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We present phase diagrams for population-imbalanced, trapped Fermi superfluids near unitarity. In
addition to providing quantitative values for the superfluid transition temperature, the pairing onset
temperature, and the transition line (separating the Sarma and phase separation regimes), we study
experimental signatures of these transitions based on density profiles and density differences at the center.
Predictions on the BCS side of resonance show unexpected behavior, which should be searched for
experimentally.
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The study of ultracold trapped Fermi gases as they vary
from BCS to Bose-Einstein condensation (BEC) is a rap-
idly exploding subject in condensed matter and atomic
physics. In this Letter, we address the multiple superfluid
and normal phases in these trapped gases, which are
viewed as possible prototypes for quark and nuclear matter
[1]. The various phases we contemplate become stable or
unstable as one alters the populations [2–5] of the two spin
species or changes the temperature T. There has been
extensive theoretical literature on this subject which is
almost exclusively confined to T � 0 [6–8]. Our emphasis
here is on finite T effects [9,10], which are essential in
order to address the actual experimental situation. Here we
provide an understanding of existing data and present
predictions for new experiments.

The fermionic superfluid ground state wave function in
BCS-BEC crossover (with population imbalance) is almost
universally assumed [6–8] to be of the BCS-Leggett form.
The corresponding excitations consist of noncondensed
pairs as well as gapped fermions in the interesting unitary
regime. Noncondensed pairs (which are frequently omitted
in the literature [11,12]) must be included for meaningful
estimates of the ordering temperature Tc. As is consistent
with experiments at unitarity [9], Tc is significantly lower
than the pairing onset temperature T� as a result of the
opening of a pairing gap (or ‘‘pseudogap’’) above Tc.
Without the contribution of noncondensed pairs, one often
finds bimodal particle distributions for unpolarized gases,
which are not observed experimentally [9,13]. Polarized
gases, by contrast, exhibit [4] bimodality. Therefore, theo-
ries which ignore these pairs [11,12] may not be useful for
establishing bimodal distributions specifically associated
with population imbalance.

In the presence of population imbalance, one has to con-
sider homogeneous phases (which we refer to as ‘‘Sarma’’)
and Larkin-Ovchinnokov-Fulde-Ferrell (LOFF) phases
[14] as well as phase separation [15]. In addition, the
normal phase may appear as a highly correlated or paired
state without phase coherence or as a simple (unpaired)
Fermi gas phase. We begin with the (local) thermodynam-
ical potential �tot (per unit volume) for the allowed states

(excluding the more complicated LOFF phase, which ap-
pears to be of less interest near unitarity and at all but the
lowest T [16]), in a harmonic trap potential Vext �
1
2m �!2r2, with mean angular frequency �!. For a normal
or superfluid phase in which pairing correlations are
present, �tot consists of contributions from gapped fermi-
ons (�f) and noncondensed pairs or bosons (�b):
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Competing with this phase is the free Fermi gas phase,
which has thermodynamical potential �free �

�T
P

k;� ln�1� e��k�=T�. The (gapped) fermion and pair

dispersions are given, respectively, by Ek �
������������������
�2

k � �2
q

for
a contact (short-range) pairing interaction with strength U
and ~�q � q2=2M� ��pair, where M� and �pair are the
effective mass and chemical potential of the pairs, respec-
tively. Both M� and Z are obtainable from a microscopic
T-matrix approach [10]. Here Ek� � Ek � h and �k� �
�k � h for spins � �" and # , respectively, where �k �
k2=2m��, kB � @ � 1, with fermionic � � ��" �
�#�=2 and h � ��" ��#�=2.

We distinguish the order parameter �sc from the total
gap �. Noncondensed pairs contribute a pseudogap �pg to
the total gap via �2 � �2

sc � �2
pg. The form of �b contains

a free bosonlike contribution; the pair condensate does not
contribute to �b directly. Although it is not a necessary
assumption, in order to simplify the formal description we
assume that M� depends only on T, as is reasonably con-
sistent with our microscopic theory [10], and that �pair

depends only on � and T. Because pairs ultimately become
diffusive by decay into the particle-particle continuum, in
the summation over boson momentum q, we will impose a
cutoff q < qc, where qc is the minimum value of q which
satisfies Ek � �k�q �

~�q � 0 for at least one value of k.
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Note that �f and �b couple only via �pair. Above Tc, this
leads to an extra contribution to the gap equation.

Our self-consistent equations, which have been pre-
sented in earlier papers [9,10], can be expressed equiva-
lently as variational conditions on �tot, for the total
excitation gap �, the pseudogap �pg, the fermion number
density n, and the population imbalance �n, respectively:
 

@�tot

@�
� 0;

@�tot

@�pair
� 0;

�
@�tot

@�
� n; �

@�tot

@h
� �n:

Importantly, we have �pair � 0 below Tc and � � �pg

above Tc. These equations reduce to the usual
T-dependent BCS-like gap and number equations in the
literature.

In a trap, T and h are independent of the radial position.
The distribution of the local ��r� is determined by the
force balance equation �r �p � nrVext, where �p � ��tot

is the pressure. Using the number equation n �
�@�tot=@�, we obtain r��r� � �rVext�r�, or ��r� �
�0 � Vext�r�, where �0 � ��0�. Thus, force balance natu-
rally leads to the usual local density approximation (LDA).
To ensure meaningful comparisons between states under
different conditions, we fix the total particle number N �R
d3rn�r� and the number difference �N. The Fermi en-

ergy EF � TF � k2
F=2m is defined as that of a noninter-

acting gas with the same N � N" � N# at polarization
p � �N=N � 0. We assume N" >N# so that h > 0.

The physical state corresponds to the minimum of �tot

and �free. At a particular trap radius when (and if) these
become equal, the system will have a first-order transition
from a paired (but not necessarily superfluid) state to an
unpaired Fermi gas phase. We assume an infinitely thin
interface (i.e., domain wall) for this phase separation.
There is as yet no complete microscopic theory for the
interface energy, so we do not include it here. The philoso-
phy behind our treatment of phase separation is very
similar to that in previous T � 0 papers [7,17] except
that we include temperature effects (in a fashion consistent
with the BCS-Leggett ground state). Across the interface,
we require thermal, chemical, and mechanical equilibrium
so that T, ��, and �p are continuous.

Figure 1 shows the phase diagram at unitarity for a
polarized Fermi gas in a trap. Here 1=kFa � 0, where a
is the s-wave scattering length between fermions. As in
previous work [5,12,18], a tricritical point (TCP) exists.
Phase separation (labeled PS) occupies the lower T portion
of the phase diagram, where the gap � jumps abruptly to
zero at some trap radius. At intermediate T, there is a
(yellow-shaded) Sarma phase, where � vanishes continu-
ously within the trap. Away from p � 0, a minimum
temperature is required [19] to arrive at the Sarma phase,
due to the well-documented negative T � 0 superfluid
density. This Sarma state evolves into a (dotted) pseudogap
(PG) phase as the superfluid core vanishes at higher T. An

(unpaired) normal (N) phase always exists at even higher
T. In contrast with earlier work [11,12], here we include
pair fluctuations or noncondensed pairs, which are essen-
tial in order to obtain quantitatively correct values for Tc as
well as for the finite T particle density profiles [9,13]. Pair-
ing fluctuations were partially included (through the num-
ber equation) in Ref. [18] based on the Nozier̀es–Schmitt-
Rink (NSR) scheme [20] but in the absence of a trap. We
note that the finite T NSR treatment is not consistent with
the standard ground state used here [6–8].

We stress that, with or without the trap, the PS phase is
the ground state at unitarity for any p. Here we generalize
phase separation to include either a superfluid or a corre-
lated (paired) normal phase interfacing an uncorrelated
normal gas. In the narrow regime above the (red) dashed
line in Fig. 1, a superfluid core resides in the center, while a
wall separates a correlated and an uncorrelated normal
phase both outside the core.

In Fig. 2, we present four representative density profiles
which show the behavior on different sides of the transition
line between the PS and Sarma phases. The (a1)-(a2) pair
have the same T but different p, while the (b1)-(b2) pair
have the same p but different T. We have chosen these
points some distance from the transition line in order to
illustrate the differences. It should be noted, however, as
points (a1) and (b1) (within the Sarma phase) move closer
to the transition line, � drops rapidly (but not discontinu-
ously), as a precursor to phase separation. The transition
from the pure Sarma to the PS phase is, thus, a relatively
smooth one. These LDA-based calculations should apply
to situations where the trap geometry is reasonably iso-
tropic, as, e.g., in the Massachusetts Institute of
Technology (MIT) experiments [2,4], and where one might
be able to ignore surface energy contributions. On the other
hand, this behavior appears at odds with recent experi-
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FIG. 1 (color online). Phase diagram of a population-
imbalanced Fermi gas in a harmonic trap at unitarity. The solid
lines separate different phases. Above the (red) dashed line but
within the PS phase, the superfluid core does not touch the
domain wall. Here ‘‘PG’’ indicates the pseudogapped normal
phase. The black dot labeled ‘‘TCP’’ indicates the tricritical
point. The four points indicated by the triangles labeled (a1)–
(b2) correspond to the density profiles in Fig. 2.
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ments from Rice [3,5], which report pronounced changes
in the aspect ratio of the profile as the transition line is
crossed. These changes have been attributed to extreme trap
anisotropy and associated interface energy effects [21].

In a different class of experiments, it was proposed that,
by measuring densities at the trap center as one sweeps T or
p, one can infer when the Sarma-PS transition line is
crossed [22] as well as where superfluid transition [i.e.,
Tc�p�] occurs [5]. In Fig. 3(a), we plot �n" � n#�=n"�T � 0�
at the trap center as a function of T at p � 0:5. This result
is very similar to that of the MIT experiment [22]. When p
is fixed at a relatively high value, the curve starts at 0 in the
PS regime at low T and begins to increase with T when the
PS-Sarma transition line is crossed. This behavior reflects
that Sarma states can accommodate higher core polariza-
tions than their PS counterparts.

The plots of n"=n# at the trap center shown in Figs. 3(b)
and 3(c) at fixed T while sweeping p are closely analogous
to the results of the Rice experiment [5]. In Fig. 3(b), T is
below the TCP and the curve is a horizontal line (n"=n# �
1), indicating that the core has equal population in both the
Sarma state at low T and the PS phase at any �T; p�. This
figure also underlines the fact that PS states exist up to very
high polarizations (p > 0:99). Finally, when T=TF is
higher than that of the TCP [Fig. 3(c)], the ratio increases
rapidly after the superfluidity disappears, as appears to be
observed experimentally [5]. Figure 3(c) reveals that when
superfluidity is present, it resides in the trap center, expel-
ling the excess fermions outside the core. If one performs
the same experiment as in Fig. 3(a), but with much lower p
(not shown), the crossing of the transition line will be
barely observable, as is necessary in order to be consistent
with Fig. 3(b). No matter how the Sarma-PS transition line
is crossed, at low p (and thus low T), the ratio n"=n#

remains 1. Therefore, this class of experiments may not
map out the transition curve for all p. Finally, Fig. 3(b) can
be contrasted with the MIT experiments [2], where an
upper critical polarization pc 	 0:8 for superfluidity is
found. A measured condensate fraction of 55% at p � 0
suggests T=Tc * 0:6 (at high p), which may not be incon-
sistent with pc inferred from Fig. 1. A recent theoretical
study [23] suggests that this reduced pc may also be partly
associated with a Hartree self-energy, not included in the
BCS-like wave function discussed here.

Our theory can be generalized to address the whole of
BEC-BCS crossover. As one passes from unitarity towards
the BEC regime, we find that the fraction of the PS phase in
the phase diagram decreases progressively, disappearing at
1=kFa 	 2:04. For stronger couplings, the superfluid con-
tribution to the phase diagram consists only of the Sarma
phase, at all T. The same observation at T � 0 was first
reported in Ref. [24]. This can also be inferred from the
homogeneous phase diagram in Ref. [19], which shows
that the Sarma state is stable at low T for any p providing
1=kFa * 2:3.

In Fig. 4, we present a phase diagram similar to Fig. 1
but on the BCS side of resonance, where 1=kFa � �0:5. It
differs significantly from the unitary case and is, in many
ways, even richer. Importantly, at T � 0, the PS phase is no
longer stable at very high p. We understand this by noting
that, in the BCS regime, the pairing interaction is relatively
weak and the gap � small. At sufficiently high p, we have
h > ��r � 0�, so that an unpolarized BCS superfluid core
can no longer be sustained.

Equally important is the fact that, in this BCS case, the
Sarma and PS phases do not connect and an intermediate
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FIG. 3 (color online). Behavior at the trap center at unitarity:
(a) �n" � n#�=n"�T � 0� as a function of T=TF at fixed p � 0:5,
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FIG. 2 (color online). Three-dimensional density profiles cor-
responding to the four points labeled in the phase diagram at
unitarity shown in Fig. 1: (a1) T � 0:1TF, p � 0:5;
(a2) T � 0:1TF, p � 0:7; (b1) T � 0:12TF, p � 0:6;
(b2) T � 0:08TF, p � 0:6. The (black) solid, (red) dashed,
and (blue) dotted-dashed lines correspond to n", n#, and �n,
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phase appears in between. As a consequence, the bounda-
ries of the Sarma, PS, and (pseudogapped or unpaired)
normal phases do not meet except possibly at p � T �
0. We presume that this intermediate phase is a normal
Fermi gas (N). To understand its appearance, we note that
as the BCS regime is approached, (i) phase separation
becomes problematic because finite temperature (which
enters via T=�) has a stronger effect, allowing the polar-
ization to penetrate into the center of the core and thereby
making PS more difficult. (ii) In addition, the intermediate
T Sarma phase becomes more fragile as the pairing is
weakened. As a result, the Sarma and PS states retreat
from each other as seen in Fig. 4. We cannot rule out
LOFF-like states as an alternative candidate in place of
N. However, we have found [16] that these phases, in
general, have very low Tc and should not persist at these
higher temperatures. In the inset in Fig. 4, we plot n"=n# at
the trap center as a function of T=TF. The N state between
the PS and Sarma phases would be manifested by sudden
jumps at the PS-N and N-Sarma boundaries. This predic-
tion can be used to test the existence of the intermediate N
state in the phase diagram. Finally, like its counterpart in
Fig. 1, the sliver in the PS phase above the (red) dashed line
in Fig. 4 corresponds to phase separation between a corre-
lated normal and a free Fermi gas.

We end with another prediction concerning how the
‘‘mixed normal’’ region of the trap, emphasized experi-
mentally in Ref. [4], evolves with T. As noted in earlier
work [25], within the Sarma phase, this mixed normal state
consists of highly correlated noncondensed pairs which ne-
cessarily become less significant as T decreases. However,
with decreasing T, as seen from Figs. 1 and 4, the Sarma
phase gives way to stable phase separation. Everywhere in
the PS phase, there is a mixed normal region in the gas out-
side the domain wall, with no pairing correlations, as was
found at strictly T � 0 [7,8]. Thus, a change should occur
from a highly correlated to an uncorrelated mixed normal

region at large radii as T is progressively decreased. Fur-
ther experiments should help to address these predictions.
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FIG. 4 (color online). Phase diagram of a polarized Fermi gas,
as in Fig. 1 except that 1=kFa � �0:5. Here the Sarma and PS
phases are separated by an intermediate normal regime. The
(green) dotted line indicates a sweep of T at p � 0:5, with five
possible structures labeled (1) PS, (2) N, (3) Sarma, (4) PG, and
(5) N. Shown in the inset is n"=n# at the trap center vs T=TF.
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