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Abstract— The key feature of NDN is in-network caching that
every router has its cache to store data for future use, thus improve
the usage of the network bandwidth and reduce the network
latency. However, in-network caching increases the security risks
- cache pollution attacks (CPA), which includes locality disruption
(ruining the cache locality by sending random requests for
unpopular contents to make them popular) and False Locality
(introducing unpopular contents in the router’s cache by sending
requests for a set of unpopular contents). In this paper, we propose
a machine learning method, named Triangle Area Based
Multivariate Correlation Analysis (TAB-MCA) t at detects the
cache pollution attacks in NDN. This detection system has two
parts, the triangle-area-based MCA technique, and the threshold-
based anomaly detection technique. The TAB-MCA technique is
used to extract hidden geometrical correlations between two
distinct features for all possible permutations and the threshold-
based anomaly detection technique. This technique helps our
model to be able to distinguish attacks from legitimate traffic
records without requiring prior knowledge. Our technique detects
locality disruption, false locality, and combination of the two with
high accuracy. Implementation of XC-topology, the proposed
method shows high efficiency in mitigating these attacks. In
comparison to other ML-methods, our proposed method has a low
overhead cost in mitigating CPA as it doesn’t require attackers’
prior knowledge. Additionally, our method can also detect non-
uniform attack distributions.

Keywords— Named Data Networking, False Locality, Locality
Disruptions, Multivariate Correlation Analysis, In-network Caching.

1. INTRODUCTION

Recently, several approaches have been adopted to design
an operable replacement for current IP-based Internet to serve
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today’s needs in a better and efficient way [1-3]. Scalability,
mobility and most importantly strong security are some of the
major design features in the latest developments.

Named Data Networking (NDN) [4] is an eminent example
of Content-Centric Networking (CCN) also known as
Information Centric Networking (ICN). In NDN, the name
identifier is used to access a data content instead of using
content location. Users convey their requests by disseminating
interest messages which contain names instead of IP addresses.
The network can satisfy these interest messages from any
nearest intervening nodes having the requested contents.
Content message follow the reverse path followed by interest
message. Any intervening node can save this content message
for subsequent request in future efficiently. The pervasive in-
network caching [5] is the crucial feature to reduce latency and
usage of bandwidth. However, employing extensive caching
invigorates security concerns of cache pollution attacks such as
locality disruption and false locality. In locality disruption,
attackers consistently send request messages for new unpopular
contents to force routers (victims) to cache those requested
unpopular contents, thus deteriorating the efficiency of cache
by demolishing the cache file locality while in False Locality,
attackers make requests for a limited set of unpopular contents
to make them popular, resultantly the hit ratio is reduced.

Contribution: This paper addresses cache pollution attacks
in NDN using a machine learning method. There are three main
factors in this method including popularity of a content
messages, time distribution of request messages and interface
distribution of interest messages for a content. The employed
method addresses the two major concerns including the
locality-disruption and false-locality attacks. Here, some of the



smart behaviors of attackers are also taken into account which
previous methods were failed to do. On the basis of these three
factors, the router will determine to cache or release the content
messages for thwarting cache pollution attacks.

Then the proposed method is analyzed for XC topology.
Finally, proposed method in NDN environment is validate with
extensive simulation. The evaluation results demonstrate its
efficacy in detection, mitigation and overhead over preexisting
approaches.

The remaining sections of this paper are arranged as in the
following. Section 2 explains related work. TAB-MCA system
architecture is given in section 3. In section 4, proposed method
is introduced and discussed. The section 5 brings the evaluation
results to manifest the effectuality of the proposed strategy, and
finally, the conclusion is given in section 6.

II.  RELATED WORK

Since NDN is employed as a new architecture to replace
current IP-based internet architecture, few researchers have
focused to address several kinds of attacks. A. Afanasyev et al.
[8], A. Compagno et al. [9] and K. Wang et al. [10] have
addressed Denial of Service attacks. A. Afanasyev et al. [11],
B. Alzahrani et al. [12] and B. Alzahrani et al. [13] have
addressed naming, routing and forwarding attacks respectively.
Z. Rezaeifar et al. [14], D. Kim et al. [15] and C. Ghali et al.
[16] have addressed cache poisoning attacks. However, this
approach addresses cache pollution attacks in NDN. In cache
poisoning, attackers try to cache malicious or fake contents in
router’s content store by sending request for malicious contents,
while in cache pollution; attackers try to disrupt cache locality
by sending request for unpopular contents and force routers
(victims) to cache these unpopular contents in its content store.
Successful attacks can reduce link utilization and cache hit ratio
from normal users.

Park et al. [17] introduced an approach based on
randomness checks of a matrix for the detection of locality
disruption attacks in CCN. This methodology is effective when
applied in simple scenario and this cannot be applicable to large
CCN topologies. Moreover, the computational cost is increased
when tested on multiple caching nodes.

Xie et al. [18] determined a method with an objective of
enhancing cache robustness to tackle locality disruption attacks
using Cache-Shield. The Cache-Shield defines a shielding
function which is based on logistic function. This function
decides whether the content should be kept or not, if the answer
is yes CS stores this content and if answer is no CS stores
content’s name instead of storing the whole content. Cache-
Shield should imperatively operate even in the absence of
attack and accumulate more data on each router which can
reduce data storage for popular contents.

Conti et al. [19] proposed a technique to detect cache
pollution attacks in the NDN called as lightweight mechanism.
They mentioned that Cache shielding is ineffective against
some attacks, even in some situations the performance of this
approach is worse than without them. In this technique, they use
sampling interest distribution to detect cache pollution attacks.
The method only shows how to detect cache pollution attacks

but doesn’t show any suppressing method to reduce the
influence of attacks.

Karami et al. [20] developed a cache replacement policy
called ANFIS- based cache replacement. ANFIS (adaptive
neuro-fuzzy inference system) is an integration of neural
network with fuzzy inference system. They use inherent
properties of cached content as ANFIS inputs and output of the
ANFIS is categorized into three types (i.e. false locality,
Locality disruption and Healthy). ANFIS is a machine learning
method having high computational overhead. They introduce a
cache replacement method, which works only in the condition
when CS is full and having no place for new incoming popular
content.

Guo et al. [21] exploiting the diversity of the interests
traversing paths to detect False Locality attacks in NDN. This
method is based on the idea that interests traversing paths for
malicious content objects are not as many as for legitimate
contents. A request is considered as malicious and expelled if
such a path diversity is not observed. In their work,
Probabilistic Counting with Stochastic Averaging (PCSA) and
Bloom Filter are used for path tracking.

Zhang et al. [22] introduce a non-collaborative technique
for cache decision making and thereby mitigate cache pollution
attacks in CCN. In their method, popularity is integrated with
locality to construct decision-making matrix. The basic idea
this method based on is, attackers cannot send interest messages
from as many interfaces for unpopular content objects as
popular content objects receive from.

Yao et al. [23] propose clustering, an unsupervised machine
learning method for detection and mitigation of cache pollution
attacks. Clusters are made on the basis of interest probability
and average time interval between two consecutive interests for
the same content object using Euclidean Distance. Based on
these clusters results, attack type (i.e. FLA or LDA) is
determined.

The work that is most similar to ours is [21], as we both
address both types of cache pollution attacks (i.e. FLA or LDA
using ML-Methods. However, there are two major differences:
(1) In [21], inputs are used individually, while in our method
we use correlation between every two. (2) In [21], training data
for normal users as well as for attackers is also needed that
enables it to detect attacks pre-defined in training data, while in
our method we just need to provide information about normal
users, and deviation from normal user’s profile is considered as
attack, that’s why our method can detect any type of new attack.

After summarizing all the above discussion, the conclusion
is that all the above mentioned methods are targeting cache
pollution attacks in NDN. These methods have some drawbacks
is given as: (1) Some of the pre-existing methods are only
applicable to simple scenario while applying to complex
scenario their effect is very less or zero effect. (2) Most of the
pre-existing methods target either type of cache pollution
attacks (LDA or FLA). (3) Almost all the pre-existing methods
detect attacks based on content request distribution, which is
not applicable to all types of malicious users. Our proposed
method is applicable to all types of scenarios, targeting both
types of CPA and detect all types of attacks.



III. TAB-MCA SYSTEM ARCHITECTURE

In this section, our proposed model for cache pollution
detection and mitigation in NDN is overviewed, where
framework of the proposed model is discussed.

A. Framework
There are three main steps in our proposed approach for
mitigation of cache pollution attacks in NDN as shown in Fig. 1.

Step-2: Multivariate
Correlation Analysis

Step-3: Attack Detection

Step-1: Basic Features

Generation unraum Ravw

Fig. 1. TAB-MCA block diagram.

In step 1, fundamental features for individual records are
extracted from the traffic entering to the internal network
system where secured nodes are residing in and are used to
collect network traffic records for a pre-determined time
interval.

In step 2, the triangle area map (TAM) matrix is generated
using network traffic records that originated from the first step.
These records are used in original/raw form or after
normalization by utilizing the “feature normalization” module.
Each TAM contains different triangles areas, where each
triangle area represents extracted correlations between two well
defined features. Each traffic record has its own TAM so the
total number of the TAMs is equal to the total number of the
traffic records coming from step 1. The total number of triangle
areas in each TAM is equal to all possible permutations of the
extracted correlation between two distinct features. After
obtaining TAM, we do not need actual fundamental features
(non-normalized) or normalized features as they are replaced
by triangle areas to represent traffic records. When network
intrusions occur, it causes variations to these correlations and
those variations can be exploited to determine and identify the
malignant activities. This provides more accurate information
that help to distinguish normal traffic records from attacks.

Proposed methodology is explained in coming sections in detail.

Step 3 is the decision-making stage, which can detect any
type of attack without requiring any prior knowledge about it.
Two phases incorporated in decision-making are training and
testing phase. The training phase constitutes the “Normal
Profile (NP) generation” module to build normal profile for
different legitimate traffic records, and the obtained profile is
then stored in a database. In the testing phase, the “testing
profile generation” module is used to generate profile for
individual detected traffic records. Then, “attack detection”
module is applied to compare the generated tested profile for an
observing content with the already saved normal profile. A
threshold value is used in the “attack detection” module to
classify traffic behavior and distinguish cache pollution attacks
from normal traffic. The methodology is developed in the
Section 4.

IV. PROPOSED METHOD

In this portion, we explain the architecture of the proposed
model (TAB-MCA) for detection and suppression of cache
pollution attacks in NDN. Then, simulations are carried out to
analyze the efficacy of the proposed methodology using
considered most well used XC topology. The nomenclature of
the proposed method is depicted in Fig. 1 followed by the
detailed explanation of the proposed method. The considered
network topology (XC) is shown in Fig. 2.

A. Basic Feature Generation

To detect the cache pollution attacks in NDN, the traditional
method is to learn the behavior of legitimate users, and then
detect anomalous behavior when such pattern changes. In our
proposed method, we use three features (i.e. Popularity,
Standard Deviation, Locality). The input features we
considered in our proposed model are defined as follows:

i.  Popularity: is the ratio of the number of requests for
content “C” to the number of requests for all contents in
a router “R,”. The popularity of content “C” is
determined using this parameter.

ii.  Standard Deviation: of the time intervals occurring
between every two consecutive Interest messages for
content “C” which helps to determine the status of
requests distribution for a specific content. The standard
deviation of the uniform distributions is close zero,
while for non-uniform distributions e.g. Zipf —like
distribution are not close to zero.

iii.  Locality is the request distribution for content “C”
throughout all the interfaces of router “R,”. The locality
feature helps to define the locality-wise content request
distribution. Locality of the contents requested from
many interfaces decreases and close to zero, while for
the contents, only requested from some specific
interfaces are not close to zero.

There is a huge difference in the behavior of cache pollution
attack network traffic and legitimate traffic, which is clearly
depicted from its statistical behavior. In this subsection, we
present MCA approach to describe these statistical properties.
Triangle area is employed by this approach for extraction of the
correlation between the features. The details are given in the
following.

B. Multivariate Correlation Analysis

Given an arbitrary dataset ={ 1, 5, 3,..., }where
=[1 2 3... ]T, (1= < ) represents the traffic
record of the m-dimensional array. In our proposed method, we
use three features (i.e. popularity, standard deviation, and
locality), for which  vector becomes [ 1 » 3]T. We apply
the triangle-area concept to extricate the correlation between
and input features in the vector . Data is transformed

to obtain triangle between two input features. The vector is
firstly projected on the (, ) 2D Euclidean subspace as
=] ] and =] T where(1=s = ,1=< <

3, Z“ ) . = 1 2 3 and = 1 2 3 are
vectors having all elements equal to zero, excluding (j, j)th and
(k, k)th elements that are equal to one in € and g, respectively.
The | canbe expressed as a two dimensional column vector



that can also be defined as a point on Cartesian coordinate
system with coordinate ( ) in the (, )th 2D Euclidean

subspace. A triangle is formed on the Cartesian
coordinate by the origin and projected points ( ) on the
-axis and k-axis of the coordinate. Area  of the triangle

is defined as

, =AC 0 0,0)l)/2 (1)

Wherel<= = , 1< =3, # .The  definedin
(1) can be simplified as its value becomes equal to one half of
the product of the absolute values of theterms  and . Hence,
the transformation of data may be evicted, replacing (1) by

_ =( X )/2.

To make a complete analysis, a triangle areas map (TAM)
is constructed by computing triangle areas for all possible
combinations of any two features in ~ vector. All the obtained
triangle areas are ordered in the map (TAM) according to their
indexes, e.g. the  is located on the row and the
column of the TAM having a size of 3x3. We only concern with
the correlation between two well-defined features, so values of
the main diagonal elements on are set to zeros ( =0,

= ). For nondiagonal elements ~ and  for #
represent the area of the same triangle which are equal. Thus,
the TAM is a symmetric matrix having elements of zero values
on the main diagonal. Therefore, correlations in vector can
be represented efficiently and appropriately by any of the two
triangles upper and lower. In proposed method, we consider
lower triangle, denoted as follows:

0,01l x (II(0, )

=[ 21 31 3,2]

C. Detection Technique

In this subsection, we introduce a threshold-based anomaly
detection mechanism used in our method. For this, first we
generate a normal profile using exclusively legitimate traffic
records. For a new coming traffic record, a comparison is made
with generated normal profile. If the similarity difference is
greater than the predefined threshold, the incoming record is
presumed as a malicious. It must be clear that normal profile
and threshold have noticeable impact on the performance of a
threshold-based detector.

1) Normal Profile Generation

Assume that we have a set of g legitimate traffic records, for
which ={, , 2 ) e }. The TAB-
MCA is applied to all g traffic records and the obtained set of
the triangle areas map is denoted by =
{ 4 2. )

Mahalonabis distance is applied to compute the
dissimilarity between all g traffic records. The precedence of
Mahalonabis Distance over others like Manhattan Distance and
Euclidean Distance is, it computes distance between two
multivariate data objects by exploiting the correlations between

features and removing the dependency on the measurements
during the process of calculation.

Algorithm 1: Normal Profile Generation

Input: Training Data and for elements
Output:
1. g
=1
2. Compute covariance matrix for using (5)
3. for =1to do
4. Compute .
( ", ) using (3)
5. end for
1
6 He - -1
1 2
7. — Tl :1( ’ |J,)
8. < (N(U’ 02) 5 " )
9. return
Algorithm 1 shows Normal Profile () generation. is

built using density calculation of the MDs between individual
legitimate training traffic record ( ’) and the mean

of the g legitimate training traffic records ( ). MD
is evaluated as follows:

= — — 3)

= — _ 4)

The covariance matrix used in (3) and (4) can be obtained
from the following equation:

o( 21 yo21 ) o( 21 )31 ) o( 21 ) 32 )
= 0( 31 »21 ) o( 31 ;31 ) o( 31 ;32 )(5)
0C 32 » 21 ) 0C 32 , 31 ) 0C 32 , 32 )
The covariance between two elements of the for
normal traffic records is given below:
1 y
o . == _C. )X
(6)

The mean of the (, )th and ( , )th elements of TAMs
over total g legitimate traffic records are given as
and

respectively.

The distribution of the MDs is characterized by two
parameters, mean ( ) and standard deviation ( ) of the MDs.
Finally, the obtained distribution N(u,02), * and

of the normal training traffic records are stored in the
normal profile () for attack detection.

2) Threshold Selection



The threshold is used to distinguish between legitimate
traffic records and attack traffic records and is defined as
follows:

= = (7

where and are the mean and standard deviation of the
legitimate/normal training traffic records respectively, and is
a constant and can be selected in a specific range which can
make decision with a certain level of confidence varying.

3) Attack Detection
As shown in algorithm 2, to detect cache pollution attacks,
first we need to generate lower triangle ( ) for an
observed traffic record using the proposed TAB-MCA
approach. The next step is to compute MD between the
and the * stored in normal profile
using (4). If the obtained MD for the observed traffic record
is in the range of the threshold value, it is

considered as a legitimate traffic, else it is considered as an
attack.

Algorithm 2: Attack Detection

Input: Observed traffic record , -
(N(u, 0%,
Output: Content’s Nature (Normal or Attack)

’, ) and constant parameter “o”
1. Generate for the observed traffic record

2. Compute -

( )
3. if(u )=
4, return Normal
5

) using (4)
=( + ) then
else

6. return Attack

D. Feature Normalization

Data normalization in machine learning is in important
feature and known as features scaling. It is needed when we are
dealing with the data in different scales that can cause problems
like degradation in the detection performance. In our method,
the above problem occur when the dissimilarity between attack
and normal profile is close to that between legitimate user and
normal profile.

Different methods are used for data normalization (i.e.
decimal scaling, min-max normalization and z-score
normalization). Proposed method uses statistical normalization
technique presented by W. Wang et al. [6] that has been proven
one of the best distance-based detection technique and
outperforming other normalization techniques. To perform

statistical normalization, mean scale and its statistical
distribution of the attribute values are used.
Considering the same arbitrary data set —={ 4,

2, 3,..., }given in Section 3, the statistical normalization

is as follows: The normalized value of feature  is given as
1

=( )/ ==2=a

, where defines the mean of

)2 defines the

feature Where =

[1 2 3.« ] (<= < )represents the traffic record
of'the normalized m-dimensional array. In our method, features
are normalized in batch manner. After putting our detection
system online, real-time features normalization can be achieved
by using incremental learning [7]. Mean can be updated by

the feature and =

1y (

standard deviation of the

using the formula =+ 1

V. EXPERIMENTAL RESULTS

This section depict the simulation environment, considered
topology and experimental results of the simulations. We show
through simulation that our devised TAB-CA outperform
compared to pre-existing methods in many aspect i.e. accuracy,
overhead cost, etc. Proposed countermeasure is checked for
considered topology: XC, depicted in Fig. 2. The proposed
TAB-MCA is implemented in each router of in the topology.

A. Simulation Environment

In this paper, we evaluate cache pollution attacks in Named
Data Networking and the proposed countermeasure via
simulations. Our simulation contingent upon open-source NS-
3 ndnSIM [26] package, established at UCLA as an adjunct to
NDN project. Training data was firstly simulated in to generate
normal profile which is further used to get threshold values.
These thresholds values are then used in ndnSIM coding to
distinguish attacks from normal users.

TABLE L. SIMULATION PARAMETERS

Parameters Symbols Unit Size
Ethernet link data rate DR Mbps 1.
Link delay DT ms 10
Queue length (max packets) QL - 10
Number of routers NR - 9
Number of end nodes NN - 9
Number of attackers NA - [1,2,3]
Data size DS Byte 1024
Zipf parameter o - 0.
Zipf: total numbe of contents NC - 100
Simulation time t sec 20

The simulations are evaluated over Xie-Complex (XC)
topology depicted in Fig. 2. Different symbols are used for
different nodes in topology. Table.1 indicates the detail of the
different parameters set of simulation for the experiment.
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The legitimate consumers or we can say honest consumers
mostly follow Zipf-like pattern while attacker mostly follow
uniform pattern, but not all the time as we also consider smart
attackers which pretend to be legitimate users. We use LRU as
a cache replacement method when cache is full. We are using
two types of data sets, one is training data set that contains all
legitimate users and there is no attack used to generate normal
profile while another one is testing data set, which is used to
check the performance of the technique against malicious
actions. We also set different ratio of attackers to legitimate
users to check the performance of our proposed TAB-MCA
method.

B. Performance Metrics

In order to assist the performance of the formulated strategy,
the four metrics incorporated are described as following:

False Positive Error (FPE), False Negative Error (FNE),
False Positive Error Ratio (FPER), False Negative Error Ratio
(FNER), Average Number of Invalid Packets in Each Router,
and Overhead of Invalid Cached Data. A brief explanation to
each metric is given below:

1) False Positive Error (FPE): In the corresponding
invented method, a threshold value is employed to distinguish
between useable and non-useable contents; however, the
analysis may be wrong sometimes due to error. Royle et al. [27]
and Ortiz et al. [28] defined the term FPE that indicates that the
provided criterion has been met when in reality it is still not
adequate. This metric helps to measure the quality of valid
packets that are ignored by the router during simulation due to
error, and it is supposed that the applied condition actively
detects the existence of invalid data packets.

2) False Negative Error (FNE): The term FNE indicates
that the stated condition has not been satisfied but in fact it has
been satisfied (Royle et al. [27], Ortiz et al. [28]). This metric
helps to measure the numeric quantity of invalid content
packets cached by router during simulation due to error, and it
is supposed that the chosen condition readily detects valid data
packets. Caching invalid content packets increase time
consumption and reduce the cache-hit ratio of the compliant
contents.

3) False Positive Error Ratio (FPER): FPER is a term
related to FPE. FPE measures the numeric quantity of the
useable content packets dropped by router due to error while
FPER measures the ratio of the dismissed valid data packets to
the entire number of the data packets that are received by the
routers. This metric computes the occurrence of incorrect

positive error in adopted methodology throughout simulation
hours, therefore, the percentages of valid data packets that are
dismissed is reasonable while employing this methodology.

4) False Negative Error Ratio (FNER): The metric FNER
is related to FNE metric, which designate the condition is not
met while in reality it was adequate. FNE measures the numeric
quantity of the invalid data packets cached via router due to
error while FNER measures the ratio of the accepted valid data
packets to the entire number of the compliant data packets that
are received by the routers. This metric computes the proportion
of the incorrect negative residuals that the employed strategy
encounters throughout the simulation, and it is justifying the
percentages of invalid contents cached in the developed
methodology.

C. Simulation Results

The simulation results considering the
performance metrics are explained in this subsection.

aforesaid

1) Calculating Error

This section shows different types of errors (i.e. FPE, FPER,
FNE and FNER) occurred in simulation. First of all, we run our
simulation for 60 seconds by setting the parameters as shown
in Table. 1. The first 20 seconds of our simulation, we used as
a training data set to train our algorithm and generate normal
profile and the remaining 40 seconds we used as a testing data
set. Fig. 3 (a) shows the FPER in training data set and Fig. 3 (b)
shows FPER in testing data set. In both graphs, FPER is
decreasing with increasing the value of a. Increase in a increase
the threshold interval according to equation (7). The lesser
value of the FPER will result greater efficiency but the problem
is that it will increase the value of FNER. So to set the
equilibrium and to get the best result, the value of the o needs
to select carefully.
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Fig. 3. Statistical Results on (a) Training Data Set (b) Testing Data Set.

a) Results and Analysis on Original Data

Fig. 4 (a) and (b) shows FPE and FPER on original/raw data
respectively. All values are very small, which shows that
proposed has better efficiency. Fig. 4 shows FPE and FPER for
different ratios of attackers to legitimate users. The overall
result is very satisfactory.

Similarly, Fig. 5 (a) and (b) shows FNE and FNER on
original data for different malicious to legitimate users ratios
respectively. The values for both values a little big as compare
to FPE and FPER and the reason is that proposed method is
dealing with smart attackers, which behaves like legitimate
users and hard to find.
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b) Results and Analysis on Normalized Data

This section discusses the same errors as we discussed in
the above section but the only difference is that the data used in
this section is firstly normalized by statistical normalization
method discussed in section 4.4. Fig. 6 (a) and (b) shows FPE
and FPER and Fig. 7 (a) and (b) shows FNE and FNER for
different ratios of malicious to legitimate users respectively.
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2) Computational Complexity Analysis
This section comprised of our directed analysis upon the
computational complexity and the tie consumption of our
devised TAB-MCA system for attack detection.

As portrayed in section 4.2, that the triangle regions of all
feasible combinations of whichever two distinguishing features
in a traffic record be obliged to figured when dealing out our
devised technique. Subsequently, every single traffic record

has features and for those features
( -1

) trianglereg  are engendered and are used to setup a

Therefore, the formulated technique has a
computational complexity of  ( )?. Contradictorily, as
elucidated in section 4.3, the existed MD between the detected

traffic record (i.e., the ) and of the
particular normal profile needs to be figured in the detection
system of our devised detection system to calculate the level of

the heterogeneity between them. This computation sustains a
-1
2

is the dimensions of

. ( )? can be written as ( )* . While
considering the computational complexities of our formulated
method and the detection process of our invented detection
system, the inclusive computational complexity of the
suggested detection system is ( )2+ ( )*= ( )*.
However, is a fixed number, which is 3 in our case, hence
the overall computational complexity is equal to  (1).

complexity of ()2, where =

VI. CONCLUSION AND FUTURE WORK

This work has proposed TAB-MCA for cache pollution
attacks detection. This detection system has two parts, the
triangle-area-based MCA technique and the threshold-based
anomaly detection technique. The TAB-MCA technique is used
to extract hidden geometrical correlations between two well-
defined features for all possible permutations. The threshold-
based anomaly detection technique helps our model to be able
to distinguish legitimate traffic records from attack traffic
records without requiring prior knowledge. The evaluation has
been performed for XC a well-known topology and the
simulations gives satisfactory results.

Future work includes using of this technique for larger and
more complex topologies accompanied by smarter attacks. We
will test this technique using real-world data. We will also use
this technique as a cache replacement method instead of
caching decision method targeting both cache pollution attacks
and cache poisoning attacks in NDN considering more features
i.e. longevity, cache hit etc.

ACKNOWLEDGMENT

This work was supported by the CETC Joint Advanced
Research Foundation (Grant No. 6141B08080101) and the Key
R&D Plan of Anhui Province (Grant No. 202004a05020078).

REFERENCES

[1] C. Fang, F. R. Yu, T. Huang, J. Liu, and Y. Liu, "A Survey of Green
Information-Centric Networking: Research Issues and Challenges," IEEE
Communications Surveys & Tutorials, vol. 17, pp. 1455-1472, 2015.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, "Networking named content," presented at the



(3]

(4]
(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]

(20]

(21]

Proceedings of the 5th international conference on Emerging networking
experiments and technologies, Rome, Italy, 2009.

V. Sourlas, P. Flegkas, and L. Tassiulas, "A novel cache aware routing
scheme for Information-Centric Networks," Computer Networks, vol. 59,
pp. 44-61,2014/02/11/ 2014

L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters, et
al., "Named data networking (NDN) project," 05/19 2012

C. Fang, R. Yu, T. Huang, J. Liu, and J. Liu, "A Survey of Green
Information-Centric Networking: Research Issues and Challenges," IEEE
Communications Surveys & Tutorials, vol. 17, pp. 1-1, 07/01 2015.

V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R.
Braynard, Networking named content, 2009.

V. Sourlas, P. Flegkas, and L. Tassiulas, "A novel cache aware routing
scheme for Information-Centric Networks," Computer Networks, vol. 59,
01/01 2013.

L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters, et
al., "Named data networking (NDN) project," 05/19 20

G. Carofiglio, M. Gallo, and L. Muscariello, "On the performance of
bandwidth and storage sharing in information-centric networks,"
Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 57, pp. 3743-3758, 12/01 2013.

Y. Kim and I. Yeom, "Performance analysis of in-network caching for
content-centric networking," Computer Networks: The International
Journal of Computer and Telecommunications Networking, vol. 57, pp.
2465-2482, 09/01 2013.

H. Lee and A. Nakao, "User-assisted in-network caching in information-
centric networking," Computer Networks: The International Journal of
Computer and Telecommunications Networking, vol. 57, pp. 3142-3153
11/01 2013.

A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang,
Interest flooding attack and countermeasures in Named Data Networking,
2013.

A. Compagno, M. Conti, P. Gasti, and G. Tsudik, "Poseidon: Mitigating
Interest Flooding DDoS Attacks in Named Data Networking," 03/192013
K. Wang, Z. Huachun, Y. Qin, J. Chen, and H. Zhang, Decoupling
malicious Interests from Pending Interest Table to mitigate Interest
Flooding Attacks, 2013.

A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, "SNAMP: Secure
namespace mapping to scale NDN forwarding," vol. 2015, pp. 281-286,
08/04 2015.

B. Alzahrani, M. Reed, and V. Vassilakis, Enabling z-Filter updates for
self-routing denial-of-service resistant capabilities, 2012.

B. Alzahrani, V. Vassilakis, and M. Reed, Securing the forwarding plane
in information centric networks, 2013.

Z. Rezaiefar, J. Wang, and H. Oh, "A trust-based method for mitigating
cache poisoning in Name Data Networking," Journal of Network and
Computer Applications, vol. 104, 12/01

D. Kim, S. Nam, J. Bi, and I. Yeom, Efficient Content Verification in
Named Data Networking, 2015.

C. Ghali, G. Tsudik, and E. Uzun, Needle in a Haystack: Mitigating
Content Poisoning in Named-Data Networking, 2014.

H. Park, I. Widjaja, and H. Lee, Detection of cache pollution attacks using
randomness checks, 2012.

M. Xie, I. Widjaja, and H. Wang, "Enhancing cache robustness for
content-centric networking," Proceedings - IEEE INFOCOM, pp. 2426-
2434,03/01 2

M. Conti, P. Gasti, and M. Teoli, "A lightweight mechanism for detection
of cache pollution attacks in Named Data Networking," Computer
Networks:  The  International  Journal of Computer and
Telecommunications Networking, vol. 57, pp. 3178-3191, 11/01 2013.
A. Karami and M. Guerrero-Zapata, "An ANFIS-based cache
replacement method for mitigating cache pollution attacks in Named Data
Networking," Computer Networks, vol. 80, 02/07 2

H. Guo, X. Wang, K. Chang, and Y. Tian, "Exploiting path diversity for
thwarting pollution attacks in named data networking," IEEE

[22]

(23]

[24]

[25]
[26]

[27]

[28]

Transactions on Information Forensics and Security, vol. 11, pp. 2077-
2090, 2016.

G. Zhang, J. Liu, X. Chang, and Z. Chen, "Combining Popularity and
Locality to Enhance In-Network Caching Performance and Mitigate
Pollution Attacks in Content- Centric Networking," IEEE Access, vol. PP,
pp. 1-1, 09/18

L. Yao, Z. Fan, J. Deng, X. Fan, and G. Wu, "Detection and Defense of
Cache Pollution Attacks Using Clustering in Named Data Networks,"
IEEE Transactions on Dependable and Secure Computing, vol. PP, pp. 1-
1,10/16 2018

W. Wang, X. Zhang, S. Gombault, and S. J. Knapskog, "Attribute
normalization in network intrusion detection," in 2009 10th International
Symposium on Pervasive Systems, Algorithms, and Networks, 2009, pp.
448-453.

D. E. Knuth, "Fundamental algorithms," 1973.

A. Afanasyev, . Moiseenko, and L. Zhang, "ndnSIM: NDN simulator for
NS-3," University of California, Los Angeles, Tech. Rep, vol. 4, 2012.

J. A.Royle and W. A. Link, "Generalized site occupancy models allowing
for false positive and false negative errors," Ecology, vol. 87, pp. 835-841,
2006.

M. Ortiz, L. Sarabia, A. Herrero, M. Sanchez, M. Sanz, M. Rueda, et al.,
"Capability of detection of an analytical method evaluating false positive
and false negative (ISO 11843) with partial least squares," Chemometrics
and intelligent laboratory systems, vol. 69, pp. 21-33, 2003.



