, 023610 (2007).

[12] P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. B 70,
094508 (2004).

[13] N. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, Phys.
Rev. A 75, 033609 (2007).

[14] H. Hu, P. D. Drummond, and X. J. Liu, Nature Phys. 3, 469
(2007).

[15] P. Massignan, G.M. Bruun, and H. T. C. Stoof, Phys.
Rev. A 77, 031601(R) (2008).

[16] J. Kinnunen, M. Rodriguez, and P. Törmä, Phys. Rev. Lett.
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FIG. 4 (color online). rf current Ið�Þ as a function of detuning
� for a 1–3 superfluid with rf excitation from state 3 to state 2.
The black curves are calculated at experimental parameters
of ð1=kFa13; 1=kFa12; T=TFÞ ¼ ð0:4; 3:3; 0:2Þ, (0.0, 2.6, 0.1),
(�0:3, 2.0, 0.1), (�0:7, 1.1, 0.09), (�0:9, 0.6, 0.09), and
(�1:2, 0.0, 0.06) from low to high fields. The red dashed curves
are calculated at twice the temperatures. The sharp lines on the
left indicate bound states. For comparison, experimental data are
marked by arrows for bound peak locations and by triangles for
the continuum.
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