IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 3, 2020, accepted April 24, 2020, date of publication April 28, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991053

A Cache Invalidation Strategy Based on
Publish/Subscribe for Named Data Networking

YUANZHI KAN“12, QUAN ZHENG'-23, JIAN YANG 12, (Senior Member, IEEE),

AND XIAOBIN TAN“1:2

! Department of Automation, University of Science and Technology of China, Hefei 230022, China
2Laboratory for Future Networks, University of Science and Technology of China, Hefei 230022, China
3nstitute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China

Corresponding author: Quan Zheng (qzheng @ustc.edu.cn)

This work was supported by the CETC Joint Advanced Research Foundation under Grant 6141B08080101.

ABSTRACT Named Data Networking (NDN) aims to improve the efficiency of data delivery for the Internet.
One of the typical characteristics of NDN is ubiquitous caching, that is to say, each network participant in
NDN is capable of caching contents. This caching feature is beneficial for enhancing the data availability but
also raises a problem of cache consistency. In this paper, we propose a novel strategy of cache invalidation,
called PIOR (Proactive Invalidation with Optional Renewing), to provide strong consistency for NDN.
PIOR is based on a lightweight publish/subscribe model, actively publishing the updated contents to the
router nodes to guarantee the copy validity. We also conceive customized publish/subscribe rules to relieve
the unbearable burden on the server imposed by the excessive publishing traffic. The advantage of PIOR
lies in simple deployment and compatibility, since the invalidation process of PIOR is independent of the
inherent process of NDN. We conduct extensive simulations over a real topology to evaluate the achievable
performance of PIOR. The simulation results show that PIOR is able to achieve a high hit ratio and low

server load at the low cost of network management.

INDEX TERMS Cache, consistency, invalidation, publish/subscribe, Named Data Networking.

I. INTRODUCTION

In the past decades, the major usage of the Internet
has shifted from the information browsing to the content
dissemination [1]. To achieve efficient content delivery,
Information-Centric Networking (ICN), a modern Internet
architecture, replaces the current host-centric communication
model with the content-centric communication model [2].
As a promising approach to ICN, Named Data Network-
ing (NDN) [3] provides an excellent foundation for data
distribution systems. In NDN, communications are driven
by consumers through interest packets and data packets.
A consumer first sends a named interest packet for a desired
content to the network. When a router receives this interest
packet, the router first performs a Content Store (CS) lookup.
If a match is found, it then is returned to the consumer.
Otherwise, the router checks the Pending Interest Table (PIT).
If a PIT entry with the same name is found, the router adds the
incoming face of this interest packet to the in-record list of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jose Saldana

80074

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

matching PIT entry. Finally, if there is no matching entry in
the PIT, the router creates a new PIT entry and then forwards
this interest packet according to the Forwarding Information
Base (FIB).

Throughout the process of data delivery in NDN, we can
see that one of the fundamental features of NDN is in-network
caching (CS). No matter the user terminals or the net-
work infrastructures, all network participants in NDN have
caches [4]. The routing node on the transmission path
can cache the content passing by it, therefore the sub-
sequent requests for the same content can be quickly
responded by the nearest router. In-network caching, that
has been widely employed by many computer systems, is
a very useful technology to reduce the bandwidth usage
over links, user-perceived delays and loads on the origin
server [5].

However, due to the introduction of caching, how to guar-
antee the cache consistency has also attracted the attention
of researchers. If, for example, a content is updated at the
server, the copies of this content stored in caches may be
inconsistent [6]. Hence, it is extremely important to deal with

VOLUME 8, 2020

https://orcid.org/0000-0001-5280-9459
https://orcid.org/0000-0002-7329-4738
https://orcid.org/0000-0001-7489-2839
https://orcid.org/0000-0002-6977-6363

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

the stale copies to ensure the copies received by users are
valid.

Specifically, the solutions to cache consistency are classi-
fied into validation and invalidation [7]. Validation refers to
an approach where the cache periodically checks the consis-
tency of the cached copies with the original server. This solu-
tion can only provide a weak consistency because the content
update could occur between two successive checks. Never-
theless, some scenarios, like real-time processing systems,
require strong consistency that can be offered by invalidation.

Cache invalidation can be further divided into four basic
schemes: (i) reactive invalidation: each time a request hits
the cache, the cache will send an invalidation message to
the server to verify the validity of the requested content [8];
(ii) proactive invalidation with removing: when a master con-
tent is updated at the server, the server will inform the caches
to remove the stale copies of this content; (iii) proactive
invalidation with renewing: when a master content is updated
at the server, the server will push the latest content to the
cache to replace the stale one; (iv) proactive invalidation with
optional renewing: this scheme, as a mix of the second and the
third ones, selects some contents to renew and the remains to
remove. Popularity is often used as a criterion for selection in
this scheme [9].

As copies of named contents are extensively distributed all
over the in-network caches, cache consistency is a consider-
able challenge in NDN caching [6]. For reactive invalidation,
each cache hit will yield a verification process, the number
of which increases sharply with the scale-up of the network.
Hence the application scenarios of this approach is limited in
NDN. For proactive invalidation, the original server needs to
maintain a list of caches that have obtained its contents [7].
Unfortunately, the information of this list, like address, can-
not be provided inherently by NDN owing to the content-
centric. Additionally, such a list must be maintained for every
content [7], which brings significant overheads to the server.
How to reduce these overheads also requires to be taken into
account if the proactive invalidation is applied in NDN.

Another issue about proactive invalidation is how to be
implemented. The communication model of NDN is a bal-
anced model, which means one interest packet corresponds to
one data packet [10] (single-interest single-data). The record
of an interest packet that has been responded or has not
been responded for a period of time will be removed from
the PIT. However, the communication model of proactive
invalidation is that one interest packet could correspond to
multiple data packets (single-interest multiple-data). This
contradiction here leads that the subsequent data packets in
proactive invalidation could be dropped by the router due to
the lack of the corresponding interest packet.

Naturally, an approach to the implementation of proac-
tive invalidation is the publish/subscribe model in which
a cache subscribes a time-sensitive content once and the
server publishes the updated content multiple times. There
have been several publish/subscribe models proposed for
NDN in the literature [11]-[15]. Most of them are built on

VOLUME 8, 2020

top of the NDN architecture to provide a publish/subscribe
service fundamentally. Nevertheless, this kind of service is
overqualified for the scenario of proactive invalidation with
creating many new data structures and basic packets to the
network. Besides, in the publish/subscribe model of proactive
invalidation, the subscriber is the cache (or router) rather
than the consumer (or user), and the published contents are
only different versions of the same content rather than the
hybrid of the different versions and contents in a separate pub-
lish/subscribe process. Thus, the traditional publish/subscribe
model of NDN cannot satisfy the requirements of the proac-
tive invalidation scenario.

In this paper, to solve the above issues, we develop a
lightweight NDN publish/subscribe model, based on which
we propose a cache invalidation strategy in the network layer
of NDN, called PIOR (Proactive Invalidation with Optional
Renewing). Several customized publish/subscribe rules are
conceived in PIOR to reduce the overheads on publishing
traffic and maintaining content status list. Only the caches
that store the selected content copies can subscribe to the
server, and only the selected contents can be published to the
caches. The selected criteria are flexible and can be based on
popularity, importance, etc.

The major contributions of our work are:

« We developed a lightweight publish/subscribe model for
NDN. By adding control and track fields into the basic
packets, this model is able to maintain the forward-
ing path without creating specialized PIT-like tables or
semi-persistent interest packets.

« We propose a cache invalidation strategy, PIOR, based
on the developed lightweight publish/subscribe model.
In PIOR, the server actively publishes the updated con-
tents to the router nodes to provide strong cache consis-
tency.

o We conduct comprehensive simulation experiments via
a real network topology and compare our PIOR strat-
egy with several common cache consistency strategies
including validation and invalidation. The experiment
results show that PIOR can achieve a high hit ratio and
low server load at the low cost of network management.

The rest of this paper is organized as follows. In the
next section, we review the related work of cache invali-
dation and publish/subscribe in NDN. Section III describes
the lightweight NDN publish/subscribe model and the PIOR
algorithm. In section IV, we implement the PIOR algorithm
and present simulation results. Finally, conclusions and future
work are provided in Section V.

Il. RELATED WORK

A. NDN PUBLISH/SUBSCRIBE MODELS

The research of the publish/subscribe is an active topic in
NDN. One of the typical communication models in pub-
lish/subscribe is single-interest multiple-data [15], and sev-
eral solutions to this model have been proposed.

80075

IEEE Access

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

Chen et al. [11] present a content oriented publish/sub-
scribe system (COPSS) to provide efficient pub/sub-based
content delivery for CCN. In COPSS a PIT-like table, Sub-
scription Table (ST), is created to maintain the forwarding
path of the data packet towards the subscribers. The record of
the interest packet is stored in the ST to offer the outgoing face
of the data packet for a long period of time. A compact version
of COPSS for CCN-based Interest of Thing, COPSS-lite [12],
also uses a PIT-like table to maintain above information.

Another solution to keep the outgoing face is using persis-
tent interest packet. The Persistent Interests (PIs), proposed
by Tsilopoulos and Xylomenos [13], is remained in the PIT
until users explicitly unsubscribe or its lifetime expires. The
Persistent Interest Packet (PIP), proposed by Nour ef al. [14],
is set with a persistence value, which is decremented with
each data packet in the back-forwarding path. When the
persistence value reaches 0, the record of the PIP is evicted
from the PIT.

The Group-based Publisher-Subscriber (GbPS) architec-
ture [15] uses both a dedicated table (Subscription Interest
Table, SIT) and a semi-persistent interest packet (S-Interest)
to offer the outgoing face of the data packet. And the pub-
lish/subscribe communication model is provided as an inte-
grated part of NDN in GbPS.

It is noted that the above publish/subscribe models are
built on top of the NDN architecture and aim to become
fundamental communication services. Applying these mod-
els to the scenario of proactive invalidation is not straight
forward, because the subscriber is shifted from the consumer
to the cache. In addition, creating many new data structures
for NDN to achieve the publish/subscribe model of proac-
tive invalidation is a bit of overkill. Hence, a particular and
lightweight publish/subscribe model is highly desired.

B. APPROACHES TO CACHE CONSISTENCY

It is acknowledged that caching generates massive copies
of contents scattered throughout the network. If a content
is updated at the server, the copies of this content stored
elsewhere will become outdated. Without an special approach
to renewing or removing the stale copies, these copies could
be requested by unwitting users. As we mentioned above,
there are two underlying approaches to guaranteeing cache
consistency: validation and invalidation [7].

The cache validation can only provide weak consistency.
The simplest validation scenario is the TTL-based (Time-To-
Live) cache where each content is associated with a live time.
The cached copy can be visited only when it leaves the server
less than the live time. Moreover, according to the different
settings of live time, the TTL-based can be divided into the
fixed TTL [16] and the adaptive TTL [17].

Different from the cache validation, cache invalidation,
usually classified into the reactive and the proactive, can pro-
vide strong consistency. However, there are extra overheads
for invalidation on maintaining cache lists at the server and
sending invalidation messages. Considering that the content
copies are largely scattered across the in-network caches,

80076

these overheads could grow exponentially with the expan-
sion of network scale [7]. Several invalidation scenarios for
in-network caches also have been proposed such as Leases
[18] for distributed file system, Piggyback server invalida-
tion [19], IR-based cache invalidation [20], etc.

When providing cache consistency for NDN, the validation
or invalidation strategy should take into consideration that
NDN is content centric. Because the existing strategies of
traditional in-network caches are based on TCP/IP network
and the IP address is unavailable in NDN, these strategies
cannot be applied directly. Version stamp or time stamp is
commonly used in the design of cache consistency strategy
for NDN.

Content Update Validation System (CUVS), proposed
in [21], attaches a version number to each content name in
ICN. A user can request for a specific version of content by
adding the objective version number to the name of the inter-
est packets. Nevertheless, the cost of distributing all contents’
version numbers to all users and servers in advance is gigantic
in CUSV. Feng et al. [22] propose a cost-effective Popularity-
based Cache Consistency (PCC) mechanism, where two new
types of packets, Query and Ack, are created to transfer
controlling messages. The caches in PCC can spontaneously
request for the updated version numbers from the server,
which reduces the traffic of distributing the version numbers
to the whole network. However, PCC will suffer from heavy
overheads on transferring Query and Ack packets as the
contents updating more frequently.

Both CUVS and PCC use version stamp to distinguish
the different versions of the same content. Essentially, this
approach is an extension of the TTL cache in which the
version stamp that reaches the live time will be replaced by
a new one. But in some scenarios, the version stamp could
not be supported by the naming scheme of NDN and the
consumers also might not know the latest version stamp when
they just join the network.

By substituting version stamp with freshness in CCN,
Quevedo et al. [23] propose the Consumer Driven Informa-
tion Freshness Approach (CDIFA), in which the consumers
are able to specify their desired content freshness in an
optional field of the interest packet. When providing strong
cache consistency, CDIFA is a Nocache-like strategy where
all requests for the latest content will be forwarded to the
server. This is because the freshness of the latest content is
always O and the freshness of the content copies is always
greater than 0. Therefore, the request response time in CDIFA
increases.

As we can see, most of the current proposals for cache
consistency in NDN either imposes significant overheads to
network or increases request response time. Additionally, all
these proposals are based on the version stamp [21], [22] or
time stamp [23] (freshness is a kind of time stamp). Little
work is based on the proactive invalidation. To the best of our
knowledge, we are the first to propose a strategy of proactive
invalidation for NDN, which can provide strong consistency
with high performance and low cost.

VOLUME 8, 2020

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

Subscriber Publisher

Type: Interest-2/3
FaceList: facel

Type: Interest-2/3
FaceList: facel,face2

facel face2

Type: Data-4
FaceListBack: facel

Type: Data-4
FaceListBack: facel,face2

i
'
'
'
'
'
'
1
'
r
1
'
'
'
'
'
'
'
'
'

FLT

Router Router Server

FIGURE 1. The lightweight publish/subscribe model.

Ill. PIOR: A CACHE INVALIDATION STRATEGY

In this section, we will introduce the full algorithm of
the PIOR strategy. First, we present the lightweight pub-
lish/subscribe model and provide an overview of PIOR. Sec-
ond, we give the data structures of the algorithm. Then we
divide the whole algorithm into six parts to describe respec-
tively. Finally, a thorough example is offered to show how the
algorithm works.

A. THE LIGHTWEIGHT PUBLISH/SUBSCRIBE MODEL AND
PIOR OVERVIEW

Fig. 1 shows the lightweight publish/subscribe model used
by our PIOR strategy. The router (or cache) subscribes a
time-sensitive content to the server by sending an interest-
2 or interest-3 packet. At each router node along the forward-
ing path, the interest packet appends the current incoming
face ID to its FaceList field. When receiving this interest
packet, the server will record the FaceList field into the Face
List Table (FLT for short) and then a subscribing process
is done. After a period of time, there is a content updated
in the server, which successively sends a data-4 packet
according to the previously recorded FaceList field. When
receiving this data packet, the router will update the out-
dated content cached before and then a publishing process is
done.

By above processes, it is noted that the subscriber in
the lightweight publish/subscribe model is the router and
the published content is the latest version of the previously
requested content. Besides, this model is packet-based which
means the track of forwarding path is maintained in the
packet. This design avoids creating a PIT-like table in the
network layer. Thus, the implementation of the lightweight
publish/subscribe model is much simpler than that of other
existing publish/subscribe models.

Based on this model, PIOR is equipped with the subscrib-
ing and publishing processes, which work with other four
processes (cleanup process, recording process, data coming
process and interest coming process) to make up the whole
algorithm. The relationship among the processes and the
main algorithms of PIOR are illustrated in Fig. 2. The major
characteristics of PIOR are summarized as follows.

o Compatibility: By tagging the contents that have
requirements for validity, the PIOR process is

VOLUME 8, 2020

independent of the original NDN process. The contents
that have no requirements for validity can be requested
normally.

o Implementation simplicity: PIOR requires no new
types of packets. All controlling messages are trans-
ferred by the modified interest and data packets. The
only new data structure added in PIOR is the FLT,
relying on which the updated contents selected by some
criteria can be actively published without changing the
inherent forwarding mechanism of NDN.

« Backtracking: PIOR uses the FaceList field in the inter-
est packet to track the upstream forwarding path, due
to the lack of the notion “address” in NDN. When
receiving an interest packet, the server records the infor-
mation of FaceList in the FLT table, which provides the
back-forwarding path to the updated contents.

o Strong consistency: With the entries in the FLT,
the publishing process of PIOR updates the stale con-
tents stored in the in-network caches. In addition,
the cleanup process of PIOR ensures the tracking infor-
mation of the contents stored in the caches is maintained
in the FLT. In other words, if a content is no longer
maintained in the FLT, the server will inform the caches
to remove the copy of this content through the cleanup
process. On the basis of these two processes, PIOR can
guarantee the strong consistency in NDN.

« High performance: By publishing the updated contents,
the requests for them can be responded on the in-network
caches. Thus, PIOR can achieve a higher hit ratio and
lower server load against other invalidation strategies,
which has been demonstrated in our simulations.

o Low cost: The server in PIOR needs extra load to send
controlling messages and to actively publish updated
data packets. However, the subscribing mechanism can
reduce the extra load by applying proactive invalidation
only for the contents recorded in the FLT and the nodes
forwarding these contents before. The simulation results
also show that the proportion of the extra load in the total
server load is pretty low in PIOR.

B. PACKET FORMATS AND FACE LIST TABLE

There are two basic NDN packet types, Interest and Data.
In order to implement the algorithm of PIOR, we need add
some new fields in original interest and data packets as shown
in Fig. 3.

Fig. 3(a) is a modified interest packet. If a content
requested by users has requirements for validity, the Inter-
estlnvalidation in the interest packet will be set to 1, other-
wise to 0. FaceList is an array of incoming face IDs which
keeps track of interest packets forwarded upstream toward the
server.

Fig. 3(b) is a modified data packet. The function of Dataln-
validation in the data packet is the same as that of Inter-
estlnvalidation in the interest packet to identify whether the
content has requirements for validity. FaceListBack is also an

80077

IEEE Access

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

Subscribing Process

Type: Interest-2

ContentName: C1

FaceList: null

> [a .l

(o o o)
Type: Interest-2

FacelList: 251

Append the current
incoming face 251 to

Type: Interest-2

ContentName: C1

Facelist: 251,252

| Append the current
| incoming face 252 t

Recording Process

If C2 is eligible to be actively published,
then record the ContentName and

the FaceList. | the FacelList. FacelListinto the FLT.
i
i
Consumer Router | 1 Server
______ face:251 - _____9face:252 R N
/
h I
| Tt T T oTem T Face List Table (FLT) 1
[Data Coming Process | " I
P 1 ContentName FaceList '
T Cache 1 p
B] Cl1 251,252 d
| 1 Type: Data-2 ' {
! Evict the outdated fCI.

i L ContentName : C1 w COHEIEHE© i / i
[X N | IfC1 is no longer I
E i i L FacelListBack: 251,252) Type: Data-5] Type: Data-5 maintained in the !
! b ContentName : C1 <:::| ContentName : C1 FLT, thensend a @ 1
Data-5 packet. eanup |
i FaceListBack: 251,252 .\ FaceListBack: 251,252 ate-3 packet Process |
b o e (R e/ i 1

i ! Replace the outdated copy or 1: Remove the last face ID If C1 is updated in the,]

i | cache the new copy as Data-2 with] from the FaceListBack and server, then send a i

i ! setting Publication from1 to 0.] back-forwardthe packet on Data-4 packet.]

b — ! this face. —— i

! i Type: Data-4 1 Type: Data-4]

|

o ContentName : C1 <& :] | ContentName:Cl

i | FacelListBack: 251,252 i FaceListBack:251,252 Publishing |

.] ~ Process |

FIGURE 2. The relationship among the processes and the main algorithms of PIOR.
- TABLE 2. Data packet types.
Interest Packet Data Packet Face List Table P typ
ContentName ContentName ContentName Datalnvalid Elizibil Publ E
—— — - e ‘ atalnvalidation igibilit, ublication viction
InterestInvalidation Datalnvalidation FaceList Typ g ¥
FacelList FaceListBack Data-1 0 0 0
LocationRegistration Eligibility Data-2 1 1 0 0
Publication Data-3 1 0 0 0
Eviction Data-4 1 1 1 0
Data-5 1 1 1 1
(a) (b) (©)

FIGURE 3. Packet formats and FLT (Face List Table).

TABLE 1. Interest packet types.

Type ‘ InterestInvalidation | LocationRegistration
Interest-1 0 0
Interest-2 1 0
Interest-3 1 1

array of face IDs, on which the published data packets can
be forwarded downstream to users. Eligibility is used to mark
whether the requested content is eligible to be published (set
to 1) or not (set to 0). Publication is used to identify whether
the data packet is actively published (set to 1) or normally
returned (set to 0). Eviction is used in the cleanup process.
If a node receives a data packet with Eviction=0, the data of
the same name cached in this node will be evicted.

By setting above new fields to different values, we obtain
various types of interest packets and data packets which are
listed in Table 1 and 2 respectively.

80078

Fig. 3(c) shows a new data structure, the FLT (Face List
Table), which is created in the server and has three main
functions: (i) storing the ContentName of the content which
needs to be published actively, (ii) storing the track of interest
packets forwarded upstream and aggregating the overlapping
FacelList, and (iii) providing forwarding paths for the actively
pushed data packets.

C. SUBSCRIBING PROCESS

In the subscribing process (Algorithm 1), the routers on the
forwarding path of the interest packet subscribe a content with
validity requirements to the server. As long as the content is
updated and exists in the FLT, the server will push the latest
content to these routers.

The user first requests for a content with validity by send-
ing an interest packet of which the InterestInvalidation is set
to 1. At each node on the interest packet forwarding path,
if the cache is hit, the data packet will be returned imme-
diately. Otherwise, the interest packet will be forwarded to
the next node after appending the requesting face at this node
to the FaceList. When the interest packet reaches the server,

VOLUME 8, 2020

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

Algorithm 1 Subscribing Process

Algorithm 2 Publishing Process

initialize (a user sends an Interest-2 packet)
1: while the current node is not the server do
2: if hit the cache then

3 return the Data-2 packet

4: else

5 if the previous node is not the user then

6 append the requesting face to the FaceList of the

interest packet

7 forward the interest packet
8: end if
9: end if

10: end while

11: if the requested content is eligible to be actively pub-
lished then

12: activate the recording process

13: prepare a Data-2 packet

14: return the Data-2 packet

15: else

16: prepare a Data-3 packet

17: return the Data-3 packet

18: end if

if the requested content is eligible to be actively pushed, the
ContentName and FaceList will be inserted into the FLT and
then a data packet with Datalnvalidation=1, Eligibility=1,
Publication=0, Eviction=0 and FaceListBack=null will be
returned. Otherwise, the server only returns a data packet with
setting above Eligibility to 0.

D. PUBLISHING PROCESS

Once a content with validity requirements is updated at the
server, publishing process (Algorithm 2) will be activated. If
the updated content is in the FLT (supposing the entry is (C1,
[251, 251, 252])), the server will prepare a new data packet
with Datalnvalidation=1, Eligibility=1, Publication=1 and
Eviction=0. Afterwards the last face (252) of the FaceList
in the FLT is used as the current forwarding face. Removing
the last face from the FacelList, we obtain a new face list
([251, 251]) which will be written into the FaceListBack of
the data packet. Finally the updated data packet will be sent on
face 252.

At each node on the data packet back-forwarding path,
if there is a content with the same name cached in the CS, the
stale content will be removed. Then a new copy of this content
will be cached after setting Publication to 0. Afterwards,
similar to the forwarding process described above, we remove
the last face from the FaceListBack and use it as the current
forwarding face to send the data packet.

E. CLEANUP PROCESS

To avoid the FLT being too enormous to maintain, the FLT
must be kept at a reasonable size. For examples, associate
each entry with an expiration time, fix the size of the FLT

VOLUME 8, 2020

initialize (a content is updated at the server)

1: if the content name is in the Face List Table then

2: prepare a Data-4 packet

3: get the FaceList corresponding to this content in the
Face List Table

4: get the last face ID in the FaceList as the current
forwarding face

5: remove the last face ID from the FaceList and write the
remainder in the FaceListBack of the data packet

6: send the Data-4 packet on the face obtained in line 4
7: end if
8: while the length of FaceListBack is not O do
9: if Publication=1 then
10: if there is a content with the name in the CS then
11: remove the stale data from the CS
12: end if
13: cache the new data’s copy as Data-2 by setting
Publication=0 of the copy
14: get the last face ID in the FaceListBack as the current
forwarding face
15: remove the last face ID from the FaceListBack of
the data packet
16: forward the Data-4 packet on the face obtained in
line 14
17: else
18: forward the Data-1 or Data-2 or Data-3 packet
normally
19: endif

20: end while

or remove the content’s eligibility for residing in the FLT.
Evicting the entry from the FLT will activate the cleanup
process (Algorithm 3). It can ensure that the nodes on the path
of the FaceList do not cache the content which is no longer
actively published by the server.

F. RECORDING PROCESS

In the recording process (Algorithm 4), the entries of contents
that are eligible to be actively published are inserted into the
FLT as (ContentName, FaceList). Moreover, We also merge
the entries, the FaceList of which coincides at the tail, to
reduce the load of the server actively publishing.

G. DATA COMING PROCESS

As mentioned above, we add four new fields in the data
packet. Hence the node needs to handel five different types
of the data packets (Table 2) separately in the data coming
process (Algorithm 5):

« Data-1 is the data packet without validity requirements
and will be forwarded normally.

o Data-2 is sent normally from the server and is eligi-
ble to be actively published. The router will cache it
and forward it normally. In particular, if the Data-2 is

80079

IEEE Access

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

Algorithm 3 Cleanup Process

Algorithm 5 Data Coming Process

initialize (the FLT no longer maintains a content entry)

1:
2:

11:
12:

13:

14:

15:

prepare a Data-5 packet with an empty data segment
get the FaceList corresponding to this content in the FLT

: get the last face ID in the FaceList as the current forward-

ing face

: remove the last face ID from the FaceList and write the

remainder in the FaceListBack of the data packet

. send the Data-5 packet on the face obtained in line 3
: while the length of FaceListBack is not 0 do
if Eviction=1 then
if there is a content with the same name in the CS
then
remove the stale data from the CS
end if
end if
get the last face ID in the FaceListBack as the current
forwarding face
remove the last face ID from the FaceListBack of the
empty data packet
forward the empty Data-5 packet on the face obtained
in line 12
end while

Algorithm 4 Recording Process

initialize (an interest-2 or interest-3 packet arrives at the

1:

»

9:
10:

® NN AW

server and the requested content is eligible to be actively
published)
if there is a content with the same name in the FLT then
if the FaceList of the interest packet coincides with that
of the FLT at the tail then
insert the longer one in the FLT
remove the original entry
else
insert the ContentName and FaceList in the FLT
end if
else
insert the ContentName and FaceList in the FLT
end if

not cached in the current router before, this router will
request for this content by sending an interest packet
with [Interestinvalidation=1, LocationRegistration=1
(Interest-3). Unlike the subscribing process, the routers
on the forwarding path of Interest-3 will not respond
to it. When the interest packet reaches the server,
the FaceList of it will be inserted into the FLT (see
details in Section Recording Process). In other words,
the location of the requesting router is registered in
the server. The purpose of this operation is for the
server to remember the routers where the content copies
with the validity requirements are located. Therefore,
the updated content can be pushed (see details in

80080

initialize (a router receives a data packet)

1:

18:
19:
20:

21:

22:

24:

25:

26:

27:

28:
29:

AR

if Datalnvalidation=0 then
forward the Data-1 packet normally
else
if Publication=0 then
if Eligibility=1 then
if there is a content with the same name in the CS
then
request for this content by sending an Interest-
3 packet
remove the stale data from the CS
end if
cache the new data’s copy
forward the Data-2 packet normally
else
forward the Data-3 packet normally
end if
else
if Eviction=0 then
if there is a content with the same name in the CS
then
remove the stale data from the CS
end if
cache the new data’s copy as Data-2 by setting
Publication=0 of the copy
forward the Data-4 packet according to the
FacelListBack
else
if there is a content with the same name in the CS
then
remove the stale data from the CS
end if
forward the Data-5 packet according to the
FaceListBack
end if
end if
end if

Section Publishing Process) and the copies of the con-
tent which is no longer maintained in the FLT can be
evicted from the cache (see details in Section Cleanup
Process) in time.

Data-3 is sent normally from the server and is not eligi-
ble to be actively published. The router will not cache it
but will forward it normally.

Data-4 is published from the server. The router will
cache it and forward it according to the FaceListBack
(see details in section Publishing Process).

Data-5 is a type of data packet with an empty data
segment actually. It is sent by the server to inform the
router to remove its copies with the same name from
the cache. The router forwards it also according to the
FacelListBack.

VOLUME 8, 2020

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

Algorithm 6 Interest Coming Process (Router)

initialize (a router receives an interest packet)
1: if Interestinvalidation=0 then
2: if there is a same name of the interest packet existing

in the PIT then
3: update the incoming faces list of the PIT entry
accordingly
4: else
5 create a new PIT entry
6: forward the Interest-1 packet
7. endif
8: else
9: if LocationRegisteration=0 then
10: if there is a same name of the interest packet existing
in the PIT then
11: update the incoming faces list of the PIT entry
accordingly
12: else
13: create a new PIT entry
14: append the incoming face to the FaceList
15: forward the Interest-2 packet
16: end if
17. else
18: append the incoming face to the FaceList
19: forward the Interest-3 packet
20: end if
21: end if

Algorithm 7 Interest Coming Process (Server)

initialize (a server receives an interest packet)
1: if Interestinvalidation=0 then

2: return a Data-1 packet

3: else

4

5

if LocationRegisteration=0 then
if the requested content is eligible to be actively

published then
6 activate the recording process
7: return a Data-2 packet
8 else
9 return a Data-3 packet
10: end if
11: endif
12: else
13: activate the recording process
14: end if

H. INTEREST COMING PROCESS
The interest packets are classified into three types (Table 1)
in our algorithm:

« Interest-1 is the interest packet without validity require-
ments and will be forwarded normally.

« Interest-2 is initially sent by the user. Every time the
interest packet arrives at a node, the incoming face of

VOLUME 8, 2020

Face: 252

Face: 251

Face: 251

Face: 251

FIGURE 4. Example topology.

this node will be appended to the FaceList (see details in
section Subscribing Process).

o Interest-3 is initially sent by the router of which the
location will be registered at the server. The interest
packet also appends the incoming face of the current
router to the FaceList on the forwarding path. Finally,
the server will not respond to this interest packet, but
will insert the FaceList of it in the FLT.

Due to the aggregation effect of the PIT, when an interest
packet of Interest-1 or Interest-2 with a name that has been
seen previously is received by the router, the PIT entry will
be updated accordingly and the interest packet will not be
forwarded. However, the interest packet of Interest-3 does
not yield the aggregation of the PIT and is forwarded after
appending the incoming face to the FaceList. The details
of the interest coming process for the router and server are
presented in Algorithm 6 and 7 respectively.

I. EXAMPLE

In order to illustrate our algorithm intuitively, we combine the
six processes described above together through an example.
Fig. 4 shows the example topology where the incoming face
of each node is marked.

Supposing that User 1 sends an Interest-2 packet to request
for content C1 that is eligible to be actively published. When
this packet reaches the server, the FaceList of it is [251,
252, 251, 251, 251] which will be recorded in the FLT with
the name of the content as an entry (Cl1, [251, 252, 251,
251, 251]) (denoted as Entry-1). The server then sends a
Data-2 packet which will be cached on the each node of the
back-forwarding path.

Once content Cl1 is updated at the server, a Data-4 packet
is published with initial FaceListBack [251, 252, 251, 251]
on Face 251. Receiving this packet, Router 5 caches its
copy, the Publication of which is set to 0 in the CS. Then
this packet continue to be forwarded on Face 251 with the
modified FaceListBack [251, 252, 251]. The same action will
be repeated on Router 3, 2, 1 in turn until the data packet
reaches User 1.

Shortly afterwards, User 2 also requests for content C1 by
sending an Interest-2 packet. According to the topology, this
packet is responded on Router 3 which successively returns a

80081

IEEE Access

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

Data-2 packet. Because Router 4 did not cache C1 before,
when receiving the Data-2 packet, Router 4 will send an
Interest-3 packet to the server to register its location in the
FLT. The FaceList of this interest packet is [252, 251, 251]
which does not coincide with the FaceList of Entry-1 when
arriving at the server. Thus a new FLT entry (C1, [252, 251,
251]) (denoted as Entry-2) is created.

When content C1 is updated at the server later, two Data-4
packets will be published to Router 1 and 2 in accordance with
the FaceList of Entry-1 and Entry-2 respectively. Similarly,
the data packets of the above publishing process are replaced
with Data-5 packets in the cleanup process when content
C1 is no longer maintained in the server.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of PIOR, we conduct enormous
performance simulations using ndnSIM 2.1 [24]-[26], which
is a widely used simulation platform for NDN. We also
compare PIOR against other common invalidation strategies
in terms of hit ratio, server load and proportion of extra load.
Particularly, the last metric, extra load, represents the load
that is actively published by the server in PIOR and Reactive
Invalidation.

A. EXPERIMENTAL SETUP

Abilene network [27] is a high-performance backbone net-
work, consisting of 11 nodes and 14 links. Fig. 5 shows the
core topology of Abilene which is used in our simulations to
make the simulation results close enough to reality.

A content server is installed on node 0. Each of nodes
0~10 is connected to 5 users (55 users in total), and each user
requests for 5000 contents with mean rate 4 req/s. The dis-
tribution of request probability follows the Zipf-Mandelbrot
law [17] with « ranging from 0.2 to 1. The cache size of each
node is the same and ranges from 50 to 150. The default cache
replacement strategy is Least Recently Used (LRU) that is
commonly applied in most of the cache systems [5]. The
content update period is uniformly distributed over [0, 2u],
where u is ranging from 5s to 50s. The size of a data packet
is 1024 bytes and the size of an interest packet (or signaling,
e.g., Data-5) is 64 bytes.

The strategies to be compared with PIOR are: (i) Reactive
Invalidation: Each time a request hits the cache, the cache
will send an invalidation message to the server, which suc-
cessively either returns a latest full content if the requested
content is outdated or a validation signaling if the con-
tent is deemed up to date. (ii) Freshness: Freshness is a
TTL-like strategy where each data packet is associated with
a live time. This strategy is natively supported in NDN.
(iii) Nocache: Nocache is the most direct way to ensure the
contents obtained by the users are valid. The performance of
Nocache is regarded as a baseline for the performance of other
strategies in our experiments.

In addition, to simplify the complexity of implementa-
tion, we select the top N popular contents to be published

80082

FIGURE 5. Abilene network topology.

actively in PIOR, and N is equal to the cache size in different
scenarios.

B. HIT RATIO

The hit ratio here refers to the average hit ratio of the whole
network. Given that all requests are forwarded directly to
the server in Nocache, there is no metric of hit ratio in this
strategy. Thus we only consider PIOR, Reactive Invalidation
and Freshness in this section.

Fig. 6(a) shows the impact of different update period on hit
ratio. It is noticed that the curve of PIOR is almost a straight
line. That’s because (i) once popular contents are updated,
the server will publish them to caches immediately, and
(ii) popular contents contribute more to the average hit ratio.
For the same reason, on average, the hit ratio of PIOR is
64.52% and 49.68% higher than that of Reactive Invalidation
and Freshness respectively.

Fig. 6(b) shows the impact of different cache size on hit
ratio. With the increase of cache size, more contents are stored
in caches, leading to the growth of all three curves. From
Fig. 6(b), we can see that PIOR still maintains a large advan-
tage on hit ratio, 59.75% and 47.97% higher than Reactive
Invalidation and Freshness respectively on average.

Fig. 6(c) shows the impact of different Zipf factors on hit
ratio. For large Zipf factors, PIOR still performs the best
among all the strategies. However, when the Zipf factor is
small, the curve of the content popularity flattens, resulting
that popular contents cannot have a significant effect on
the average hit ratio. Therefore, the advantage of PIOR is
not obvious on hit ratio for small Zipf factors. Also from
Fig. 6(c), we notice that the hit ratios of all three strategies
are pretty low in the case of a small Zipf factor, because more
contents have opportunities to be requested by users, making
the contents in caches be replaced more frequently.

C. SERVER LOAD

Considering that the server in PIOR or Reactive Invalidation
sends not only data packets but also signaling and the latter
is much smaller than the former, we provide two indicators
to measure the server load, one is the number of packets sent
per second (denoted as packet load, packets/s), the other is the
number of kilobytes transferred per second (denoted as byte
load, kb/s).

VOLUME 8, 2020

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

—— PIOR —<— Freshness —#— Reactive Invalidation —— PIOR

—<— Freshness

—— Reactive Invalidation —— PIOR —<— Freshness —*— Reactive Invalidation

18

16 16

=

hit ratio (%)
hit ratio (%)
hit ratio (%)

PEE=———

5 15 35 as 50 75

25
update period (s)

(a) Fix cache size to 100 and Zipf factor to 0.8.
0.8.

FIGURE 6. Hit ratio vs update period / cache size / Zipf factor.

—=— PIOR —— Freshness —+— Reactive Invalidation Nocache —— PIOR —— Freshness

225 225 225

cache size

(b) Fix update period to 30s and Zipf factor to

—+— Reactive Invalidation

125 150 0.2 0.4 0.8 1.0

Zipfof;ctor
(c) Fix update period to 30s and cache size to
100.

Nocache —— PIOR —>— Freshness =~ —#+— Reactive Invalidation Nocache

B B

N
s
s
s

8
o
&

byte load (kb/s)

2
8
&
8
2
8

& B
& 8

packet load (packets/s)

\ N
\\—-—-—.

150 150 150

&
&
&
&

packet load (packets/s)

225 230 230
[

s

8

195

byte load (kb/s)

packet load (packets/s)

g

s

5 15 25 35 45 5 15 25 35 45 50 75

update period (s) update period (s)

(a) Fix cache size to 100 and Zipf factor to 0.8.

cache size

0.8.

FIGURE 7. Server load vs update period / cache size / Zipf factor.

Most obviously in Fig. 7, the packet load curves are almost
identical with the corresponding byte load curves, except for
the curves of Reactive Invalidation. This is because that there
is a large amount of signaling transferred between the nodes
and the server for controlling communications in Reactive
Invalidation, and the size of signaling is quite small. Hence
the number of packets is pretty greater than the number
of kilobytes numerically (given that one data packet is one
kilobyte) in this strategy. Due to space limitations, we only
consider the byte load in the following of this section.

The curves of PIOR, Reactive Invalidation and Freshness
decrease first and then flatten in Fig. 7(a). Since the server
in PIOR publishes the contents at a higher frequency when
content update period is small, the byte load of PIOR is
5.11% higher than that of Freshness, but 2.66% lower than
that of Reactive Invalidation for update period of 5 seconds.
However, as the update period increasing, the publishing
frequency reduces, making the byte load of PIOR lower than
that of Reactive Invalidation and Freshness. From Fig. 7(a),
it is also noticed that the change range of the byte load for
PIOR is larger than that for other strategies. In other words,
the byte load of PIOR is more sensitive to changes in update
period.

For the same reason mentioned in the analysis of Fig. 6(b),
with the growth of the cache size, more requests are
responded at caches, resulting the decline of the byte load

VOLUME 8, 2020

100 125 150

(b) Fix update period to 30s and Zipf factor to

150
50 75 100 125 150 0.2

cache size

04 06 08 10 0.2

Zipf factor

04 06 08 10

Zipf factor

(c) Fix update period to 30s and cache size to
100.

as shown in Fig. 7(b). We also note that PIOR has a great
advantage on byte load for small cache size. The maximum
advantage over the second best strategy, Freshness, is around
7.11%. While for large cache size, the byte loads of PIOR and
Freshness are almost the same but still 5.6% lower than that
of Reactive Invalidation.

As shown in Fig. 7(a) and Fig. 7(b), due to the server
responding to all requests directly in Nocache, the content
update period and cache size have no effect on the byte load,
the curves of which are straight lines.

From Fig. 7(c), it is seen that when the Zipf factor is
small, PIOR has no advantages on server load in comparison
to Reactive Invalidation and Freshness with the maximum
disadvantage of 5.62%, and even has the same performance
as Nocache. However, with the increasing of the Zipf factor,
PIOR performs better than other strategies gradually.

Associating Fig. 7(c) with Fig. 6(c), now we can conclude
that, PIOR does not outperform other strategies in terms of
hit ratio and byte load when the Zipf factor is less than (or
equal to) 0.2. Nevertheless, when the Zipf factor equals 0.3,
the byte load of PIOR is 4.03% higher than that of Reactive
Invalidation and Freshness on average, but the hit ratio of
PIOR can achieve up to 17.39% improvement. When the Zipf
factor equals 0.4, the above two data are 2.53% and c respec-
tively. In other words, PIOR can obtain a great improvement
of hit ratio with a low cost of byte load for not too small Zipf

80083

IEEE Access

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

—— PIOR —*— Reactive Invalidation —— PIOR

—*— Reactive Invalidation

—— PIOR —*— Reactive Invalidation

%)

e e

proportion of extra packet load (%)
proportion of extra byte load (%)
proportion of extra packet load (

\wﬂf

&
g
g

=
&
=
&

proportion of extra byte load (%)

s
3

s

proportion of extra byte load (%)

proportion of extra packet load (%)

M

—————r]

BIEEEs

°

5 15 25 35 45 5 15 25 35 45 0 50
update time (s) update time (s)

75 100 125 150
cache size

(a) Fix cache size to 100 and Zipf factor to 0.8.
0.8.

(b) Fix update period to 30s and Zipf factor to

0
02 04 06 08 10

Zipf factor

0
50 75 100 125 150
cache size

02 04 06 08 10

Zipf factor

(c) Fix update period to 30s and cache size to
100.

FIGURE 8. Proportion of extra load vs update period / cache size / Zipf factor.

factor (larger than 0.2). Furthermore, when the Zipf factor is
larger than 0.5, the popularity of hot contents become higher,
yielding greater benefits of actively publishing these popular
contents and reducing the cache replacement rate. Thus in this
case, PIOR outperforms other strategies in terms of both hit
ratio and byte load.

D. PROPORTION OF EXTRA LOAD

In this section, we introduce the extra load to measure the cost
which is incurred by the server to guarantee the cache consis-
tency. For PIOR, this cost contains the publishing load (Data-
4) and the cleanup load (Data-5). For Reactive Invalidation,
this cost represents the feedback load which is generated after
the server receiving validation messages. For other strategies,
there is no extra load.

Additionally, to better reflect the impact of extra load on
the server, we use the proportion of extra load in total load as a
substitute for the quantity of extra load. In general, the higher
the proportion, the greater the cost for the server to maintain
the cache consistency. Similar to the server load, we also
separate the extra load into the extra packet load and the extra
byte load.

From Fig. 8, itis apparent to see that the proportion of extra
packet load for PIOR is much lower than that for Reactive
Invalidation, and the average advantages are 86.79%, 92.06%
and 72.95% in terms of update period, cache size and Zipf
factor respectively. For Reactive Invalidation, only when the
cache is hit, will the node send validation messages to the
server, and a larger cache size as well as Zipf factor can
improve the hit ratio. Thus, the proportion of extra packet
load for Reactive Invalidation increases noticeably with the
growth of the cache size and Zipf factor. On the contrary,
for PIOR, only when the content is updated or stale, will the
server publish the latest content or cleanup signaling. Thus,
the proportion of extra packet load grows slowly as the cache
size and Zipf factor increasing, while the proportion reduces
noticeably as the update period increasing.

Fig. 8 also shows that the difference between the proportion
of extra packet load and the proportion of extra byte load for
PIOR is very small, while this difference for Reactive Inval-
idation is prominent. This indicates that the major packets

80084

in the extra packet load of PIOR is the actively published
data packet, and the major packets in the extra packet load
of Reactive Invalidation are the signaling.

For the proportion of extra byte load, we can see from Fig. 8
that PIOR keeps an edge over Reactive Invalidation in most
conditions, except for small update period and small Zipf
factors. However, the proportion of extra byte load for PIOR
is low enough (3.28%, 1.96% and 1.81% on average in terms
of update period, cache size and Zipf factor respectively),
which has indicated that the cost of the server guaranteeing
the cache consistency in PIOR is little.

V. CONCLUSION

In this work, we propose a proactive cache invalidation strat-
egy, PIOR, to provide strong consistency for NDN based on
a lightweight publish/subscribe model. The updated contents
will be actively published to the nodes where the requests for
these contents have been forwarded before. The FLT table
and Eligibility field are used in PIOR to limit the flow size of
the actively publishing, avoiding the server suffering from a
heavy overhead of extra load. By tagging the contents which
have requirements for validity, we also separate the invali-
dation process of PIOR from the inherent process of NDN,
simplifying the PIOR deployment on NDN and making PIOR
fully compatible with the original NDN mechanism. Finally,
we evaluate the performance of PIOR in terms of hit ratio,
server load and extra load against Freshness, Reactive Invali-
dation and Nocache. The simulation results demonstrate that
PIOR outperforms other invalidation strategies and has a low
overhead for the server.

Indeed, for PIOR, actively publishing popular (or impor-
tant) contents can improve the hit ratio, but on the other hand
it also increases the extra load of the server. How to balance
the hit ratio and extra load by controlling the number of
published contents and the size of the FLT table is the key
to further enhancing the performance of PIOR. We will keep
on investigating these issues in the future.

REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1-9.

VOLUME 8, 2020

Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

IEEE Access

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “‘A survey of information-
centric networking research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2,
pp. 1024-1049, 2nd Quart., 2014.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol., 2009, pp. 1-12.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Commun. Mag.,
vol. 50, no. 7, pp. 26-36, Jul. 2012.

S. Podlipnig and L. Boszormenyi, “A survey of Web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374-398, Dec. 2003.
1. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A. Habbal,
“Caching in information-centric networking: Strategies, challenges, and
future research directions,” IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1443-1474, 2nd Quart., 2018.

M. Rabinovich and O. Spatscheck, Web Caching and Replication, vol. 67.
Boston, MA, USA: Addison-Wesley, 2002.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol-http/1.1,” RFC Editor, Red-
mond, WA, USA, Tech. Rep. RFC2616, 1999.

A. Iyengar, E. Nahum, A. Shaikh, and R. Tewari, “Enhancing Web perfor-
mance,” in [FIP World Computer Congress. Cham, Switzerland: Springer,
2002, pp. 95-126.

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 6673, Jul. 2014.
J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“COPSS: An efficient content oriented publish/subscribe system,” in Proc.
ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst., Oct. 2011, pp. 99-110.
H. Wang, S. Adhatarao, M. Arumaithurai, and X. Fu, “COPSS-
lite: Lightweight ICN based Pub/Sub for IoT environments,” 2017,
arXiv:1706.03695. [Online]. Available: http://arxiv.org/abs/1706.03695
C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in
information centric networks,” in Proc. ACM SIGCOMM Workshop Inf.-
Centric Netw. (ICN), 2011, pp. 13-18.

B. Nour, K. Sharif, F. Li, and H. Moungla, ““A distributed ICN-based IoT
network architecture: An ambient assisted living application case study,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1-6.
B. Nour, K. Sharif, F. Li, S. Yang, H. Moungla, and Y. Wang, “ICN
publisher-subscriber models: Challenges and group-based communica-
tion,” IEEE Netw., vol. 33, no. 6, pp. 156-163, Nov. 2019.

J.Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based Internet
caches,” in Proc. IEEE 22nd Annu. Joint Conf. IEEE Comput. Commun.
Soc. (INFOCOM), vol. 1, Jun. 2003, pp. 417-426.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, Jun. 1999, vol. 1, no. 1, pp. 126-134.

C. Gray and D. Cheriton, Leases: An Efficient Fault-Tolerant Mechanism

for Distributed File Cache Consistency, vol. 23, no. 5. New York, NY,

USA: ACM, 1989.

B. Krishnamurthy and C. E. Wills, “Piggyback server invalidation for
proxy cache coherency,” Comput. Netw. ISDN Syst., vol. 30, nos. 1-7,
pp. 185-193, Apr. 1998.

G. Cao, “A scalable low-latency cache invalidation strategy for mobile
environments,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 5,
pp. 1251-1265, Sep. 2003.

Z. Feng, M. Xu, Y. Wang, and Q. Li, “An architecture for cache consis-
tency support in information centric networking,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2013, pp. 2126-2131.

B. Feng, H. Zhou, H. Zhang, J. Jiang, and S. Yu, “A popularity-based
cache consistency mechanism for information-centric networking,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1-6.
J. Quevedo, D. Corujo, and R. Aguiar, “Consumer driven informa-
tion freshness approach for content centric networking,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2014,
pp. 482-487.

A. Afanasyev, 1. Moiseenko, and L. Zhang, “ndnSIM: NDN simula-
tor for NS-3,” Univ. California, Los Angeles, Los Angeles, CA, USA,
Tech. Rep. NDN-0005, Oct. 2012. [Online]. Available: http://named-
data.net/techreports.html

S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2:
An updated NDN simulator for NS-3, Revision 2,” Univ. California, Los
Angeles, Los Angeles, CA, USA, Tech. Rep. NDN-0028, Nov. 2016.

VOLUME 8, 2020

[26] S.Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution of ndnSIM:
An open-source simulator for NDN experimentation,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 3, pp. 19-33, Sep. 2017.

[27] The Abilene Network Topology. Accessed: Jan. 10, 2020. [Online]. Avail-
able: http://abilene.internet2.edu

YUANZHI KAN received the B.S. degree from the
Department of Automation, University of Science
and Technology of China (USTC), Hefei, in 2015,
where he is currently pursuing the M.S. degree
with the Department of Automation. His current
main research direction is caching and modeling
of NDN.

QUAN ZHENG received the B.S. degree in pro-
duction process automation from the Dalian Uni-
versity of Technology, Dalian, China, in 1992,
and the M.S. degree in automatic control theory

- software and theory from the University of Science

—

& and application and the Ph.D. degree in computer

1. and Technology of China(USTC), Hefei, China,
\ / in 1995 and 2003, respectively.

b) He is currently an Associate Professor with the

Department of Automation and the Deputy Direc-
tor of the Laboratory for Future Networks. His research interests include
video semantic retrieval, media content distribution, video quality detection,
and future networks.

JIAN YANG (Senior Member, IEEE) received the
B.S. and Ph.D. degrees from the University of
Science and Technology of China (USTC), Hefei,
China, in 2001 and 2006, respectively.

From 2006 to 2008, he was a Postdoctoral
Scholar with the Department of Electronic Engi-
neering and Information Science, USTC. Since
2008, he has been an Associate Professor with the
Department of Automation, USTC. He is currently
a Professor with the School of Information Science
and Technology, USTC. His research interests include future networks,
distributed system design, modeling and optimization, and multimedia over
wired and wireless, and stochastic optimization. He was a recipient of the Lu
Jia-Xi Young Talent Award from the Chinese Academy of Sciences, in 2009.

XIAOBIN TAN received the B.S and Ph.D. degrees
from the University of Science and Technology of
China (USTC), Hefei, China, in 1996 and 2003,
respectively.

He is currently an Associate Professor with the
School of Information Science and Technology,
USTC. His research interests include network per-
formance optimization and information security.

80085

	INTRODUCTION
	RELATED WORK
	NDN PUBLISH/SUBSCRIBE MODELS
	APPROACHES TO CACHE CONSISTENCY

	PIOR: A CACHE INVALIDATION STRATEGY
	THE LIGHTWEIGHT PUBLISH/SUBSCRIBE MODEL AND PIOR OVERVIEW
	PACKET FORMATS AND FACE LIST TABLE
	SUBSCRIBING PROCESS
	PUBLISHING PROCESS
	CLEANUP PROCESS
	RECORDING PROCESS
	DATA COMING PROCESS
	INTEREST COMING PROCESS
	EXAMPLE

	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP
	HIT RATIO
	SERVER LOAD
	PROPORTION OF EXTRA LOAD

	CONCLUSION
	REFERENCES
	Biographies
	YUANZHI KAN
	QUAN ZHENG
	JIAN YANG
	XIAOBIN TAN

