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We have measured the heat capacity of an optically trapped, strongly inter-
acting Fermi gas of atoms. A precise addition of energy to the gas is followed
by single-parameter thermometry, which determines the empirical tempera-
ture parameter of the gas cloud. Our measurements reveal a clear transition
in the heat capacity. The energy and the spatial profile of the gas are
computed using a theory of the crossover from Fermi to Bose superfluids at
finite temperatures. The theory calibrates the empirical temperature
parameter, yields excellent agreement with the data, and predicts the onset
of superfluidity at the observed transition point.

Strongly interacting, degenerate atomic Fermi

gases (1) provide a paradigm for strong in-

teractions in nature (2). In all strongly in-

teracting Fermi systems, the zero-energy

scattering length is large compared with the

interparticle spacing, a property that produces

universal behavior (3, 4). Predictions of

universal interactions and effective field

theories in nuclear matter (3, 5–7) are test-

ed by measurements of the interaction en-

ergy (1, 8–10). Anisotropic expansion of

strongly interacting Fermi gases (1) is anal-

ogous to the Belliptic flow[ of a quark-gluon

plasma (2). High-temperature superfluidity

has been predicted (11–16) in strongly inter-

acting Fermi gases, which can be used to test

theories of high-temperature superconduc-

tivity (17). Microscopic evidence for super-

fluidity has been obtained by observing the

pairing of fermionic atoms (18–20). Macro-

scopic evidence arises in anisotropic expan-

sion (1) and in collective excitations (21–23).

In superconductivity and superfluidity,

measurements of the heat capacity have

played an important role in determining

phase transitions (24) and in characterizing

the nature of bosonic and fermionic excita-

tions. We report on the measurement of the

heat capacity for a strongly interacting Fermi

gas of 6Li atoms that are confined in an

optical trap. Our experiments (25) examine

the fundamental thermodynamics of the gas.

Thermodynamic properties of the Bardeen-

Cooper-Schrieffer–Bose-Einstein conden-

sation (BCS-BEC) crossover system are

computed (26) using a consistent many-body

theory (27, 28) based on the conventional

mean-field state (29). BCS-BEC crossover

refers to the smooth change from the BCS

superfluidity of fermions to the BEC of

dimers, by varying the strength of the pairing

interaction (for example, by tuning a

magnetic field). The formalism of (16, 17,

28) was applied recently (30) to explain

radio-frequency measurements of the gap

(20). The theory contains two contributions

to the entropy and energy arising from

fermionic and bosonic excitations. The latter

are associated principally with excited pairs of

fermions (Cooper pairs at finite momentum).

In this model, there is no direct boson-boson

coupling, and fermion-boson interactions are

responsible for the vanishing of the pair

chemical potential m
pair

in the superfluid re-

gions. The vanishing of m
pair

implies that,

within a trap, the associated low-temperature

power laws in the entropy and energy are the

same as those of the homogeneous system

(31). This is to be contrasted with models that

involve noninteracting bosons and fermions

(32). Our BCS-like ground state ansatz will be

inapplicable at some point when the fer-

mionic degrees of freedom have completely

disappeared and the gas is deep in the BEC

regime, where the power laws associated

with true interacting bosons are expected (31).

In that case, direct interboson interactions

must be accounted for, and they will alter

the collective-mode behavior (33). However,

on the basis of collective-mode experiments

(21–23) and their theoretical interpretation

(34, 35), one can argue that the BCS-like

ground state appears to be appropriate in the

near-resonance, unitary regime. The thermo-

dynamic quantities within the trap are com-

puted by using previously calculated profiles

(36) of the various energy gaps and the

particle density as a function of the radius.

Unlike the pairing gap in the weak-

coupling BCS limit, the pairing gap in the

unitary regime is very large. Well below the

superfluid transition temperature T
c
, fer-

mions are paired over much of the trap, and

unpaired fermions are present only at the

edges of the trap. These unpaired fermions

tend to dominate the thermodynamics asso-

ciated with the fermionic degrees of free-

dom, and lead to a power law that is higher

than linear in the temperature (T) depen-

dence of the entropy. The contribution from

finite-momentum Cooper pairs leads to a T3/2

dependence of the entropy on temperature.

Both bosonic and fermionic contributions are

important at low T.

An important feature of these fermionic

superfluids is that pair formation occurs at a

higher temperature, T*, than T
c
, where pairs

condense. At temperatures T 9 T*, the en-

tropy approaches that of the noninteracting

gas. For T
c
G T G T*, the attraction is strong

enough to form quasi-bound (or preformed)

pairs, which are reflected in the thermo-

dynamics. At these intermediate temperatures,

a finite energy (i.e., the pseudogap) is needed

to create single fermion excitations (16, 17, 28).

In the unitary regime, both T* and T
c

are

large fractions of the Fermi temperature T
F
,

signifying high-temperature pair formation

and very high-temperature superfluidity.

We prepared a degenerate unitary Fermi

gas composed of a 50:50 mixture of the

two lowest spin states of 6Li atoms near a

Feshbach resonance. To cool the gas, we

used forced evaporation at a bias magnetic

field of 840 G in an ultrastable CO
2

laser

trap (1, 2, 26). After cooling the atoms well

into the degenerate regime, energy was

precisely added to the trapped gas at fixed

atom number. The gas was then allowed to

thermalize for 0.1 s, and was released from

the trap and imaged at 840 G after 1 ms of

expansion to determine the number of atoms

and the empirical temperature parameter T̃.

For our trap, the total number of atoms was

N 0 2.2 (0.3) � 105. The corresponding

noninteracting gas Fermi temperature was

TF 0 ð3NÞ1=3Iw=kB , 2:5 mK, where I is

Planck_s constant divided by 2p, w is the

geometric mean of the trap oscillation

frequencies, k
B

is Boltzmann_s constant, and

T
F

is small compared U
0
/k

B
0 35 mK, where

U
0

is the final trap depth.

Energy was precisely added to the trapped

gas at fixed atom number by releasing the

cloud from the trap and permitting it to

expand for a short time 0 e t
heat

e 460 ms,

after which the gas was recaptured. Even for

a strongly interacting gas, the energy input is

well defined for very low initial temper-

atures, where both the equation of state and

the expansion dynamics are known. During

the times t
heat

used in these experiments, the

axial size of the gas changed negligibly,

whereas transverse dimensions expanded by

a factor b
±

(t
heat

). Therefore, the mean

harmonic-trapping potential energy bU
HO

À in

each of the two transverse directions in-

creased by a factor b
±
2 (t

heat
).

The initial potential energy was readily

determined at zero temperature from the
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equation of state of the gas, (1 þ b)e
F
(x) þ

U
HO

0 m
0

(1, 8), where e
F
(x) is the local

Fermi energy as a function of position, b is

the unitary gas parameter (1, 3, 6–8), and m
0

is

the global chemical potential. This equation of

state is supported by low-temperature studies

of the breathing mode (21, 23, 33, 35) and the

spatial profiles (1, 6, 36). It is equivalent to

that of a harmonically trapped noninteracting

gas of particles with an effective mass (5),

which in our notation is m* 0 m/(1 þ b),

where m is the bare-fermion mass. The mean

potential energy is half of the total energy,

because the gas behaves as a harmonic os-

cillator. Because b G 0 (6, 7), m* 9 m, so that

the effective oscillation frequencies and the

chemical potential are simply scaled down,

yielding m0 0 kBTF

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p
(1, 8). The total

energy at zero temperature, which determines

the energy scale, is therefore

E0 0
3

4
Nm0 0

3

4
NkBTF

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p
ð1Þ

For each direction, the initial potential

energy at zero temperature is E
0

/6. Then, the

total energy of the gas after heating is given

by

EðtheatÞ 0 hE0

2

3
þ 1

3
b2
±ðtheatÞ

� �
ð2Þ

neglecting trap anharmonicity (26). Here, h
is a correction factor arising from the finite

temperature of the gas before the energy

input. For the strongly interacting gas, the

initial reduced temperature is very low. We

assume that it is T̃ , 0:04, where T̃ is mea-

sured and calibrated as described below. As-

suming a Sommerfeld correction then yields

hint , 1 þ 2p2 T̃ 2=3 , 1:01, which hardly af-

fects the energy scale.

A zero-temperature strongly interacting

gas expands by a hydrodynamic scale factor

b
±
H (t

heat
), when released from a harmonic

trap (1, 37). Heating arises after recapture

and subsequent equilibration, but not dur-

ing expansion. This follows from the lowest

T̃ 0 0:04, which is obtained by imaging the

gas 1 ms after release from the trap. Hence,

the temperature change during t
heat

e 460 ms G
1 ms must be very small.

Thermometry of strongly interacting

Fermi gases is not well understood. In con-

trast, thermometry of noninteracting Fermi

gases can be simply accomplished by fitting

the spatial distribution of the cloud (after

release and ballistic expansion) with a

Thomas-Fermi (T-F) profile, which is a

function of two parameters. We choose the

two parameters to be the Fermi radius s
x

and

the reduced temperature T/T
F
. However, this

method is only precise at temperatures well

below 0.5 T
F
, where s

x
and T/T

F
are

determined independently. At higher temper-

atures, where the Maxwell-Boltzmann limit

is approached, such a fit determines only the

product s
x
2 � T/T

F
. We circumvent this

problem by determining s
x

from a low-

temperature fit, and then hold it constant in

the fits at all higher temperatures, which

enables a one-parameter determination of the

reduced temperature.

Spatial profiles of strongly interacting

Fermi gases closely resemble T-F distribu-

tions, which were observed experimentally

(1, 10) and were predicted (36). The profiles

of the trapped and released gas are related by

hydrodynamic scaling to a good approxima-

tion. Over a wide temperature range, this

scaling is consistent to T2% with the ob-

served cloud size and is further supported by

measurements of the breathing frequency,

which are within T1% of the unitary hydro-

dynamic value (21). Analogous to the non-

interacting case, we define an experimental

dimensionless temperature parameter T̃,

which is determined by fitting the cloud

profiles with a T-F distribution holding

constant the Fermi radius of the interacting

gas, s
x
¶. This method is inspired by the ideas

presented in (38). We find experimentally

that T̃ increases monotonically from the highly

degenerate regime to the Maxwell-Boltzmann

limit. This fitting procedure also leads us to

define a natural reduced-temperature scale in

terms of the zero-temperature parameters

b and T
F
,

T̃Tnat K
kBT

m0

0
T

TF

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p ð3Þ

Equation 3 is consistent with our choice

of fixed Fermi radius s
x
¶, that is, mw

x
2 s

x
¶2 / 2 0

m
0
, where w

x
is the trap oscillation frequency

in the x direction. At high temperatures, we

must interpret T̃ 0 T̃nat to obtain the correct

Maxwell-Boltzmann limit. At low temper-

atures, T̃ , T̃nat yields an estimate of T/T
F

that can be further calibrated to the theo-

retical reduced temperature T/T
F

by perform-

ing the experimental fitting procedure on

the theoretically generated density profiles

(26, 27).

Preliminary data processing yields nor-

malized, one-dimensional spatial profiles of

the atomic cloud (26). To determine T̃ over

the full temperature range of interest, we used

a fixed expansion time of 1 ms. We first

measured sx¶ from our lowest temperature

data. Then, T̃ was determined using the one-

parameter T-F fit method. This yielded

T̃ from 0:04 to 2:15 for the strongly inter-

acting gas.

The experimental energy scale Eq. 1 and

the natural temperature scale Eq. 3 were

determined by measuring the value of b. This

was accomplished by comparing the mea-

sured radius of the strongly interacting gas,

s
x
¶, to the radius for a noninteracting gas

(26). We found that b 0 – 0.49 (0.04)

(statistical error only), which is in reasonable

agreement with the best current predictions,

where b 0 – 0.56 (6) and b 0 – 0.545 (7).

We next applied our energy input and

thermometry methods to measure the heat

capacity of our optically trapped Fermi gas.

For different values of theat, we measured the

temperature parameter T̃ and calculated the

total energy E(t
heat

)/E
0

by using Eq. 2. The

time t
heat

determines the energy accurately

because the trap intensity switches in less

than 1 ms. We believe that shot-to-shot fluc-

tuations in the energy are negligible, based

on the small fractional fluctuations in T̃ at

low temperatures, where the heat capacity is

expected to be very small. To obtain high-

resolution data, 30 to 40 different heating

times t
heat

were chosen. The data for each of

these heating times were acquired in a ran-

dom order to minimize systematic error. Ten

complete runs were taken through the entire

random sequence.

We first measured the heat capacity for a

noninteracting Fermi gas (21, 26), where the

scattering length a was zero. This occurred near

526 G. Figure 1 shows the data (green dots) that

represent the calculated E(t
heat

)/E
0

versus the

measured value of T̃, for each t
heat

. For

comparison, predictions for a noninteracting

trapped Fermi gas, where E
ideal

(T )/E
ideal

(0), are

shown as the black curve, where T̃ 0 T=TF in

this case. Here, the chemical potential and energy

were calculated using a finite temperature Fermi

distribution and the density of states for the

trapped gas. Throughout, we used the density-

of-states for a realistic Gaussian potential

wel l , UðrÞ 0 U0E1jexpðjmw2r2 = 2U0Þ^,
where U

0
0 14.6k

B
T

F
and r is the radial

coordinate, rather than the harmonic oscillator

approximation. This model is in very good

agreement with the noninteracting gas data at

all temperatures.

For the strongly interacting gas at 840 G

EFig. 1 (blue diamonds)^, the gas was cooled to

T̃ 0 0:04 and then heated. The temperature

parameter T̃ varies by a factor of 50, and the

total energy varies by a factor of 10. For

comparison, we show the theoretical results for

the unitary case as the red curve. Here, the

horizontal axis for the theory was obtained

using the approximation T̃ , T̃nat via Eq. 3. On

a large-scale plot, the data for the strongly

interacting and noninteracting gases appear to

be quite similar, although there are important

differences at low temperature.

A noticeable result is observed by plotting

the low-temperature data of Fig. 1 on an

expanded scale (25, 26). This reveals a tran-

sition in the heat capacity, which is made

evident by plotting the data for the strongly

interacting gas on a log-log scale, as in Fig.

2. The transition is apparent in the raw

temperature data (25, 26) and is strongly

R E P O R T S

www.sciencemag.org SCIENCE VOL 307 25 FEBRUARY 2005 1297



suggestive of the onset of superfluidity. The

observed spatial profiles of the gas vary

smoothly and are closely approximated by T-F

shapes in the transition region. Figure 2 shows

the transition after converting the empirical

temperature T̃ to theoretical T/T
F

units.

The empirical temperature was calibrated

to enable precise comparison between the

theory and the experimental data. For the cal-

ibration, we subjected the theoretically de-

rived density profiles (27, 36) to the same

one-dimensional T-F fitting procedure that

was used in the experiments. One-dimensional

density distributions were obtained by inte-

grating over two of the three dimensions of

the predicted spatial profiles, which were

determined for a spherically symmetric trap.

Our results for this temperature calibration

are shown in the inset to Fig. 2. This cali-

bration provides a mapping between the

experimental reduced temperature
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p
T̃,

and the theoretical temperature T/T
F
. We

found that T̃ 0 T̃nat is a very good approxi-

mation above T
c
. Such scaling may be a

manifestation of universal thermodynamics

(4). The difference between T̃ and T̃
nat

is

significant only below the superfluid transi-

tion T
c

and is therefore negligible in the

large-scale plot of Fig. 1 over a broad

temperature range. However, below T
c
, the

fits to the theoretical profiles yield a value

of
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p
T̃, which is lower than the theo-

retical value of T/T
F
. This is a consequence

of condensate effects (26).

Figure 2 shows that above a certain

temperature T
c
, the strongly interacting data

nearly overlap that of the noninteracting gas,

and exhibit a power law fit E/E
0

– 1 0 4.98

(T/T
F
)1.43. Below T

c
, the data deviate greatly

from noninteracting Fermi gas behavior, and

are well fit by E/E
0

– 1 0 97.3 (T/T
F
)3.73

(dashed curve). From the intersection point of

these power law fits, we estimate T
c
/T

F
0 0.27

(0.02) (statistical error only). This is very

close to our theoretical value T
c
/T

F
0 0.29.

The fractional change in the heat capacity

C is estimated from the slope change in the

fits to the calibrated data. We find the

relative specific heat jump (CG – C9)/C9 ,

1.51 (0.05) (statistical error only), where 9
denotes above T

c
and G denotes below T

c
.

This is close to the value (1.43) for an s-wave

BCS superconductor in a homogeneous case,

although one expects preformed pairs, i.e.,

pseudogap effects, to slight modify the dis-

continuity (28).

In Figs. 2 and 3, the theory is compared

to the calibrated data after a very slight

detuning of the magnetic field in the model

away from resonance, so that the predicted

unitary gas parameter b has the same value as

measured. This small detuning, (k
F

a)j1 0 0.11,

where kF 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBTF=I

2
q

, is reasonable given

the broad Feshbach resonance (39) in 6Li.

Fig. 2. Energy input
versus temperature from
Fig. 1 after temperature
calibration on a log-log
scale. The strongly in-
teracting Fermi gas
shows a transition in be-
havior near T/TF 0 0.27.
Green circles indicate
noninteracting Fermi
gas data and blue dia-
monds indicate strong-
ly interacting Fermi gas
data. The red curve
shows the prediction
for a unitary Fermi gas
in a Gaussian trap and
the black curve shows
the prediction for a
noninteracting Fermi
gas in a Gaussian trap,
as in experiment. The
black dashed line shows
the best-fit power law
[97.3 (T/TF)

3.73] to the unitary data for T/TF e 0.27. The inset shows the calibration curve, which has
been applied to the unitary data (blue diamonds). The red dashed line in the inset represents the
diagonal, T=TF 0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b

p
T̃. Here, E0 K E(T 0 0).

Fig. 1. Total energy ver-
sus temperature. For each
heating time theat, the
temperature param-
eter T̃ is measured from
the cloud profile, and
the total energy E(theat)
is calculated from Eq. 2
in units of the ground
state energy E0. Green
circles indicate nonin-
teracting Fermi gas da-
ta and blue diamonds
indicate strongly inter-
acting Fermi gas data.
The black curve shows
the predicted energy
versus reduced temper-
ature for a noninteracting trapped Fermi gas, Eideal(T̃ )=Eideal(0). The red curve shows the predicted
energy versus T̃ for the unitary case. No temperature calibration is applied because T̃ , T̃nat over the
broad temperature range shown. Note that the lowest temperature point (blue square) is constrained
to lie on the black curve.

Fig. 3. Low-temperature
comparison of present
theory (red, black curves)
and experiments (sym-
bols) in terms of E/EF
(EF 0 kBTF) per atom as
a function of T/TF , for
both unitary and non-
interacting gases in a
Gaussian trap. The two
experimental (and the
two theoretical) curves
do not merge until high-
er T* 9 Tc, which is con-
sistent with the presence
of a pseudogap.
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Finally, Fig. 3 presents an expanded view

of the low-temperature region. Here, the

experimental unitary data are calibrated and

replotted in the more conventional theoreti-

cal units, E
F
0 k

B
T

F
and T

F
. The agreement

between theory and experiment is very good.

In the presence of a pseudogap, a more

elaborate treatment (28) of the pseudogap

self energy, which takes into account spectral

broadening, will be needed in order to

calculate accurately the jump in specific heat.

By extending the temperature range in

Fig. 3 to high T, we find that both the unitary

and noninteracting cases coincide above a

characteristic temperature, T*, although be-

low T
c

they start out with different power

laws (as shown in Fig. 2). In general, we find

that agreement between theory and experi-

ment is very good over the full temperature

range for which the data were taken. The

observation that the interacting and non-

interacting curves do not precisely coincide

until temperatures rise substantially above T
c

is consistent with (although it does not

prove) the existence of a pseudogap and

with onset temperature from the figure T , 2

T
c
. Related signatures of pseudogap effects

are also seen in the thermodynamics of high-

temperature superconductors (17).
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1131 (2004).

31. L. D. Carr, G. V. Shlyapnikov, Y. Castin, Phys. Rev.
Lett. 92, 150404 (2004).

32. J. E. Williams, N. Nygaard, C. W. Clark, N. J. Phys. 6,
123 (2004).

33. S. Stringari, Europhys. Lett. 65, 749 (2004).
34. H. Hu, A. Minguzzi, X.-J. Liu, M. P. Tosi, Phys. Rev.

Lett. 93, 190403 (2004).
35. H. Heiselberg, Phys. Rev. Lett. 93, 040402 (2004).
36. J. Stajic, Q. J. Chen, K. Levin, available at http://arxiv.org/

abs/cond-mat/0408104.
37. C. Menotti, P. Pedri, S. Stringari, Phys. Rev. Lett. 89,

250402 (2002).
38. B. Jackson, P. Pedri, S. Stringari, Europhys. Lett. 67,

524 (2004).
39. M. Bartenstein et al., available at http://arxiv.org/

abs/cond-mat/0408673.
40. We thank T.-L. Ho, N. Nygaard, C. Chin, M. Zwierlein,

M. Greiner, and D. S. Jin for stimulating correspon-
dence. This research is supported by the Chemical
Sciences, Geosciences, and Biosciences Division of
the Office of Basic Energy Sciences, Office of
Science, U.S. Department of Energy (DOE); the
Physics Divisions of the Army Research Office; and
NSF, the Fundamental Physics in Microgravity
Research program of NASA, NSF-MRSEC grant
DMR-0213745; and in part by the Institute for
Theoretical Sciences, a joint institute of Notre Dame
University and Argonne National Laboratory, and by
the U.S. DOE, Office of Science through contract W-
31-109-ENG-38.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1109220/DC1
Materials and Methods
Figs. S1 and S2
References and Notes

28 December 2004; accepted 16 January 2005
Published online 27 January 2005;
10.1126/science.1109220
Include this information when citing this paper.

Simultaneous State Measurement
of Coupled Josephson

Phase Qubits
R. McDermott,1,2 R. W. Simmonds,2 Matthias Steffen,1

K. B. Cooper,1 K. Cicak,2 K. D. Osborn,2 Seongshik Oh,2

D. P. Pappas,2 John M. Martinis1*

One of the many challenges of building a scalable quantum computer is single-
shot measurement of all the quantum bits (qubits). We have used simultaneous
single-shot measurement of coupled Josephson phase qubits to directly probe
interaction of the qubits in the time domain. The concept of measurement
crosstalk is introduced, and we show that its effects are minimized by careful
adjustment of the timing of the measurements. We observe the antiphase
oscillation of the two-qubit k01À and k10À states, consistent with quantum
mechanical entanglement of these states, thereby opening the possibility for
full characterization of multiqubit gates and elementary quantum algorithms.

Considerable progress has been made toward

the implementation of a quantum computer (1)

based on superconductors. Coherent single-

qubit operations have been shown in Joseph-

son flux (2) and phase (3) qubits, and the time

domain interaction of coupled qubits (4) and a

controlled-NOT logic gate (5) have been

demonstrated in the Josephson charge qubit

(6, 7). Previous studies of coupled supercon-

ducting qubits have relied on separate mea-

surements of the individual qubits (bitwise

readout). Such an approach does not yield

complete information about the system and

fails, for example, to directly establish corre-

lations between the qubits in the case of an

entangled state. To test quantum algorithms

efficiently or to perform quantum state

tomography and thereby definitively prove

entanglement, it is necessary to measure all

the qubits simultaneously (wordwise readout)

and with high fidelity. For multiqubit circuits

with fixed coupling—a common architecture

for superconducting qubits—the realization of

this goal is complicated by measurement

crosstalk: Measurement of the state of one

qubit may perturb the state of other qubits,

destroying information about quantum correla-

tions. Although continued progress toward the

realization of quantum gates in superconduct-

ing circuits requires a thorough understanding

of measurement crosstalk, this issue has

received little attention to date.

We describe simultaneous single-shot

state measurements to probe the interaction

of coupled Josephson phase qubits in the time

domain. The observed antiphase oscillation of

the occupation probabilities of the two-qubit

basis states k01À and k10À is consistent with

quantum mechanical entanglement of these

1Department of Physics, University of California,
Santa Barbara, CA 93106, USA. 2National Institute
of Standards and Technology, 325 Broadway, Boul-
der, CO 80305, USA.

*To whom correspondence should be addressed.
E-mail: martinis@physics.ucsb.edu

R E P O R T S

www.sciencemag.org SCIENCE VOL 307 25 FEBRUARY 2005 1299


