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Thermodynamics of Interacting Fermions in Atomic Traps

Qijin Chen, Jelena Stajic,* and K. Levin
James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

(Received 17 March 2005; published 23 December 2005)
0031-9007=
We calculate the entropy in a trapped, resonantly interacting Fermi gas as a function of temperature for
a wide range of magnetic fields between the BCS and Bose-Einstein condensation end points. This
provides a basis for the important technique of adiabatic sweep thermometry and serves to characterize
quantitatively the evolution and nature of the excitations of the gas. The results are then used to calibrate
the temperature in several ground breaking experiments on 6Li and 40K.
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The claims [1–5] that superfluidity has been observed in
fermionic atomic gases have generated great excitement.
Varying a magnetic field B, one effects a smooth evolution
from BCS superfluidity to Bose-Einstein condensation
(BEC) [6,7]. In this Letter we use a BCS-BEC crossover
theory to study the entropy S over the entire experimentally
accessible crossover regime. Our goal is to help establish a
methodology for obtaining the temperature T of a strongly
interacting Fermi gas via adiabatic sweeps. This addresses
an essential need of the experimental cold atom commun-
ity by providing a temperature calibration for their experi-
ments [2,8,9]. In the process, we characterize quantita-
tively the evolution of the excitations and show how their
character evolves smoothly from fermionic to bosonic.

In adiabatic sweeps, the starting T at either a BEC or
BCS end point is estimated from the ‘‘known’’ shape of the
profile in the trapped cloud. Then, the temperature (near
unitarity, say) is obtained by equating the entropy before
the sweep to that in the strongly interacting regime after the
sweep. Conventionally, the temperature scale used in the
superfluid phase diagram [2,8] involves an isentropic
sweep between the unitary and the noninteracting Fermi
gas regimes. The sweep direction is irrelevant in these
reversible processes. The important experimental phase
diagrams plot the condensate fraction, Ns=N, near unitarity
vs this Fermi gas-projected temperature, Teff .

In this Letter, our thermodynamical calculations are
used to relate the actual physical temperatures T to Teff ,
where, in general, T is significantly greater than Teff . A
calculation of Ns�T� is simultaneously undertaken [10,11]
which provides an important self-consistency condition on
the thermodynamics, since the same excitations appear in
both. Moreover, a calculation of Ns has to be done with the
proper attention paid to collective modes and gauge invari-
ance [12]. Here we address the various condensate frac-
tions found experimentally [1,2], as a function of Teff , in
the experimental range of field B.

Our work is based on the BCS-Leggett ground state [6,7]
and its finite T extension [11]. Four different classes of
experiments have been successfully addressed in this
framework. These include (i) T � 0 breathing mode ex-
periments [3,4] and theory [13,14], (ii) radio frequency (rf)
pairing gap experiments [9] and theory [15,16], and
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(iii) T-dependent density profiles [17]. Finally, (iv) plots
of the energy E vs T at unitarity [18] yield very good
agreement with experiment and serve to calibrate the
present thermometry. Two weaknesses of the mean field
approach (an underestimate of � and an overestimate of
the interboson scattering length aB in the deep-BEC re-
gime) should be noted. The first affects E�T� but not S�T�.
However, for the second we introduce a caveat: if the initial
end point of the sweep is sufficiently deep in the BEC
regime (say, kFa � 0:3), the accuracy of the final tempera-
ture we calculate for the unitary regime could be improved
by computing the initial S using a pure-boson model with
aB set by hand to the Petrov result [19].

Because previous thermodynamic theories did not ad-
dress unitarity, it has not been possible until now to deter-
mine T in the strongly interacting regime. Carr et al.
[20,21] calculated S at the BCS and deep-BEC end points.
The latter true Bose limit which they considered does not
appear to be appropriate to current collective mode experi-
ments [3,4], which show [13,14] that for physically acces-
sible (i.e., near-BEC) fields, fermions are playing an
important role. Thus, the BCS-Leggett ground state ap-
pears to be more appropriate than one deriving from Bose-
liquid-based theory. Williams et al. [22] calculated S for
the BCS-BEC crossover using a mixture of noninteracting
fermions and bosons [22]. This work omits the important
and self-consistently determined fermionic excitation gap
� which is an essential component for describing the
thermodynamics of fermionic superfluids.

Our thermodynamical calculations focus on this self-
consistently determined �, based on a two-channel
Hamiltonian [11,23,24]. Here � appears in the fermionic

dispersion Ek �
����������������������������������
��k ���2 � �2

p
. (We define �k �

@
2k2=2m as the kinetic energy of free atoms, and � the

fermionic chemical potential.) Importantly, it provides a
measure of bosonic degrees of freedom. In the fermionic
regime (�> 0�, � is just the energy required to dissociate
the pairs and thereby excite fermions. At finite T, the
closed-channel molecules and the open-channel finite mo-
mentum Cooper pairs are strongly hybridized with each
other, making up the ‘‘bosonic’’ excitations which contrib-
ute to thermodynamics.
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FIG. 1. Bosonic contribution to the thermodynamical poten-
tial. Here G0 (G) andD0 (D) are the ‘‘bare’’ (‘‘full’’) propagators
associated with the fermions and closed-channel molecular
bosons, respectively, K and Q are four-momenta, and Uk;k0 is
the open-channel pairing interaction.
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Our many-body formalism has been described below the
superfluid transition temperature Tc [11]. The parameter �
(when squared) is the analog of the total number of parti-
cles in the simplest theory of BEC. Just as in BEC, there
are two self-consistency conditions: (i) the effective chemi-
cal potential of the pairs, �pair, is zero, for T � Tc (as is
that of the closed-channel molecular bosons �mb), and
(ii) the number of pairs, reflected in �2�T�, contains two
additive contributions representing condensed (~�2

sc) and
noncondensed (�2

pg) pairs. The first condition implies
that ��T� satisfies a BCS-like gap equation. Then, the
condensate is deduced by determining the difference be-
tween �2 and �2

pg. In this approach the hybridized pairs
have dispersion �q � @

2q2=2M�, with effective mass M�.
We now extend this approach above Tc. Our first equa-

tion represents the important defining condition on
�pair: the inverse pair propagator (or T matrix)
t�1�Q�jQ	0 � Z�pair, with (inverse) ‘‘residue’’ Z. While
in the superfluid regions �pair � �mb � 0, in general, we
have

U�1
eff �0� �

X

k

1� 2f�Ek�

2Ek
� Z�pair; (1)

whereUeff�0� � U� g2=�2�� �� involves the sum of the
direct attraction U between open-channel fermions, as well
as the virtual processes associated with the Feshbach reso-
nance. Here f�x� is the Fermi distribution function. The
determination of the interchannel coupling constant, g, and
the magnetic field detuning, �, is described elsewhere [25],
as are the residues Z and Zb [11]. The contribution from
hybridized bosons will lead to a normal state excitation gap
[9,11,26,27] or pseudogap (pg). This can be written in
terms of the Bose distribution function b�x� as

�2
pg � Z�1

X

q
b��q ��pair�: (2)

We use the local density approximation (LDA) through-
out with a harmonic trap potential V�r�. For notational
simplicity, we omit writing V�r� in favor of��r� according
to the LDA prescription: �! ��r� 	 �� V�r�, where
� 	 ��0�. The total atomic numberN 	

R
d3rn�r�, where

n � 2nb0 � 2Z�1
b

X

q
b��q ��mb�

� 2
X

k


v2
k�1� f�Ek��� u2

kf�Ek��: (3)

Here nb0 � g2�2
sc=
��� 2��r��U�2 is the density of

condensed closed-channel molecules, and u2
k; v

2
k � 
1�

��k ���r��=Ek�=2. The total order parameter [23,24,26]
is given by ~�sc � �sc � jgj

�������
nb0
p

.
We numerically solve Eqs. (1) and (2) at each r for given

� and then self-consistently adjust � via the total number
constraint. Next we calculate S directly from the thermo-
dynamical potential [28]. This potential contains fermionic
contributions from bare fermions, �f, and bosonic contri-
butions �b. The latter is given by the sum of all possible
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ring diagrams shown in Fig. 1. It can be easily shown that
this �b is consistent with the self-energy diagrams for the
fermions and the molecular bosons. After regrouping, we
see that S has two contributions, from fully dressed fermi-
ons (Sf) and from their bosonic counterpart (Sb). The total
entropy is given by S �

R
d3rs�r� (and similarly for Sf and

Sb), where

s � sf � sb;

sf � �2
X

k


fk lnfk � �1� fk� ln�1� fk��;

sb � �
X

q�0


bq lnbq � �1� bq� ln�1� bq��;

(4)

where fk 	 f�Ek�, and bq 	 b��q ��mb�; a relatively
small contribution associated with the T dependence of �q

has been dropped. Here sf coincides formally with the
standard BCS result for noninteracting quasiparticles
[although here ��Tc� � 0]. And sb is given by the expres-
sion for nondirectly interacting bosons with dispersion �q.
These bosons are not free, however; because of interactions
with the fermions, their propagator contains important self-
energy and mass renormalization effects.

Figure 2 illustrates the behavior of S as a function of T
obtained from our self-consistent equations, over the entire
experimentally relevant crossover regime. The magnetic
field is contained in the parameter 1=kFa, which increases
with decreasing field. Here a is the s-wave fermionic
scattering length, kF is the Fermi wave vector at the trap
center, and kBTF � @

2k2
F=2m is the noninteracting Fermi

energy. Two important aspects of the fermionic contribu-
tion Sf should be noted. Generally, the fermions have a gap
� in their excitation spectrum (which increases with de-
creasing field), and this T dependent gap is inhomogeneous
so that the fermions near the trap edge often behave as free
particles at T > �. These quasi-‘‘free’’ fermions change
the T dependence of Sf from exponential to power law.
They have also been seen in rf experiments [9,15] as a free
fermion peak in the spectra.

We refer to Fig. 2, starting from the high field or BCS
regime where S is linear in T. As the field is lowered
towards unitarity, Sf will vary as a low-T power law which
is higher than linear. Simultaneously, the bosonic degrees
5-2



0 0.2 0.4 0.6 0.8 1
T/TF

0

2

4

S
/N

k B

A
B

1/
k F

a 
= 

1

3/
2

2

3

1/
2

0

-1
/2

-2

Free Bose gas
1/kFa = -2
-1
-1/2
0
1/2
1
3/2
2
3

0 1r/RTF

0

2

s(
r)

/N
k B

s

sf

sb

Bos
e 

ga
s

FIG. 2 (color online). Entropy per atom as a function of T for
different values of 1=kFa from BCS to BEC in a harmonic trap.
The dotted lines show an isentropic sweep between 1=kFa � 1
and unitarity. For comparison, we also plot S for an ideal Bose
gas (dashed line). The 1=kFa � 3 curve that lies below the
dashed line at T > 0:8TF reflects that M� � 2m. The inset plots
the spatial profile of total entropy s (black curve) and its
fermionic (sf, red curve) and bosonic (sb, blue curve) component
contributions at unitarity for T � Tc=4. Here RTF is the Thomas-
Fermi radius, and Tc � 0:27TF.
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of freedom emerge. Here one sees a T3=2 power law from
these excited bosons. At unitarity, bosonic effects dominate
for T=TF & 0:05 or T=Tc & 0:2. For an extended range of
T < Tc, the fermions and bosons combine to yield S / T2,
which can be compared with the experimental power law
[18] T2:73. Finally in the near-BEC regime one sees an
essentially pure bosonic T3=2 power law in S at low T in the
superfluid phase. The relative contribution of the bosonic
excitations, Sb=S, evolves continuously from 0 to 1 as
1=kFa increases from �1 to �1. S becomes dominantly
bosonic once � becomes negative.

The bosonic T3=2 power law found in the trap is the same
as found for the homogeneous situation. Inhomogeneity
effectively disappears here because the fermion-boson in-
teractions lead to the self-consistent constraint that �pair �

0 for the entire superfluid region. This same disappearance
of inhomogeneity is found in Ref. [20]. This is different
from a strictly noninteracting Bose gas [22] (dashed line in
Fig. 2) where the boson chemical potential vanishes below
Tc only at r � 0. The previous work of Ref. [20] is based
on interacting but true bosons. The present situation is
more complex since Cooper pair operators do not obey
Bose commutation relations (nor does the linear combina-
tion of Cooper pair and closed-channel boson operators),
so that a theory based on a true Bose liquid may not be
appropriate for the fields that have been accessed experi-
mentally. Moreover, if one were to contemplate contribu-
tions from the linearly dispersing Goldstone bosons, albeit
within a more general ground state, their contribution, at
unitarity, will not be as important as that from the edge
fermions.
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To shed additional light on the component fermionic and
bosonic contributions, in the inset to Fig. 2 we decompose
the various terms in S to reveal their spatial distributions
for the unitary case at T � Tc=4. It can be seen that the
fermionic contribution sf (red curve) is limited to the trap
edge, where � is small. By contrast, the bosonic contribu-
tion sb (blue curve) is evenly distributed over the superfluid
region and rapidly decays at larger radii.

Figure 2 provides a basis for thermometry in adiabatic
sweep experiments. The vertical lines illustrate how to
choose an initial T (Ti � 0:5TF at point ‘‘A’’) with an
initial value of 1=kFa�� 1� and use an isentropic sweep
(represented by the horizontal dotted line) to obtain the
final T (Tf � 0:28TF at point ‘‘B’’) with the final value of
1=kFa�� 0�. It is most convenient to begin with either the
BCS or BEC regime, since here Ti can, in principle, be
determined by fitting the density profiles.

Figure 3 presents a plot of the superfluid fraction [10,11]
Ns=N in the intermediate regime as a function of an
effective temperature Teff=TF for different values of initial
fields or 1=kFa. Here Teff is the temperature reached after
an adiabatic sweep to a BCS-like state. Based on experi-
ment, we take the final state as 1=kFa � �0:59 at 1025 G
for 6Li [2] and a noninteracting Fermi gas for 40K [8].

The same vertical axis appears in the inset but with the
physical T, so that this figure provides a means of directly
calibrating Teff which has been used in the important phase
diagrams of 6Li and 40K. Figure 3 also provides a means of
comparing the condensate fractions with those in the phase
diagrams. For 6Li at 900 G, with Teff=TF � 0:2, 0.1, and
0.05, the experimental condensate fractions are 0.0, 0.1,
and 0.6. This should be compared with our calculated
values, 0.006, 0.36, and 0.73, respectively. For 6Li at
770 G, the condensate first appears at Teff=TF � 0:18,
consistent with theory. From the values of kFa and Tc at
both ends (importantly, the latter can be read from the
inset), one can easily see that the sweep from 770 to
1025 G is still very far from a full BEC-BCS sweep.

There are two reasons for the larger condensate fractions
found theoretically for 6Li. A calculation of the BEC-like
density profiles shows that the noncondensed pairs inside
the superfluid region have a flat density distribution, which
reflects the vanishing of �pair [17]. The superfluid fraction
extracted experimentally (assuming a Gaussian form for
the noncondensed particles inside the condensate core) is,
thus, underestimated, most notably around Tc=2. In addi-
tion, earlier work [18] shows that when the system is
treated as a noninteracting Fermi gas, Teff will be under-
estimated whenever a condensate is present (at T < Tc �
0:17TF at 1025 G). This suggests that theory and experi-
ment can be brought into rather good agreement for the
case of 6Li. For 40K, one has to appeal to nonadiabaticity
and other complications of the sweep process to understand
the small measured fractions.

For this case, we emphasize temperature scales. For a
full BCS to near-BEC [�kFa�final � 1:7] adiabatic sweep
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FIG. 3 (color online). Superfluid density Ns=N at different
magnetic fields for 6Li and 40K as a function of the effective
temperature, Teff , measured in a near-BCS (at 1025 G for 6Li) or
noninteracting Fermi gas (FG, 40K) state accessed via reversible
adiabatic sweeps of magnetic field. The inset plots the same
Ns=N as a function of the physical temperature at each field
value. The system is not far from the resonance in these states.
Also plotted in the inset is Ns�T�=N at 1025 G and 1=kFa � 3
for 6Li. The values of field and kFa were chosen based on
Refs. [2,8]. For 6Li, TF � 3:6 �K, 1=kFa � �0:59;�0:26;
0:07; 0:38 for 1025, 900, 820, and 770 G, respectively.
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[8] with initial Teff 	 Ti � 0:19TF, the final reported tem-
peratures in experiment [8] and in theory are Tf � 0:47TF
and 0:33TF, respectively. For the same �kFa�final but with
Ti � 0:17TF, we find Tf � Tc, in agreement with the
observed sudden onset of a bimodal distribution in the
density profile. Similarly for a sweep from a Fermi gas
down to �kFa�final � 0:99 with Ti � 0:06TF, the experi-
mentally quoted and theoretically calculated Tf are 0:25TF
and 0:18TF, respectively. The experimental sweeps were
not strictly adiabatic [8], so that the experimental Tf should
serve as upper bounds. Our calculations are more consis-
tent with experiment than if one had presumed a T3 power
law for S in the BEC regime, from which one would infer
Tf � 0:52TF and 0:37TF, respectively, exceeding the
upper bounds.

Experimentally, 40K gases [8] are prepared in the non-
interacting limit, where, as a result of heating associated
with an adiabatic sweep, low T is difficult to reach. By
contrast 6Li gases [2,4] are prepared in the BEC regime, so
that higher condensate fractions of 80% and 95% have
been reported [2,4,9] near unitarity via adiabatic cooling.
Finally, we note that the rather large Tc � 0:17TF at
1025 G makes it hard to access the Fermi gas regime in
6Li. This may be circumvented either by reduction in the
size of N or TF or, possibly, by sweeps to 528 G [29]. In
40K, one avoids this problem altogether.

Without knowing T, measurements in this field cannot
be directly compared to any theory. The present work
presents a theory for the entropy S of a Fermi gas, at
general accessible field B, which thereby calibrates T in
various existing [2,8,9] and future experiments.
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