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We compute the fraction of closed-channel molecules in trapped atomic Fermi gases, over the entire
range of accessible fields and temperatures. We use a two-channel model of Bardeen-Cooper-
Schrieffer–Bose-Einstein-condensation crossover theory at general temperature T, and show that this
fraction provides a measure of the T-dependent pairing gap. Our calculations, containing no free
parameters, are in good quantitative agreement with recent low-T measurements in 6Li. We present
readily testable predictions for the dependencies of the closed-channel fraction on temperature and Fermi
momentum.
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The superfluid phases of ultracold, trapped atomic Fermi
gases present an exciting opportunity to study how super-
fluidity is changed as the system evolves from the weak
attraction limit of Bardeen-Cooper-Schrieffer (BCS) state
to the strong attraction Bose-Einstein condensation (BEC)
regime [1]. Feshbach resonances arise when a bound state
(‘‘closed-channel molecules’’) of a two-body spin-singlet
potential lies near the continuum onset of a spin-triplet
scattering state (‘‘open channel’’). As a consequence of an
applied magnetic field B, proximity to these resonances
can profoundly change the two-body (s-wave) scattering
lengths a. The well-studied Feshbach resonances in both
6Li and 40K are very wide as a function of B, compared to
the Fermi energy. Moreover, the focus is on unitary scat-
tering where a diverges. For these reasons one often resorts
to a one-channel version of BCS-BEC crossover theory
[1,2], although attention has also been paid to the two-
channel variant [3–7] for Feshbach resonances.

In recent experiments [8] on the broad resonance in 6Li
at low temperatures, T, a laser drives transitions between
dressed molecules (hybridized with open-channel atom
pairs) and an excited molecular singlet, in the process
removing excited atoms from the trap. The exponentially
decreasing number of remaining trapped atoms as a func-
tion of probe duration time is used to determine that
fraction Z of dressed molecules/pairs corresponding to
the closed channel. Here we present the analogous theo-
retical calculations of Z, as a function of a and for general
T. We demonstrate very good agreement with experiment,
and provide predictions for future finite T experiments.
The small size of this fraction means that for many prop-
erties the two-channel model reduces to the single-channel
description. We emphasize, however, that the two-channel
model contains more information, making it capable of
addressing a wider range of physical systems and experi-
ments, and of testing the fundamentals of BCS-BEC cross-
over theory.

Our theoretical approach reduces to the generalized
Leggett-BCS theory [1] at T � 0. At finite T, the non-
05=95(26)=260406(4)$23.00 26040
condensed as well as condensed contributions enter in the
appropriate combinations, so that a future measurement of
the total closed-channel fraction will provide a measure of
the T-dependent pairing gap ��T�. This gap is, in general,
distinct from the superfluid order parameter, ~�sc�T�, except
at T � 0. Finally, we present results for the closed-channel
fraction as a function of the global Fermi wave vector kF, at
different fields B. At unitarity, the dependence is a simple
proportionality.

We begin with a discussion of the superfluid phase. A
gas of Fermi atoms in the presence of a Feshbach reso-
nance contains open-channel fermionic atoms as well as
closed-channel molecules. Because of coupling g between
the open and closed channels the three propagators for the
open-channel fermion pairs �tpg�Q��, the closed-channel
molecules �D�Q�� and the single (open-channel) fermion
states �G�K�� are all highly interconnected. Here and
throughout, we use a four-momentum notation: K �
�i!n;k� and Q � �i�m;q�,

P
K � kBT

P
n
P

k , and
their analytical continuation, i!n ! !� i0�, i�m !
�� i0�, where !n � �2n� 1��kBT=@, �n �
2n�kBT=@ are the odd and even Matsubara frequencies.
The T-matrix scheme we employ to treat these coupled
propagators is derived from the equations of motion for the
Green’s functions, and, importantly, it naturally leads to the
self-consistency conditions of the standard T � 0 mean-
field theory [1]. It can be shown [9] that the pairs are
described by the pair susceptibility ��Q� �

P
KG0�Q�

K�G�K�’2
k�q=2 where G depends on a BCS-like self-

energy ��K� 	 ��2G0��K�’2
k. Here G0�K� is the non-

interacting fermion Green’s function. Throughout this
Letter ’k � expf�k2=2k2

0g introduces a momentum cut-
off, where k0 represents the inverse range of interaction,
which is assumed infinite for a contact interaction.

Our Hamiltonian is the standard boson-fermion model
[3,5,10] in which there are only fermion-boson and
fermion-fermion interactions. Central to our analysis at
finite T are noncondensed pairs [9] which we characterize
by a T matrix tpg�Q� � Ueff�Q�=�1�Ueff�Q���Q��, where
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Ueff is the effective pairing interaction which involves the
direct two-body interaction U as well as virtual excitation
processes associated with the Feshbach resonance [5,9]. At
small Q, tpg can be expanded as

tpg�Q� 	
Z�1

���q ��pair � i�Q
: (1)

The parameters appearing in Eq. (1) are discussed in more
detail in Ref. [10]. Here Z�1 is a residue and �q the pair
dispersion. The latter parameter as well as the effective pair
chemical potential �pair both depend on the important but
unknown gap parameter � through the fermion self-energy
�. The decay width �Q is negligibly small for small Q
below Tc. We caution here that the inverse residue ‘‘Z’’
appearing in Eq. (1) is not the same as the quantity Z used
in Ref. [8]. More technical details about the various resi-
dues can be found in Ref. [10].

To determine �, one imposes the BEC-like constraint
�pair � 0 which yields t�1

pg �Q! 0� � 0, i.e.,

U�1
eff �0� �

X
k

1� 2f�Ek�

2Ek
’2

k � 0; (2)

so that � formally satisfies the usual BCS gap equation

with quasiparticle dispersion Ek �
����������������������������������������
��k ���2 � �2’2

k

q
,

where �k � @
2k2=2m is the fermion kinetic energy, � is

the fermionic chemical potential, and f�x� is the Fermi
distribution function.

Physically, one should view � as reflecting the presence
of bosonic degrees of freedom. In the fermionic regime
(�> 0), it represents the energy required to break the
pairs. It contains contributions from both noncondensed
and condensed pairs, whose densities are proportional to
�2

pg�T� and ~�2
sc�T�, respectively. One has a constraint on

the number of pairs [10] which can be viewed as analogous
to the usual BEC number constraint

�2�T� � ~�2
sc�T� � �2

pg�T�: (3)

The total contribution of noncondensed pairs is readily
computed in terms of � via

�2
pg � �

X
Q

tpg�Q�: (4)

One can then compute the number of condensed pairs
associated with ~�sc.

Fermions are the fundamental particles in this system, so
that their chemical potential � is determined from the
number conservation constraint

n � nf � 2nb0 � 2nb � nf � 2ntot
b ; (5)

where nb0 and nb represent the density of condensed and
noncondensed closed-channel molecules, respectively, ntot

b
is their sum, and nf � 2

P
KG�K� is the atomic density

associated with the open-channel fermions. Here
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nb � �
X
Q

D�Q� 	 Zb
X

q
b��q ��pair�; (6)

where b�x� is the Bose distribution function. The renor-
malized closed-channel molecule propagator D�Q� is
given by the same equation as Eq. (1) with a different
residue Z�1 ! Zb. We compute � (and �) via Eqs. (2)
and (5), to determine the contribution from the condensate
~�sc via Eqs. (3) and (4). Note that at T � 0, �pg � 0 so
that all pairs are condensed.

At T � 0, a nonzero excitation gap for all k constrains
nf so that one can identify our closed-channel fraction
2ntot

b =n � 2nb0=n with the quantity Z in experiment. In
this picture the ground state consists of n=2 pairs with
fraction 2nb0=n in the closed channel. A short range
attractive interaction (appropriate for cold Fermi gases)
leads to a picture in which all fermions are paired, since
the attraction extends to the entire Fermi sphere.
Importantly, this is consistent, at least at unitarity, with
the observed exponential behavior of the remaining total
particle number in the trap found in Ref. [8]. Thus, we
presume here that the ground state has no unpaired
fermions.

The interaction parameters U and g which appear in the
Hamiltonian can be related to their experimental counter-
parts U0 and g0. The latter are, in turn, determined by the
open-channel background scattering length abg and the
Feshbach resonance width W: U0 � 4�abg@

2=m �
8�kFabg�EF=k

3
F� and g2

0 � jU0Wj. Here EF � @
2k2
F=2m

is the global noninteracting Fermi energy. From the
Lippmann-Schwinger equation [11] we obtain 1=U0 �
1=U� 1=Uc, where 1=Uc � �

P
k�’

2
k=2�k� is the value

of the interaction corresponding to unitary scattering (a �
1). Similarly, we defineU
 � 4�a
@2=m and the ‘‘experi-
mental’’ magnetic detuning �0 such that

U
 � U0 �
g2

0

2�� �0
;

1

U

�

1

Ueff
�

1

Uc
: (7)

As in Ref. [11], defining � � 1=�1�U0=Uc�, one has
U � �U0, g � �g0, and � � �0 � �g2

0=Uc. In order to
make contact with experiment, it is convenient to define
a two-body counterpart of U
 in Eq. (7):

U2B � 4�a@2=m � U0 � g2
0=�0; (8)

which diverges at �0 � 0. Here �0 � �B� B0���
0, where

B0 is the resonance field, and ��0 � 2�B for 6Li is the
difference in the magnetic moment between open-channel
pairs and the closed-channel molecules [12]. Here �B is
the Bohr magneton. For the wide Feshbach resonances in
40K and 6Li, the dimensionless parameters 1=kFa and
1=kFa
 are very close to each other for the magnetic fields
addressed in Ref. [8].

It is useful now to rewrite the closed-channel density in
terms of more physically accessible parameters. One can
show [9] nb0 /

~�2
sc. It follows from our T � 0 formalism

[10] that when a condensate is present
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nb0 � Zg ~�2
sc; nb � Zg�2

pg �
�2

pg

g2
0

�
1�

abg

a


�
2
; (9)

where we have used some simple algebra to rewrite Zg �
g2=��2�� ��U� g2�2. Importantly, in this way we can
conclude from Eq. (3) that the total closed-channel con-
tribution ntot

b � Zg�2. The simplicity of this last result
reflects the fact that D�Q� and tpg�Q� [of Eq. (1)] share
the same denominator. The relative probabilities for the
(hybridized) pairs to live in the closed and open channels
are essentially fixed for all T � Tc and given by Zb �
Zg=Z and 1� Zb, respectively.

To represent the trap, we use the local density approxi-
mation (LDA) by replacing �! ��r� � �� V�r�. Here
� is the global chemical potential and V�r� � m!2r2=2
for a harmonic trap with angular frequency !. We solve
Eqs. (4) and (2) at each r for given � and then self-
consistently adjust � to satisfy the total number constraint
N �

R
d3rn�r�. We define Nb0 �

R
d3rnb0�r� and simi-

larly for the noncondensed molecules Nb, and the total
Ntot
b � Nb0 � Nb. Here Nb0 represents the trap average of

the superfluid order parameter. Moreover, this trap average
is proportional to the order parameter at the center so that
Nb0=N / ~�2

sc�r � 0�. Thus, this full two-channel calcula-
tion provides a theoretical underpinning for the simple
interpretation, provided in Ref. [8], of their experiments.

In the unitary regime where jabg=a

j � 1, Eq. (9) im-

plies nb0 	
~�2

sc=g
2
0, at each point r. Therefore, we can

deduce that at unitarity

2Nb0

N
�
Z
d3r

~�2
sc�r�

g2
0N
/

R
d3r~�2

sc�r�=E2
FR

d3rn�r�=n�0�

������
EF
p

g2
0

/
������
TF

p
: (10)
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FIG. 1 (color online). Calculated closed-channel fraction
2Ntot

b =N � 2Nb0=N at T � 0 as a function of magnetic field B
(main figure) at TF � 0:2 �K for 6Li in a harmonic trap. The
inset shows 2Nb0=N as a function of 1=kFa (black curve) at
TF � 0:4 �K. The red circles are experimental measurements
from Ref. [8], and the blue diamonds are theoretically calculated
data using specific values of TF from experiment [13], which
vary between 0:18–0:662 �K.
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At unitarity, 2Nb0=N scales with kF. Here we have used the
relationship N � n�0�

R
d3r�n�r�=n�0�� and n�0� / E3=2

F .
The fraction in front of

������
EF
p

=g2
0 is dimensionless and

independent of TF.
In Fig. 1, we plot the calculated molecular fraction

2Nb0=N at T � 0 for 6Li (black curve and blue diamonds)
as a function of the magnetic field B as compared with
experimental data (red circles) from Ref. [8]. The experi-
mental values for TF vary from one data point to another.
Our calculations at each field value use as input the specific
experimental value for TF, plotted as blue diamonds, in the
figure and inset. However, for the continuous curve plotted
in the main figure, we use TF � 0:2 �K which better
represents the values in the BCS regime [13]. In the inset
we used TF � 0:4 �K, since this best reflects the average
value over the entire range of data points. These slightly
different choices for TF reflect the fact that the two plots
have different horizontal axes, and, therefore, amplify
small errors in different ways. As will be shown below,
in the BCS regime the results are particularly sensitive to
TF. We take the parameters for the Feshbach resonance
from Ref. [14]: W � 300 G and a field-dependent abg �

a0
bg=�1� ��B� B0��, where a0

bg � �1405a0, � �

0:0004 G�1, B0 � 834:15 G, and a0 � 0:529 �A is the
Bohr radius. For TF � 0:4 �K, this uniquely determines
U0 � �5:90EF=k3

F and g0 � �771EF=k
3=2
F at unitarity.

In Fig. 1 the roughly a factor of 3 difference between
theory and experiment in the BCS regime may in part be
associated with the observed deviation from an exponential
time dependence [8]. Because of the extremely small gap
(&T) at these high fields, unpaired fermions may be
thermally excited. However, it should be noted that this
particular thermal ‘‘correction’’ alone would be in the
wrong direction (see below). This may point to the need
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FIG. 2 (color online). Closed-channel fraction as a function of
T=Tc at unitarity for TF � 0:4 �K for 6Li in a harmonic trap.
The black, red, and blue curves are the condensed (2Nb0=N),
noncondensed (2Nb=N), and total (2Ntot

b =N) fractions, respec-
tively. Here Tc � 0:273TF. In the BEC regime 2Ntot

b =N is
relatively T independent below Tc.
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FIG. 3 (color online). Predicted closed-channel fraction
2Nb0=N at T � 0 as a function of

������
TF
p

/ kF at different fields
for 6Li in a harmonic trap. At unitarity (B � 834 G, black line),
2Nb0=N / kF. On the BCS side (B � 900 G, red, and B �
1000 G, blue), this becomes a higher power law. On the BEC
side (B< 834 G, see the inset, B increases from top to bottom),
the fraction becomes less sensitive to TF, and is determined by
two-body physics in the deep BEC limit.
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for a more systematic treatment of dynamical effects in this
regime. Overall, agreement with the data is quantitatively
very good [8] everywhere but in the BCS regime; there are
no adjustable parameters [15].

We turn to the T dependence of the closed-channel
fraction, which is plotted at unitarity in Fig. 2. This fraction
was shown above to be proportional to the pairing gap
squared �2�T�. The condensed fraction 2Nb0=N (black
curve) decreases as T increases from zero and vanishes at
Tc. At the same time, the noncondensed fraction 2Nb=N
(red) increases from zero, as determined by Eq. (6). It has a
maximum slightly below Tc. The total fraction 2Ntot

b =N
(blue) decreases monotonically with T. Note that it de-
creases very slowly at low T. This justifies our comparison
in Fig. 1 between the T � 0 calculations and the low-T
measurements. Using Eqs. (9) and (10), and in conjunction
with the temperature insensitivity of the various residues
(Zg and Zb), one can measure the T dependence of the
pairing gap, presuming that T is determined from isen-
tropic sweeps [16]. The sensitivity of the total fraction to
temperature increases with field.

In Fig. 3, we plot 2Nb0=N at T � 0 as a function of������
TF
p

/ kF for different magnetic fields, from the weak
pairing BCS (B � 1000 G, blue curve) to the strong pair-
ing BEC (B � 700 G, cyan curve). It can be seen that the
plots reflect our earlier theoretical prediction that
2Nb0=N / kF at unitarity. As the field increases, 2Nb0=N
varies as a higher power of kF. In contrast, as the field
decreases in the BEC regime, it becomes less sensitive to
kF. For 6Li, it approaches unity in the deep BEC limit,
where it is dominated by two-body physics. More gener-
ally, 2Nb0=N increases faster (slower) on the BCS (BEC)
26040
side than the simple proportionality found at unitarity, as is
confirmed by Fig. 3.

In summary, we find that the wider the resonance is, the
more readily the closed-channel molecules decay into the
open channel so that the steady state molecular fraction
remains small, as observed experimentally. We have shown
here that measurements of the closed-channel fraction will
complement other techniques for obtaining the pairing gap.
While broad Feshbach resonances often lead to universal
behavior at unitarity [17], a single dimensionless parame-
ter kFa is inadequate for determining quantities such as
2Nb0=N, which is intrinsically associated with two-
channel physics.
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0213745 and by the Institute for Theoretical Sciences and
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Note added.—After submission of this Letter, two pa-
pers appeared on the T � 0 closed-channel fraction within
a homogeneous system based on a different model for the
ground state [18] and on a limiting case [19] of the present
theory in which direct interfermion interactions and the
closed-channel self-energy are ignored.
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