
Heat Capacity of a Strongly-Interacting Fermi Gas:
Supporting Online Material

J. Kinast,1 A. Turlapov,1 J. E. Thomas,1∗

Qijin Chen,2 Jelena Stajic,2 and K. Levin2

1Physics Department, Duke University, Durham, North Carolina 27708-0305, USA
2James Franck Institute and Department of Physics, University of Chicago,

5640 South Ellis Avenue, Chicago, Illinois 60637, USA

∗To whom correspondence should be addressed; E-mail: jet@phy.duke.edu.

Materials and Methods

Computation of Thermodynamical Quantities

The theoretical community is in the midst of unraveling the nature of resonantly interact-

ing fermionic superfluids (S1–S9) with particular emphasis on the strongly interacting Fermi

gas (S10). In the BCS-BEC crossover picture (S11), the strongly interacting Fermi gas is in-

termediate between the weak coupling BCS and BEC limits. In addressing the nature of the

excitations from the conventional mean field or BCS-like ground state (S12), our theoretical

calculations help to provide a theoretical calibration of the experimental thermometry, and elu-

cidate the thermodynamics.

Without doing any calculations one can anticipate a number of features of thermodynam-

ics in the crossover scenario. The excitations are entirely bosonic in the BEC regime, exclu-

1



sively fermionic in the BCS regime, and in between both types of excitation are present. In

the so-called one-channel problem the “bosons” correspond to noncondensed Cooper pairs,

whereas in two-channel models, these Cooper pairs are strongly hybridized with the molecular

bosons of the closed channel, singlet state. BelowTc the presence of the condensate leads to

a single-branch bosonic excitation spectrum which, at intermediate coupling, is predominantly

composed of large Cooper pairs. These latter bosons lead to a pseudogap (S11, S13) aboveTc.

Within the conventional mean field ground state, and over the entire crossover regime (S14)

belowTc, the bosons with effective massM∗ have dispersionΩq = ~2q2/2M∗. This form for

the dispersion reflects the absence of direct boson-boson interactions. In the extreme BEC limit,

when the fermionic degrees of freedom become irrelevant, direct inter-boson interactions must

be accounted for. While our focus in this paper is on the unitary case, when we refer to “BEC”

we restrict our attention to the near-unitary BEC regime.

As long as the attractive interactions are stronger than those of the BCS regime, these non-

condensed pairs must show up in thermodynamics, as must the pseudogap in the fermionic

spectrum. These are two sides of the same coin. BelowTc, the fermionic excitations have dis-

persionEk =
√

(εk − µ)2 + ∆2, whereεk = ~2k2/2m andµ are the atomic kinetic energy

and fermionic chemical potential, respectively. That this excitation gap∆ is non-zero atTc

in the Bogoliubov quasi-particle spectrumEk, differentiates the present approach (S14) from

all other schemes which address BCS-BEC crossover at finiteT . The bosons, by contrast, are

gapless in the superfluid phase, due to their vanishing chemical potential. Within a trap, and

in the fermionic regime (for whichµ > 0), the fermionic component will have a strong spatial

inhomogeneity via the spatial variation of the gap. Thus, in contrast to the homogeneous case,

fermions on the edge of the trap, which have relatively small or vanishing excitation gaps∆,

will contribute power law dependences to the thermodynamics.

Starting at a magnetic field well above a Feshbach resonance, by decreasing the magnetic
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field, we tune from the BCS-like regime towards unitarity at resonance. We first consider lowT

where fermions become paired over much of the trap. The unpaired fermions at the edge tend

to dominate the thermodynamics associated with the fermionic degrees of freedom, and lead

to a higher (than linear) power law in theT dependence of the entropy. The contribution from

excited pairs of fermions is associated with aT 3/2 dependence of entropy on temperature which

dominates for temperaturesT/TF . 0.05 or T/Tc . 0.2. In general, the overall exponent

of the low T power law varies with magnetic field, depending on the magnitude of the gap

and temperature, as well as the relative weight of fermionic and bosonic contributions. In the

superfluid phase, at all but the lowest temperatures, the fermions and bosons combine to yield

S ∝ T 2 precisely at resonance ((kF a)−1 = 0). For the near-unitary case investigated in the

paper ((kF a)−1 = 0.11), we haveS ∝ T 1.9.

Because our calculations (S15) are based on the standard mean field ground state (S12), we

differ from other work (S2,S16) at finite temperatures. Elsewhere (S13,S14,S17) we have char-

acterized in quantitative detail the characteristic gap∆ and pseudogap∆pg energy scales. The

pseudogap (which is to be associated with a hybridized mix of noncondensed fermion pairs and

molecular bosons) and the superfluid condensate (sc) called∆̃sc, add in quadrature to determine

the fermionic excitation spectrum:∆2(T ) = ∆̃2
sc(T ) + ∆2

pg(T ). Our past work (S13,S14, S17)

has primarily focussed belowTc. Here we extend these results, albeit approximately, aboveTc.

Our formalism has been applied belowTc with some success in Ref. (S8) to measurements of

the pairing gap in RF spectroscopy. A more precise, but numerically more complex method for

addressing the normal state was given in Ref. (S18).

After including the trap potentialU(r) and internal binding energy of the bosons, the local

energy density can be decomposed into fermionic (Ef ) and bosonic (Eb) contributions and

3



directly computed as follows

E = µn(r) + Ef + Eb ,

Ef =
∑
K

(iωn + εk − µ(r))G(K)

=
∑

k

[2Ekf(Ek)− (Ek − εk + µ(r))] + ∆2χ(0) ,

Eb =
∑

q

(Ωq − µboson) b(Ωq − µboson) , (S1)

whereµ(r) = µ−U(r), n(r) is the local density,ωn = (2n+1)πkBT is the fermionic Matsubara

frequency,G(K) is the renormalized fermionic Green’s function with four-momentumK ≡
(iωn,k), b(x) andf(x) are the Bose and Fermi distribution functions, respectively. The pair

susceptibilityχ(0), at zero frequency and zero momentum, is given by

χ(0) =
∑

k

1− 2f(Ek)

2Ek

(S2)

and the bosonic chemical potentialµboson is zero in the superfluid phase.

Unlike the situation in condensed matter systems, for these ultracold gases, thermometry

is less straightforward. Experimentally, temperature is determined from the spatial profiles

of the cold gas, either in the trap, or following expansion. For weakly interacting Bose and

Fermi gases, where the theoretical density is well understood, this procedure is straightforward.

However, for a strongly interacting gas, the spatial profile has not been understood until re-

cently (S17). For this reason, the temperature is often measured on either side far away from

the Feshbach resonance, where the scattering length is small. A strongly interacting sample in

the unitary regime is then prepared by an adiabatic change of the magnetic field.

More specifically, in the BCS or weak attraction regime, temperature is determined by fitting

the spatial (or momentum distribution) profiles to those of a non-interacting Fermi gas (S19). In

the opposite BEC regime, temperature can be deduced by fitting the Gaussian wings of density

profiles or determining condensate fractions (S20, S21). Thus, it is convenient to describe a
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given intermediate regime which is accessed adiabatically, by giving the initial temperature

at either endpoint. In order to determine this adiabatically accessed temperature, one needs

precise knowledge of the entropyS as a function ofT and magnetic field from BCS to BEC.

The entropyS can be calculated directly (S15) as a sum of fermionic and bosonic contributions

based on the two types of excitations. Equivalently, one can also calculate the entropy from the

energy,S =
∫ T

0
dT
T

dE
dT

.

In the strongly interacting regime, one can measure an empirical temperatureT̃ by fitting a

T-F density profile directly to the spatial distribution, as done in this paper. In the following, we

describe a temperature calibration method which relates the measured empirical temperatureT̃

to the theoretical value ofT/TF .

Calibration of Experimental Temperature Scale

In order to obtain a temperature calibration curve for the experiments (inset, Fig. 2 main text) we

note that our theoretically generated profiles yield very good agreement with the Thomas-Fermi

functional form (S17) for the normal and superfluid states. However, there are slight systematic

deviations from this form in the superfluid phase. BelowTc the profiles contain the superfluid

condensate as well as non-condensed pairs along with excited fermions. Although our profiles

are generated for an isotropic trap, it can easily be shown that trap anisotropy is not relevant for

thermodynamic quantities. Because they involve integrals over the entire trap, the calculations

can be mapped onto an equivalent isotropic system.

Our theoretical profiles are generated for given reduced temperaturesT/TF . If one applies

the experimental procedure to these theoretical profiles one can deduce the parameter
√

1 + βT̃

for eachT/TF . Theoretically, then, it is possible to relate these two temperature scales. This is

summarized by the calibration curve in the inset to Figure 2.

Quite remarkably, it can be seen from this inset that the experimental T-F fitting procedure

yields the precise theoretical temperature in the normal state. This applies even below the pseu-
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dogap onset temperatureT ∗, since the non-condensed pairs and the fermions both are thermally

distributed. However, in the superfluid phase, the parameter
√

1 + βT̃ systematically underesti-

mates the temperature, because of the presence of a condensate. One can understand this effect

as arising principally from the fact that the region of the trap occupied by the condensate is at

the center and decreases in radius as temperature is increased, until it vanishes atTc. This pre-

vents the profile from expanding with temperature as rapidly as for the non-interacting fermions

of strict T-F theory. Hence, one infers an apparently lower temperature. AsT/TF approaches

zero, the parameter
√

1 + βT̃ must approach zero as well.

Experimental Methods and Empirical Thermometry

Preparation of the strongly interacting Fermi gas is described in the main text and the details

can be found elsewhere (S10,S22,S23).

Preparation of degenerate, noninteracting Fermi gases follows a similar series of steps. As

described previously (S22), 23 s of forced evaporation at 300 G brings the temperature of the

gas toT̃ = 0.24, the lowest temperature we can achieve in this case. The gas is then heated as

described in the main text. Finally, the gas is released and imaged at 526 G to determine the

number of atoms and the temperature. TemperaturesT̃ between 0.24 and 1.23 are obtained for

the noninteracting gas.

All heating and release for time of flight measurements are conducted at 4.6% of the full

trap depth. At this depth, the measured trap frequencies, corrected for anharmonicity, areω⊥ =

√
ωxωy = 2π×1696(10) Hz andωz = 2π×72(5) Hz, so that̄ω = (ωxωyωz)

1/3 = 2π×592(14)

Hz is the mean oscillation frequency.

For both the interacting and noninteracting samples, the column density is obtained by

absorption imaging of the expanded cloud after 1 ms time of flight, using a two-level state-

selective cycling transition (S10, S22). In the measurements, we take optical saturation into

account exactly and arrange to have very small optical pumping out of the two-level system.
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The resulting absorption image of the cloud can then be analyzed to determine the temperature

of the sample.

Anharmonic Corrections to the Energy Input

Eq. 2 of the main text does not include corrections to the energy input which arise from anhar-

monicity in the gaussian beam trapping potential. In general, after the cloud expands for a time

theat, the energy changes when the trapping potentialU(x) is abruptly restored,

∆E(theat) =

∫
d3x[n(x, theat)− n0(x)]U(x) . (S3)

Heren(x, theat) (n0(x)) is the density of the expanded (trapped) cloud, wheren0(x) is a zero

temperature T-F profile, as noted in the main text. A scale transformation (S24, S25) relates

n(x, theat) ton0(x). Using this result, we obtain Eq. 2 of the main text as well as the anharmonic

correction∆E arising for a gaussian beam trapping potential. For a cylindrically symmetric

trap, we obtain,

∆E

E0

= − µ0

30 U0

[
2b4
⊥(t) + b2

⊥(t)− 3
]
+

µ2
0

360 U2
0

[
4b6
⊥(t) + 2b4

⊥(t) + 3b2
⊥(t)− 9

]
. (S4)

Note that for our experiments, we assume a gaussian beam potential with three different di-

mensions. These corrections are most significant for the largest values oftheat, since the largest

contribution to the energy change arises from atoms at the edges of the cloud.

Energy Input for Noninteracting Samples

Although the interacting and noninteracting samples are heated in the same fashion, there are

a few differences in the way the energy input is calculated. In the noninteracting case, the

correction factor in Eq. 2 of the main text,ηnonint, is determined at the lowest temperatureT̃ =

0.24 from the energy for an ideal Fermi gas. Furthermore, whereas the strongly interacting gas

expands hydrodynamically, expansion of the noninteracting gas is ballistic so thatb⊥(theat) =

bB
⊥(theat) =

√
1 + (ω⊥theat)2.
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Determination of β

We determineβ by comparing the measured Fermi radius for the strongly interacting sample

σ′x to the calculated radius for a noninteracting gasσx confined in the same potential. The

relation is given byσ′x = σx(1 + β)1/4 (S26), whereσx =
√

2kBTF /(Mω2
x) is the radius for a

noninteracting gas. We obtainσx = 1.065 (N/2)1/6 µm for our trap parameters. This calculated

radius is consistent with the value measured for noninteracting samples at 526 G in our trap. To

determineσ′x, we measure the size of the cloud after 1 ms of expansion, and scale it down by the

known hydrodynamic expansion factor ofbH
⊥ (1 ms) = 13.3 (S10, S25). We then determine the

Fermi radiusσ′x = 11.98 (N/2)1/6 µm/13.3 = 0.901(0.021) (N/2)1/6µm. With these results,

we obtainβ = −0.49(0.04) (statistical error only).

Observed Transition in Energy versus Empirical TemperatureT̃

For the strongly interacting Fermi gas, without calibrating the empirical temperature scale, we

observe a transition between two patterns of behavior atT̃ = 0.33 (S27): For T̃ = 0.33− 2.15,

we find that the energy closely corresponds to that of a trapped Fermi gas of noninteracting

atoms with the mass scaled by1/(1+β). At temperatures betweeñT = 0.04−0.33, the energy

scales as̃T 2.53, significantly deviating from ideal gas behavior as can be seen in Fig. S1. The

transition between two power laws is evident in the slope change of thelog− log plot of Fig. S2.
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Figure S1: Strongly-interacting Fermi gas below the transition temperature.E/E0 versus un-
calibrated empirical temperaturẽT on a linear scale. Orange line, best fit power law9.8 T̃ 2.53.
Black curve: PredictedE/E0 for an ideal Fermi gas as a function ofT̃ = T/TF . Note the
lowest temperature point (blue square) is not included in the fits: It is constrained to lie on the
black curve by our choice ofηint = 1.01 in Eq. 2 of the main text.
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Figure S2: Energy input versus uncalibrated temperatureT̃ on alog−log scale. The strongly in-
teracting Fermi gas shows a transition in behavior nearT̃ = 0.33. Green circles: noninteracting
Fermi gas data; Blue diamonds: strongly interacting Fermi gas data. Black curve, prediction for
a noninteracting, trapped Fermi gas. Orange line, best fit power law9.8 T̃ 2.53. Note the lowest
temperature point (blue square) is not included in the fits, as it is constrained to lie on the black
curve.
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