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In this paper we present predictions for thermodynamic and transport properties of a BCS to Bose-
Einstein crossover theory, below Tc, which satisfies the reasonable constraints that it yields (i) the Leggett
ground state and (ii) BCS theory at weak coupling and all temperatures T . The nature of the strong
coupling limit is inferred, along with the behavior of the Knight shift, superfluid density, and specific
heat. Comparisons with existing data on short coherence length superconductors, such as organic and
high Tc systems, are presented, which provide some support for the present picture.
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Within the pseudogap regime of the cuprates, it has been
widely argued that the excitations of the superconducting
state are either fermionic [1] or bosonic [2] in character. In
this paper we discuss a third scenario [associated with the
BCS to Bose-Einstein condensation (BEC) crossover ap-
proach], in which the excitations contain a mix of bosonic
and fermionic properties [3].

The BCS-BEC crossover scheme has been viewed as
relevant to the cuprates and other “exotic” [4,5] super-
conductors where their short coherence lengths, j, natu-
rally lead to a breakdown of strict BCS theory. The
BCS-BEC scenario [3,6–9] owes its origin to Eagles [10]
and Leggett [11] who proposed a ground state wave func-
tion of the BCS form, C0 � Pk�uk 1 ykc

y
k"c

y
2k#� j0�,

which describes the continuous evolution between a BCS
system, having weak coupling g and large j, and a BEC
system with large g and small j. Here uk, yk are the stan-
dard coherence factors of BCS theory, which are deter-
mined in conjunction with the number constraint.

The essence of this paper is a characterization of the
excitations of C0 and their experimental signatures (for all
T # Tc). New thermodynamical effects stemming from
bosonic degrees of freedom must necessarily enter, as one
crosses out of the BCS regime, towards BEC. Here we
show that the bosonic excitations (which appear in the
gap equations and which we call “pairons”) are different
from the collective phase mode [12]: they generally have
a quadratic dispersion similar to that of a quasi-ideal BEC
system—a consequence of the mean field treatment of the
pairs which, in turn, is dictated by the general mean field
character of C0. These ideas are applied to the cuprates
and other short j superconductors.

We consider fermions, with lattice dispersion ek (mea-
sured with respect to the fermionic chemical potential
m), and with interaction Vk,k0 � gwkwk0 , where g , 0;
here wk � 1 and �coskx 2 cosky� for s- and d-wave pair-
ing, respectively. We begin by reviewing BCS theory, in
terms of a somewhat unfamiliar but very useful formal-
ism [13] which is then generalized [3,14] to the crossover
problem. For brevity, we use a four-momentum notation:
0031-9007�00�85(13)�2801(4)$15.00
K � �k, iv�,
P

K � T
P

k,v , etc. We also suppress wk
until the final equations.

BCS theory involves the pair susceptibility x�Q� �P
K G�K�G0�Q 2 K�, where the Green’s function G

satisfies G21 � G21
0 1 S, with order parameter Dsc and

S�K� � 2D2
scG0�2K�. In this notation, the gap equa-

tion is

1 1 gx�0� � 0, T # Tc . (1)

At Q � 0, the summand in x is the Gor’kov “F” function
(up to a multiplicative factor Dsc) and this serves to high-
light the central role played in BCS theory by the more
general quantity G�K�G0�Q 2 K�. Note that (for Q fi 0)
x�Q� is distinct from the pair susceptibility of the collec-
tive phase mode which enters as

P
K �G�K� �G�Q 2 K� 1

G�2Q 2 K�� 1 2F�K�F�K 2 Q�� [12,15]. Here, each
Gor’kov F function introduces one GG0, so that the col-
lective mode propagator depends on effectively higher or-
der Green’s functions than does the gap equation.

The observations in italics were first made in Ref. [13]
where it was noted that the BCS gap equation could be
rederived by truncating the equations of motion so that
only the one (G) and two particle (T ) propagators ap-
peared. Here, G depends on S which in turn depends
on T . In general, T has two additive contributions
[14], from the condensate (sc) and the noncondensed (pg)
pairs. Similarly, the associated self-energy [13] S�K� �P

Q T �Q�G0�Q 2 K� can be decomposed into Spg�K� 1

Ssc�K�. The two contributions in S come, respectively,
from Tsc�Q� � 2D2

scd�Q��T , and from the Q fi 0 pairs,
with Tpg�Q� � g��1 1 gx�Q��. In the leading order
mean field theory S � Ssc � 2D2

scG0�2K� which, from
Eq. (1), yields the usual BCS gap equation.

More generally, at larger g, the above equations hold
but we now include feedback into Eq. (1) from the fi-
nite momentum pairs, via Spg�K� �

P
Q Tpg�Q�G0�Q 2

K� 	 G0�2K�
P

Q Tpg�Q� 
 2D2
pgG0�2K�, which de-

fines a pseudogap parameter, Dpg. This last approxima-
tion is valid only because [through Eq. (1)] Tpg diverges
as Q ! 0. In this way, Spg�K� has a BCS-like form, as
© 2000 The American Physical Society 2801
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does the total self-energy S�K� � 2D2G0�2K�, where
D2 � D2

sc 1 D2
pg. Thus, in the present approach, the en-

ergy gap for single electron excitations reflects the pres-
ence of both finite center-of-mass momentum pairs as well
as the condensate. While the structure of the gap equation
will be seen to be formally identical to that in BCS the-
ory, the vanishing of the excitation gap, D, takes place at a
higher temperature than that at which the order parameter,
Dsc, vanishes. The latter defines Tc.

If we now expand T 21
pg �q, V� 	 a1V2 1 a0V 1

t0 2 Bq2 1 iG0
q, we see that the chemical potential of

the pairs mpair is proportional to t0, and, via Eq. (1),
precisely zero at and below Tc. This provides an inter-
pretation along the lines of ideal Bose gas condensation.
(Here, also, at small q, G0

q ! 0.) As g increases, the
term a0V in T 21

pg becomes progressively dominant with
respect to a1V2. For the physically relevant regime of
moderate g, we have found, after detailed numerical
calculations, that a1 may be safely neglected. At weak
coupling, there is no loss of generality in approximating
Tpg in this more particle-hole asymmetric way, since its
contribution is negligible. In this way, we can write

T 21
pg �q, V� � a0�V 2 Vq 1 mpair 1 iGq� . (2)
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As a consequence, we have

D2
pg � 2

X
Q

Tpg�Q� �
1
a0

X
qfi0

b�Vq� . (3)

We now rewrite Eq. (1), along with the fermion number
constraint, as

1 1 g
X
k

1 2 2f�Ek�
2Ek

w2
k � 0 , (4)

X
k

∑
1 2

ek

Ek
1

2ek

Ek
f�Ek�

∏
� n . (5)

Here, f�x� and b�x� are the Fermi and Bose functions
and Ek �

p
e2

k 1 D2w2
k is the quasiparticle dispersion.

Equations (3)–(5) are consistent with BCS theory at small
g, and with the ground state C0 at all g; in both cases the
right-hand side of Eq. (3) is zero. The simplest physical
interpretation of the present decoupling scheme is that it
goes beyond the standard BCS mean field treatment of the
single particles (which also acquire a self-energy from the
finite q pairs) but it treats the pairs at a self consistent,
mean field level.

The dispersion Vq � q2B�a0, as well as the coefficient
a0, are determined by a Taylor expansion of T 21

pg [16]:
T 21
pg �q, V� � g21 1

X
k

∑
1 2 f�Ek� 2 f�ek2q�

Ek 1 ek2q 2 V
u2

k 2
f�Ek� 2 f�ek2q�
Ek 2 ek2q 1 V

y2
k

∏
w

2
k2q�2 . (6)
For small g and in three dimensions (3D), the poles of Tpg
(at T � 0) occur at V �

p
3 cq, where c is the usual phase

mode velocity. At moderate g, where the pairons become
increasingly more relevant, and for quasi-2D dispersion
ek, Vq 	 q2

k�2M�
k 1 q2

��2M�
�. Here we find that the

ratio M�
k�M�

� ~ �t��tk�2, where tk and t� are the in- and
out-of-plane hopping integrals, respectively. Numerical
calculations show that the masses, as well as the residue
a0, are roughly T independent constants at low T [17]. In
the BEC regime at low density and with s-wave pairing in
a 3D continuous model, M� is 2me for all T # Tc [16], as
found previously [7]. The examples in this paper, which
apply to the fermionic regime, correspond to somewhat
smaller M�

k .
It is important to note that in strictly 2D the logarithmic

divergence on the right-hand side of the pseudogap equa-
tion (3) (which is essentially a boson number equation) im-
plies Tc � 0, as in an ideal Bose gas. For large anisotropy,
or small t�, Tc ~ 21� ln�t��tk�, which vanishes logarith-
mically [16]. Finally, since both a0 and the effective pair
mass (tensor) M� are constants at low T , Eq. (3) implies
D2

pg�T � � D2�T � 2 D2
sc�T � ~ T3�2. Moreover, because

D depends on T only exponentially, D2
sc�T � � D2�0� 2

AT3�2 at low T , where A is T independent.
We now calculate physical quantities such as the mag-

netic penetration depth (l) and related superfluid density
(ns), the Knight shift (Ks), and the NMR relaxation rate
(Rs) using techniques similar to those used to study fluc-
tuation effects in normal metal superconductors [18]. Here
the usual (lowest order) Maki-Thompson and Aslamazov-
Larkin diagrams are extended to be compatible with S and
T by applying the generalized Ward identity to incorpo-
rate the pairon vertex correction [12,18]. Finally, the spe-
cific heat Cy can be computed following a similar analysis
as for the paramagnon problem [19].

While in the BCS limit the expressions for l (or ns), Ks,
and Rs contain only the total gap D, here, they, in principle,
depend on both the quasiparticle (via D2) and the pairon
(via D2

pg) contributions [12,14]. This decomposition leads
to a form of “three fluid” model (including the condensate,
fermionic quasiparticles, and bosonic pairons). In the same
way, Cy can also be decomposed into a sum of two contri-
butions corresponding to an ideal Bose gas of pairons, with
dispersion Vq, and an ideal Fermi gas of quasiparticles,
with dispersion Ek. The pairon contributions to ns enter
as follows [3,14]: the general expression is identical to its
BCS counterpart, but with the overall multiplicative fac-
tor of D2 replaced by D2

sc � D2 2 D2
pg. By contrast, for

spin-singlet pairing, there is no explicit pairon contribution
to Ks and Rs, and the corresponding expressions reflect
the generalized excitation gap D, as might have been ex-
pected physically. The single most important conclusion
of this analysis is that the presence of low lying pair ex-
citations will introduce new low temperature power law
dependences with ideal Bose gas character into physical
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quantities. Below, we explore these power laws in the con-
text of highly anisotropic 3D, i.e., quasi-2D systems.

Figures 1(a) and 1(b) present a comparison between an
s-wave short j pseudogap (PG) superconductor and an s-
and d-wave BCS system. It should be noted that the short
j superconductors are still far from the BEC limit. For
the parameters illustrated by the figures, m deviates from
EF by roughly 3%. Here, and throughout this paper, we
take t��tk � 0.01. The main body of Fig. 1(a) indicates
that the Knight shift (and NMR relaxation rate, not shown)
at Tc are substantially reduced relative to their high T
asymptotes, i.e., Kn, as is illustrated by the solid line (for
the PG s wave). Because pairon effects are not explicit, the
low T behavior is exponentially activated as for the BCS
s-wave case, but here the ratio D�0��Tc is significantly
enhanced over the BCS value. Overall, the behavior of Rs

will yield rather similar plots; however, the s-wave BCS
limit exhibits the well-known Hebel-Slichter peak, which
is absent below Tc for the other two cases.

In the inset of Fig. 1(a), we plot the behavior of the
low T specific heat “coefficient,” g�T � 
 Cy�T , for the
same parameters as above. In the short j, quasi-2D case,
slightly above T � 0, g�T � will appear to be a constant
g�T� � g�, although it vanishes strictly at T � 0 as T1�2.
This intrinsic g� effect, which may have been seen in both
organic and cuprate (layered) superconductors [20], has, in
the past, been related to extrinsic effects. Figure 1(b) plots
the normalized superfluid density ns, or l22, vs T�Tc,
which for the PG (s-wave) case exhibits a T3�2 depen-
dence. Here, l (unlike Cy) is not particularly sensitive to
the mass anisotropy ratio, and the boson power law depen-
dence is more 3D.

In order to address d-wave effects in short j supercon-
ductors, we turn to the cuprates. Note, the dimensionless
coupling is g�tk. To be consistent with the observed metal-
insulator transition at half filling (x � 0), we introduce a
hole concentration x dependent renormalization of the in-
plane hopping integral tk�x� � t0x deriving from Coulomb

FIG. 1. Temperature dependence of (a) Knight shift, Ks, spe-
cific heat Cy�T (inset), and (b) superfluid density ns in con-
ventional s- and d-wave (BCS) and short j (PG) s-wave cases,
calculated at (n, 2g�4tk) as follows: s-BCS: (0.5, 0.5); s-PG:
(0.5, 0.7); d-BCS: (0.8, 0.225); d-PG: (0.92, 0.56).
correlations, and presume, in the absence of any more de-
tailed information about the pairing mechanism, that g is
x independent. Our quasi-2D band structure is taken from
the literature [21]; the one free parameter 2g�4t0 is chosen
(� 0.045) to optimize agreement with the energy scales in
the cuprate phase diagram. This calculated phase diagram
[3], deduced from Eqs. (3)–(5), can be shown to yield rea-
sonable agreement with experimental data. Two impor-
tant points should be stressed: (i) The chemical potential
m�EF differs from unity by at most a few percent over
the entire range of x. (ii) While the band mass increases
with underdoping due to Coulomb effects, the thermody-
namically measured mass, obtained from, for instance, the
Knight shift Ks�Tc� (or specific heat Cy�T at T2

c ), de-
creases with underdoping, as a consequence of the open-
ing of the pseudogap [see Fig. 2(c)].

Figures 2(a) and 2(b) illustrate the predicted behavior
of the Knight shift for the cuprates as a function of x and
T . Because it depends only on (d-wave nodal) quasipar-
ticle excitations, Ks exhibits a scaling with T�D�0� which
is illustrated in Fig. 2(b) via plots of Ks (normalized to its
high T asymptote Kn) for the entire range of x, and for
temperatures below each respective Tc�x�. An alternate
scaling form is shown in Fig. 2(a) where we plot Ks nor-
malized at Tc as a function of T�Tc for various x (with x
increasing from top to bottom). The near-collapse of the
different x dependent curves is similar to that found in the
experimental data [22] shown in the inset. The normaliza-
tion factor Ks�Tc� for this figure [which varies as the band
mass multiplied by Tc�D�0�] is plotted as a function of x
in Fig. 2(c). Also plotted here are our specific heat (Cy�T )
predictions for the pairon contribution to g� as compared
with the usual d-wave quasiparticle term [20] aTc as a
function of x. The pairon term becomes increasingly more
important with underdoping.
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FIG. 2. (a)– (b) Scaling behavior of the T dependence of
Knight shift, Ks, for the cuprates with respect to doping x, and
(c) doping dependence of g�T � � g� 1 aT and Ks at T2

c . In
(a) [and (b)], x varies from 0.05 to 0.2 from top to bottom.
For comparison, shown in the inset are experimental data from
Ref. [22] on underdoped (�), optimally doped (�, �), and
overdoped (�) Bi2Sr2CaCu2O81d single crystals. As per the
experimental convention for wk, we use 2D�0� in (b).
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FIG. 3. Comparison of penetration depth data [23], Dl, along
the a axis, in nominally pure YBCO6.95 single crystal, with
different theoretical fits corresponding to BCS d-wave (dashed
curve) and to BCS-BEC (solid curve) predictions. The corre-
sponding derivatives are plotted in the lower inset. In the upper
inset are experimental data (Dl vs T ) for the organic supercon-
ductor BEDT from Ref. [24].

In Fig. 3 we present a-axis penetration depth
data, Dl�T �, in a nominally clean optimally doped
YBa2Cu3O72d (YBCO) single crystal, from Ref. [23],
along with d-wave fits to our BCS-BEC theory and to
a straight line associated with a BCS superconductor.
Because these two fitted curves are essentially indistin-
guishable, in the lower inset we plot the slopes dl�dT
where the difference between the two sets of curves is
more apparent. Here it is shown that the low temperature
downturn of the derivative, seen to a greater or lesser
extent in all Dl�T � measurements, fits our predicted
T1�2 1 const dependence rather well. This downturn has
been frequently associated with impurity effects, which
yield a linear in T slope for Dl at very low T , and,
in this case, provide a poorer fit. While these cuprate
experiments were performed on a nearly optimal sample,
the same analysis of an underdoped material yielded simi-
larly good agreement, but with a T3�2 coefficient about
a factor of 2 larger. Future more precise and systematic
low T experiments on additional underdoped samples are
needed. Plotted in the upper inset are data [24] on the
organic superconductor k-�ET�2Cu�N�CN2�Br (BEDT,
Tc 	 11 K) which fit a pure T3�2 power law over a wide
temperature regime; in contrast to the cuprates, there is
no leading order linear term. At present, there seems to
be no other explanation (besides the pairon mechanism
presented here) for this unusual power law at the lowest
temperatures.

In summary, within a BCS-BEC crossover theory (based
on the Leggett ground state), we find that new low T
power laws associated with a quasi-ideal gas of bosonic
2804
pair excitations appear in the thermodynamic and trans-
port properties, which may be generally relevant to short j

superconductors.
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