
A Cache Replication Strategy Based on
Betweenness and Edge Popularity in Named Data

Networking
1st Quan Zheng

Laboratory for Future Networks
University of Science and Technology of China

Hefei, China
qzheng@ustc.edu.cn

2nd Yuanzhi Kan
Laboratory for Future Networks

University of Science and Technology of China
Hefei, China

kan@mail.ustc.edu.cn

3rd Jiebo Chen
Laboratory for Future Networks

University of Science and Technology of China
Hefei, China

cjb0725@mail.ustc.edu.cn

4th Song Wang
Department of Automation

University of Science and Technology of China
Hefei, China

wsong@ustc.edu.cn

5th Hongliang Tian
R&D Center
ZTE Shanghai

Shanghai, China
tian.hongliang@zte.com.cn

Abstract—Caching content in routers is the most significant
feature of Named Data Networking (NDN) and therefore the
cache performance is increasingly being concerned for NDN
deployment. The default cache policy of NDN is Leave Copy
Everywhere (LCE) that leaves the copies in each node the data
packet passed, and most of the copies will not be requested again,
which leads to the waste of cache resources. The Betweenness
Strategy caches data in the node with the maximal betweenness
value, which causes a high replacement rate. Considering the
betweenness of nodes and the popularity of content, as well
as the filter effect of cache, we propose Betweenness and Edge
Popularity strategy (BEP) which caches the most popular content
in the most important nodes. We also conduct comprehensive
simulations based on ndnSIM. By evaluating BEP and other
cache replication strategies on a virtual topology, it is indicated
that BEP can achieve higher performance in terms of the cache
hit ratio, server load and average delay.

Index Terms—Named Data Networking, Caching, Node cen-
trality, Popularity, Cache decision, Network edge, Cache replica-
tion strategy

I. INTRODUCTION

Cisco VNI predicted that Global IP traffic will increase
nearly threefold over the next 5 years, and video traffic will
occupy an increasing proportion [1]. As an example of ICN
[2], Named-Data Networking(NDN) [3] caches the content
in in-network routers, which decreases the average delay,
reduces the server load, and minishes the bandwidth usage.
Namely, NDN exchanges precious time and bandwidth with
progressively cheaper storage space.

The default cache policy of NDN, LCE [4](Leave Copy
Everywhere), caches content on all passing nodes. This policy

This work was supported in part by the National Key R&D Program
of China under Grant SQ2018YFF010138, in part by the National Natural
Science Foundation of China under Grant 61233003, and in part by the ZET
Technology Cooperation Program.

generates a large number of redundant copies of content, and
most of the copies will be replaced before the second request
arrives, which leads to the waste of resources. The Betw
strategy [5], proposed by W. Chai et al., caches content on the
node with the maximal betweenness value. But Betw neglects
the high replacement rate in the important node, which causes
popular content to be evicted prematurely [6].

Most researches on NDN network caching only take into
accounting the characteristics of the content or topology and
lack of the combination of the both [5]–[16], which causes
the problem of cache redundancy and inefficiency. Though
the CPRL strategy [17] considers the both, it ignores the filter
effect on the request of the edge node [18]. If a strategy
combines with the features of content and topology, it can
cache the content more rationally. Based on this, we propose
a new cache policy, Betweenness and Edge Popularity(BEP),
with the consideration of the betweenness of nodes and the
popularity of content, as well as the filter effect of cache. This
policy caches the most popular content on the most important
nodes, which makes the full use of scarce cache resources
and avoids a large amount of cache redundancy. BEP also
solves the problem of the high replacement rate and improves
the performance of the entire cache system. In this paper, we
use betweenness to measure the importance of the node and
betweenness will be introduced in section 2.

The rest of the paper is organized as follows. In section
2 we introduce and analyze the related work of NDN cache.
In section 3 we describe the algorithm of the BEP strategy
and give a specific example. In section 4 we conduct simula-
tions to make comparisons among different cache replication
strategies and evaluate the effectiveness of the BEP strategy.
We conclude in section 5.

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

II. RELATED WORK

As an important feature and key technology of NDN, cache
is one of the research hotspots of NDN networks. Aiming at
the shortcomings of the NDN caching strategy, many caching
strategies [5]–[17] have been proposed.

The NDN cache is mainly divided into a cache placement
strategy and a cache replacement strategy. The former is a
strategy for deciding which node or nodes the content is
placed on, and the latter is a strategy for retiring which
content if there is an another cache request after a node
is full. This paper focuses on cache placement strategy. In
recent researches of cache placement strategy, researchers
are more inclined to use the information of node or nodes
for collaborative caching which is divided into explicit col-
laboration and implicit collaboration. Explicit collaborative
cache placement strategies, such as [7]–[9], etc., reduce the
content redundancy, ensure the diversity and improve the
benefits. However, explicit collaboration requires additional
resources of information interaction and computing. Different
from explicit collaboration, implicit collaboration does not
need to obtain the state information of nodes in the network
in advance. The main implicit collaborative cache placement
strategies are Betw [5], MCD [11](Move Copy Down), LCD
[12](Leave Copy Down), ProbCache [11], etc..

The default cache placement strategy for NDN is LCE [4],
which caches content on all nodes that the packet traversed.
The LCE algorithm is simple and efficient, but it will cause
a lot of content redundancy [7].Most of the cached content
will be evicted before the secondary request, thus becoming
an invalid cache.

The LCD strategy [12] caches the content on the next hop
of the hit node each time, that is, once for each hit and the
content moves one hop to the user. This strategy implicitly
uses the content request frequency to move content with a
high request frequency to a node close to the user, and solves
the problem of high redundancy of LCE. Because of its slower
moving speed, however, content is likely to be replaced during
the move and the user has to regain the content from the
upstream node. The MCD strategy [11] is basically the same
as the LCD, except that the MCD strategy will delete the copy
from the upstream node after the content moves downstream.
MCD is less redundant than LCD [11]. But once the content
is replaced, the user will have to re-acquire it from the source
server in MCD condition.

The probabilistic caching [13], considered as a simple
and efficient strategy, caches the content with probability p
when the content passes through each node, which solves
the problem of high redundancy of LCE to a certain degree.
Nevertheless, probabilistic caching is based on a random and
uncertain mechanism, which means that it is difficult to find
a certain way to optimize to achieve a further improvement.
In addition, the limit of the implement conditions is also a
bottleneck [13].

The CLCE [10](Conditional Leave a Copy Everywhere)
strategy ensures that the content is cached in the node where

the content is locally and recently popular. This strategy caches
the content quickly in the entire network, but the node caching
the content is not always the core one of the network and the
main network flow does not always pass this node. Hence, the
CLCE does not guarantee the high hit ratio in entire network.

The ProbCache strategy [14] proposed by Psaras et al.
comprehensively considers the available cache size of the
node and the distance between the content and user. First,
the closer to the user node, the greater the probability that
the content will be cached. Second, the nodes with sufficient
cache capacity have a higher probability to cache the content.
However, the ProbCache strategy may cause cache competition
among the edge nodes, resulting in a higher replacement rate
and thus, a lower hit ratio.

The Betw strategy [5] proposed by Chai et al. utilizes
the concept of Betweenness [19] in a complex network.
Betweenness is a measure of the importance degree of the
node and the definition, respectively, is given by:

CB(v) =
∑

s6=v 6=t∈V

σs,t(v)

σs,t
(1)

Where V is the set of all nodes in the network topology,
CB(v) is the betweenness of node v, s and t are the other
two nodes different from v, σs,t is the number of all shortest
paths from node s to t, σs,t(v) is the number of the shortest
paths from node s to t and passing node v. From the definition
it can be noticed that the greater the betweenness, the more
paths through the node, and the node will become a hub node
in the network. The Betw strategy caches content on the nodes
with the greatest betweenness of nodes that the interest packets
passed through. Apart from reducing redundancy, Betw allows
more other nodes to obtain content quickly using the feature
of high betweenness of the caching nodes. The main defect
of this strategy is that it does not take into account the high
replacement rate brought by this solution [6]. If all content is
placed on the node with the highest betweenness, the problem
of the high rate of the cache replacement will result from
the limitation of the cache capacity of the node. The popular
content is replaced and the unpopular content occupies the
cache.

Yu et al. proposed a kind of hierarchical caching strategy,
CPRL [17], which classified the cache and content according
to the number of requests and hops to selectively cache the
content. This strategy does not consider the filtering effect
on the request of the edge node [18], resulting in inaccuracy
classification. Reference [15] considers node popularity and
cache replacement rate simultaneously, however, only using
the number of the requests as the evaluation criteria of the
node’s importance will cause the cache to be concentrated
around the source node. From the perspective of cache ben-
efit, reference [16] caches high-benefit content with a high
probability in a random way. This strategy is an improvement
of probabilistic caching [13] and ProbCache [14], but it cannot
solve the problem of the cache competition among the edge
nodes.

Most of researches on NDN network caching take into
account the characteristics of the content or topology, and
ignore the filtering effect of the cache. If a strategy can
combine with the features of the content and topology, more
information will be used to place the network content more
rationally, thereby improving the cache hit ratio, reducing the
server load and ultimately enhancing the user experience.

III. BEP CACHING PLACEMENT STRATEGY

In order to improve the ratio of cache hit, reduce the
server load and decrease the average delay, we propose
a BEP(Betweenness and Edge Popularity) cache replication
strategy based on the dynamics and popularity of the content,
as well as the importance of the nodes in the topology.
Periodically, the popularity of each content is counted at the
edge of the network, and the cache location of the content is
determined by the ranking of popularity and the importance
of the nodes along the path. The core algorithm of BEP is
to cache the most popular content on the most critical nodes
and non-popular content is placed on the secondary nodes,
which solves the problem of high replacement rates resulting
from the Betw that all content is placed on the core nodes.
BEP makes more efficient use of scarce cache resources to
achieve better cache effects in typical topologies of the local
ISP networks. The specific algorithm is described as follows:

A. Statistics of edge dynamic popularity

Che et al. proposed in [20] that a cache node acts as a
low-pass filter in the tree topology for the LRU(Least Recent
Used) strategy. The node caches high-frequency content and
low-frequency content will be forwarded through this node.
Therefore, the count of the requests for the upstream nodes
cannot truly reflect the request frequency of all content in the
tree topology. The calculation of the content popularity with
this frequency cannot be representative and generally correct.

Since the typical topology of the operator in the edge net-
work is a tree topology, we count and calculate the popularity
of the content in the edge nodes, that is , the leaf nodes.

The popularity of the content is based on the number of
user requests for the content. The algorithm counts the number
of requests for each content in each leaf node in cycles
and calculates the corresponding popularity. The formula for
calculating the popularity of content C in node n in the ith
clock cycle is as follow:

Popularityc,n(i) = α×Popularityc,n(i−1)+(1−α)×Nc,n(i)
(2)

Where α is an attenuation factor, 0 < α < 1, indicating
the proportion of the content popularity before the current
cycle. N(c, n)(i) represents the total number of times the
content C has been requested in the ith clock cycle of the
node n. Popularityc,n(0) is set to 1 at the initiation of the
popularity statistics. The farther away from the current cycle,
the smaller the proportion in the popularity calculating. This
method is an implementation of the iterative algorithm, which
can dynamically adapt to changes in the popularity of the

content and better reflect the recent popular content. It is an
accurate judgment basis for the cache object.

To achieve statistics and calculations of dynamic popularity,
we attach a popularity table to the NDN network node, as
shown in Table I. The popularity table is shared across all
edge nodes. Assuming that the value of α is 0.75, the historical
popularity of the content and the number of times the content
is requested in the current cycle are known. The current
popularity of the content can be calculated by formula (2).

TABLE I
POPULARITY TABLE OF EDGE NODES

Request
Content Historical times in Current

popularity current popularity
cycle

/video/1.mpg 25.24 30 26.43

/video/2.mpg 16.32 20 17.24

/video/3.mpg 14.23 10 13.17

/video/4.mpg 9.16 0 6.87

...

B. BEP caching algorithm

In the network topology, different nodes have different
degrees of importance. There are more connections with others
for the important nodes. Thus we believe that these nodes are
more crucial in the topology and more network requests will
pass through them. If the most popular content is placed on
the most important nodes, a significant portion of requests will
be responded in important nodes and no more forwarding will
occur, which can improve the overall network hit ratio and
reduce the server load.

Guan et al. [21] proposed that the betweenness centrality
has the better performance than other centrality in the CCN
network. Therefore, we choose the betweenness centrality as a
metric of the importance of the node. The BEP strategy can be
summarized briefly as follows: The popularity of the content is
calculated at the edge node, and then the target betweenness is
figured out at the responding node according to the ranking of
the popularity of the content and the size of the cache. In the
return path of the data packet, the node to cache the content
is selected according to the target betweenness.

The interest packet generated by users is forwarded to the
server on the basis of the corresponding forwarding policy
(Algorithm 1). At the first hop, namely, the edge node, the
BEP strategy obtains the popularity ranking of the content
according to the content popularity table and attaches it to
the interest packet. In the forwarding process of the interest
packet, BEP records the betweenness of all nodes along the
forwarding path in the form of the betweenness array which
is attached to the interest packet. When the cache is hit or
the interest packet reaches the server, the responding node
computes Rbetweenness according to the following formula:

Rbetweenness =

⌊
Rankc

CacheSize

⌋
(3)

Where Rbetweenness is the ranking of the betweenness of
the selected node in the betweenness of all nodes along the
forwarding path, Rankc is the ranking of the popularity of the
content C, and CacheSize is the size of the node. Then the
corresponding betweenness is selected from the betweenness
array according to Rbetweenness and attached to the returned
data packet.

For example, assume that Rbetweenness is 2 (Rankc is 2
and CacheSize is 1) and the betweenness array is [0.7, 0.3,
0.4, 0.1]. The final betweenness we get is 0.4, because the
element 0.4 is the second largest element in the betweenness
array.

In the return process (Algorithm 2), the betweenness in the
data packet is compared with that of the nodes along the back-
forwarding path. When the two is equal, the data is cached in
the current node.

It should be noted that if the calculation result of Formula 3
is larger than the length of the betweenness array, the data will
be forwarded directly to the user without comparison. In other
words, this content will not be cached in the cache network.

Algorithm 1 BEP: node v receives an interest packet
initialize (rank = 0, betw = 0)

1: if data in cache then
2: get rank r of the content from the popularity table;
3: compute Rbetweenness;
4: get the betweenness array betws[] from the interest

packet;
5: figure out a specific value betw according to r and

betws[];
6: attach betw to the data packet;
7: send the data packet;
8: else if node v is server and provide data then
9: get rank r of the content from the popularity table;

10: compute Rbetweenness;
11: get the betweenness array betws[] from the interest

packet;
12: figure out a specific value betw according to r and

betws[];
13: attach betw to the data packet;
14: send the data packet;
15: else
16: if node v is an edge node then
17: count and compute the popularity rank r of the

content;
18: attach r to the interest packet;
19: end if
20: get node v’ betweenness betw;
21: attach betw to the interest packet;
22: forward the interest packet to the next hop;
23: end if

Algorithm 2 BEP: node v receives a data packet
initialize (betw = 0, betwv = 0)

1: get the betweenness betw from the data packet;
2: get node v’ betweenness betwv;
3: if betw equals betwv then
4: cache the content of the data packet;
5: end if
6: forward the data packet to the next hop;

Because the betweenness is only related to the topological
structure, all the betweenness used in this paper is calculated
beforehand and stored in each node. The following is a specific
example to introduce the BEP strategy.

As shown in Fig. 1, there are three user nodes and one
server node. Assume that the cache size of the intermediate
five network nodes is 1. With formula (1) we can figure out
the value of the betweenness of each node. The numbers
below the nodes in Fig. 1 represent the respective value of the
betweenness. At the initial moment, the cache of the nodes
v1∼v5 is empty. If user A requests the content of the name
’/video/1.mpg’ at this time, the edge node v3 obtains the
popularity rank of the content, 1, by inquiring in the popularity
table after receiving the interest package. Hence v3 sets the
Rankc of the interest packet to 1 and appends the value of
the betweenness, 0.25, of itself to the betweenness array of
the interest packet. Then the interest packet is forwarded to
the node v2. After receiving the interest packet, the node v2
appends its own betweenness value of 0.71 to the betweenness
array. Finally, the interest packet reaches the server S, and S
obtains the Rankc value and betweenness array [0.61, 0.71,
0.25]. Then we can figure out that Rbetweenness = 1 by using
CacheSize = 1 and formula (3), so the maximum value in
the betweenness array, 0.71, is attached to the returned data
packet. In the return process, the betweenness value in data
packet is compared with that of each node along the path,
and when the betweenness value is equal to 0.71, the data is
cached in the current node. In this case, the content is cached
in the node v2. If user A requests the content of the name
’/video/2.mpg’, then Rbetweenness = 2, and the returned data
packet will carry the second largest betweenness value 0.61,
so the node v1 will cache this content.

Fig. 1. Topology of the specific example.

IV. PERFORMANCE EVALUATION

A. Experimental setup

We now evaluate our replacement strategy through sim-
ulations on ndnSIM [22]–[24]. Experimental environment:
MacOS High Sierra 10.13 operating system, 4G memory,
Intel Core i5 16GHz CPU and 2.4 version ndnSIM. The
topology of simulation adopts a tree structure with 7 layers.
The child nodes are generated from the root node randomly
and each node has 0 to 5 child nodes. Finally, 628 nodes
are generated, including one source server node and 377 user
nodes. There are N = 2000 different contents in the network
and each content is 1024KB. Content popularity follows a
Zipf-Mandelbrot distribution [25] with a parameter ranging
from 0.5 to 1.5, and requests from user nodes follow a Poison
distribution with the rate λ which equals 10 req/s in our
experiment. The cache size of each node is the same and is
C. The value range of C is 10-100, which controls the ratio
between the cache size of the CS table and the total content
from 0.005 to 0.05 and ensures that the cache capacity of
the node is much smaller than total content to meet the real
situation of the network. When counting the edge popularity
in the BEP algorithm , the attenuation factor is 0.75, the
statistical calculation period is 1 second, and the simulation
duration is 50 seconds. We choose the first 5 seconds as the
system initial warm-up phase and the data generated in the
last 45 seconds as the experimental data. We also realize 5
cache placement algorithms commonly used in NDN as the
control groups which are LCE, LCD, Betw, Probability, and
ProbCache, where Probability has a cache probability of 0.5.

B. Evaluation metrics

We introduce the following metrics as comparative evalua-
tion criterion in our experiment:

1) Hit ratio phit: Assume that the number of hits of interest
packages outside the server node is hit, the number of total
interest packages is total. Thus we have

phit =
hit

total
(4)

The hit ratio intuitively reflects the performance of the cache
system. A high hit ratio means that a larger proportion of
requests are responded before the requests arrive at the server
node. This is one of the important functions of the cache.

2) Server load: The server load is the number of interest
packets that the server need to process per second. The larger
the value, the busier the server. The server load reflects the
pressure on the server. Network delay and packet loss will be
caused by the high server load and the insufficient processing
ability of the server. Therefore, it is also necessary to reduce
the server load as much as possible.

3) Average delay: The average delay reflects the average
duration from the user sending a request to the user receiving
a response, in milliseconds. The larger the value, the worse
the user experience. One significant purpose of the cache is
to enhance the user experience. Therefore, the request delay
is an important indicator of the cache system.

C. Analysis of results

We compare the above three performance indicators by
changing the cache size of the node and Zipf parameters.

1) Hit ratio: Fig. 2 is a plot of the entire cache hit ratio as
a function of cache size under six different caching strategies,
with a Zipf parameter of 0.7. From the figure, we notice that
the BEP strategy is much better than default LCE of NDN.
The total hit ratio of BEP is 55.25% higher than that of LCE
when the cache size ratio is 0.025. We also notice that LCD
has a higher cache hit ratio than that of the Betw with the small
size of the node and has a lower cache hit ratio than that of
Betw with the large size of the node. This is because Betw’s
cache resources are strained when the cache is small, and the
disadvantage of its high replacement rate becomes particularly
prominent. Therefore, Betw performs poorly. With the increase
of the node cache size, a single node can cache more content,
which relieves the problem of Betw’s high replacement rate.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Cache Size Ratio R=C/N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

H
it
 R

a
ti
o

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 2. Hit ratio vs cache size ratio, fix Zipf parameter to 0.7.

As shown in Fig. 3, we fix the cache size ratio to 0.025 and
change the Zipf parameter. It’s noticed that the BEP strategy
is still the best of the six strategies. As the Zipf parameter
grows, the users’ requests are more focused on less content,
so when the Zipf parameter reaches 1.5, most of the popular
requests can be cached. The hit ratio of the six strategies are
all round 90%, while BEP is as high as 92.14%.

2) Server load: Fig. 4 shows the change of the server load
when the Zipf parameter is 0.7 and the cache size of the node
increases. In the comparison between LCD and Betw, LCD is
still better when the cache size is smaller and Betw is better
when the cache size is larger. When the cache size ratio is
0.025, the server load of BEP is 17.30% lower than that of
LCE, 10.27% lower than that of Betw, and 9.44% lower than
that of LCD.

Fig. 5 shows the change of the server load when the cache
size ratio is 0.025 and the Zipf parameter increases. When
the Zipf parameter is large enough, the server load can reach
a fairly low level. When the Zipf parameter is 1.5, the BEP

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Zipf Parameter

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 R

a
ti
o

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 3. Hit ratio vs Zipf parameter, fix cache size ratio to 0.025.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Cache Size Ratio R=C/N

1600

1800

2000

2200

2400

2600

2800

3000

3200

S
e
rv

e
r

L
o
a
d
(r

e
q
/s

)

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 4. Server load vs cache size ratio, fix Zipf parameter to 0.7.

server load is only 287.5 req/s, and the server load of the
other five strategies is also within 420 req/s. Overall, the BEP
strategy is still optimal.

3) Average delay: Fig. 6 shows the change of the average
delay when the Zipf parameter is 0.7 and the cache size of the
node increases. Fig. 7 shows the change of the average delay
when the cache size ratio is 0.025 and the Zipf parameter
increases. From these two figures, we notice that the BEP
strategy outperforms the other five strategies. When the Zipf
parameter is 0.7 and the node cache size is 0.025, the average
delay of BEP is 13.24% lower than that of LCE, 6.70% lower
than that of Betw and 4.43% lower than that of LCD.

As shown in Fig. 7, when the Zipf parameter is greater
than 1.1, the BEP strategy is almost the same as the Betw
strategy in terms of average delay. This is because, when the
Zipf parameter is larger, more requests are concentrated on
less content. BEP places the most popular content on the most
important nodes, and Betw places all the content on the most

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Zipf Parameter

0

500

1000

1500

2000

2500

3000

3500

S
e
rv

e
r

L
o
a
d
(r

e
q
/s

)

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 5. Server load vs Zipf parameter, fix cache size ratio to 0.025.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Cache Size Ratio R=C/N

11

12

13

14

15

16

17

18

19

A
v
e
ra

g
e
 D

e
la

y
(m

s
)

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 6. Average delay vs cache size ratio, fix Zipf parameter to 0.7.

important nodes. When the Zipf parameter is large enough,
almost all users’ requests are concentrated on the popular
content, so BEP and Betw are almost similar in performance.

V. CONCLUSION

Based on the analysis of the main problems of some popular
NDN caching strategies, we propose the BEP strategy, which
integrates the centrality of the node, the popularity of the
content and the filtering effect of the cache on the requests.
By combining content information and topology information,
the BEP strategy overcomes the problem that the hit ratio is
not high enough due to the high replacement rate in the Betw
strategy. Moreover, the BEP strategy avoids the redundancy
and inefficiency of the default policy LCE. Simulation experi-
ments show that, first, BEP is superior to other strategies under
various indexes. Second, the performance of BEP and Betw
are almost similar when the Zipf parameter is large enough.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Zipf Parameter

2

4

6

8

10

12

14

16

18
A

v
e
ra

g
e
 D

e
la

y
(m

s
)

BEP

Betw

LCD

LCE

Probability

Probcache

Fig. 7. Average delay vs Zipf parameter, fix cache size ratio to 0.025.

On the basis of this paper, we will provide a local ISP
or CP-friendly caching strategy by using more information
of the network which contains caching placement strategies
and routing mechanisms to reduce caching costs and increase
caching benefits on the next step.

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and methodology
2016–2021.(2017),” 2017.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named data networking (ndn) project,” Relatório Técnico NDN-0001,
Xerox Palo Alto Research Center-PARC, vol. 157, p. 158, 2010.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[5] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ”less for more” in
information-centric networks (extended version),” Computer Communi-
cations, vol. 36, no. 7, pp. 758 – 770, 2013.

[6] X. D. Cui, L. Jiang, H. Tao, J. Y. Chen, and Y. J. Liu, “A novel in-
network caching scheme based on betweenness and replacement rate
in content centric networking,” Journal of Electronics & Information
Technology, vol. 36, no. 1, pp. 1–7, 2014.

[7] A. S. Gill, L. D’Acunto, K. Trichias, and R. van Brandenburg, “Bid-
cache: Auction-based in-network caching in icn,” in 2016 IEEE Globe-
com Workshops (GC Wkshps), Dec 2016, pp. 1–6.

[8] Z. Li and G. Simon, “Time-shifted tv in content centric networks: The
case for cooperative in-network caching,” in 2011 IEEE International
Conference on Communications (ICC), June 2011, pp. 1–6.

[9] M. Aoki and T. Shigeyasu, “Effective content management technique
based on cooperation cache among neighboring routers in content-
centric networking,” in 2017 31st International Conference on Advanced
Information Networking and Applications Workshops (WAINA), March
2017, pp. 335–340.

[10] M. Bilal and S. G. Kang, “A cache management scheme for efficient
content eviction and replication in cache networks,” IEEE Access, vol. 5,
pp. 1692–1701, 2017.

[11] G. Zhang, Y. Li, and T. Lin, “Caching in information centric
networking: A survey,” Computer Networks, vol. 57, no. 16, pp. 3128
– 3141, 2013, information Centric Networking. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128613002235

[12] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection
of lru caches and its analysis,” Performance Evaluation,
vol. 63, no. 7, pp. 609 – 634, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166531605000611

[13] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji, “Performance
of probabilistic caching and cache replacement policies for content-
centric networks,” in 39th Annual IEEE Conference on Local Computer
Networks, Sept 2014, pp. 99–106.

[14] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the Second Edition
of the ICN Workshop on Information-centric Networking, ser. ICN ’12.
New York, NY, USA: ACM, 2012, pp. 55–60. [Online]. Available:
http://doi.acm.org/10.1145/2342488.2342501

[15] Y. Ding, Q. Zheng, C. Guo, and S. Wang, “Cooperative caching for
icn based on heat and cache replacement rate of node,” Computer
Engineering, 2018.

[16] H. Wu, J. Li, J. Zhi, Y. Ren, and L. Li, “Design and evaluation of
probabilistic caching in information-centric networking,” IEEE Access,
vol. 6, pp. 32 754–32 768, 2018.

[17] M. Yu, R. Li, Y. Liu, and Y. Li, “A caching strategy based on content
popularity and router level for ndn,” in 2017 7th IEEE International
Conference on Electronics Information and Emergency Communication
(ICEIEC), July 2017, pp. 195–198.

[18] C. Williamson, “On filter effects in web caching hierarchies,” ACM
Trans. Internet Technol., vol. 2, no. 1, pp. 47–77, Feb. 2002. [Online].
Available: http://doi.acm.org/10.1145/503334.503337

[19] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, 1977. [Online]. Available:
http://www.jstor.org/stable/3033543

[20] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, Sept 2002.

[21] J. Guan, W. Quan, C. Xu, and H. Zhang, “The location selection for ccn
router based on the network centrality,” in 2012 IEEE 2nd International
Conference on Cloud Computing and Intelligence Systems, vol. 02, Oct
2012, pp. 568–582.

[22] A. Afanasyev, I. Moiseenko, L. Zhang et al., “ndnsim: Ndn simulator
for ns-3,” University of California, Los Angeles, Tech. Rep, vol. 4, 2012.

[23] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim 2.0:
A new version of the ndn simulator for ns-3,” NDN, Technical Report
NDN-0028, 2015.

[24] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution
of ndnsim: An open-source simulator for ndn experimentation,”
SIGCOMM Comput. Commun. Rev., vol. 47, no. 3, pp. 19–33, Sep.
2017. [Online]. Available: http://doi.acm.org/10.1145/3138808.3138812

[25] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: evidence and implications,” in IEEE INFOCOM
’99. Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320), vol. 1, March 1999,
pp. 126–134.

