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Abstract—The performance of Dynamic Adaptive Streaming
(DAS) in multi-client scenarios can be improved by taking ad-
vantage of the aggregation capability of Named Data Networking
(NDN). In this paper, we propose a client-side game theory
based (GB) ABR algorithm for NDN that can achieve proactive
aggregation of requests among clients as much as possible without
requiring coordinating with other clients or scheduling by a
central controller. We model the interaction between a DAS client
and network as an incomplete information non-cooperative game.
Then, this game is transformed into a complete but imperfect
information game by Harsanyi transformation, and each client
can issue an appropriate bitrate request by solving the Bayesian
Nash Equilibrium (BNE) problem respectively. By designing the
payoff function pair elaborately, the equilibrium point of the
game can correspond to the situation that multiple clients issuing
the same video bitrate request, that is, requests aggregation,
which will reduce the repeated traffic and also achieve fairness.
Compared with the existing solutions, through simulation and
real-world experiments in multi-client video distribution scenar-
ios, the GB algorithm outperforms the comparison algorithms
in terms of overall Quality of Experience (QoE), fairness, and
network bandwidth utilization, etc.

Index Terms—Named Data Networking, Dynamic Adaptive
Streaming, Multi-client, Game Theory.

I. INTRODUCTION

IN recent years, with the rapid growth of portable smart
devices and online digital content, Internet traffic increases

exponentially. It was reported by Cisco [1] that video traffic
will account for 82% of Internet traffic by 2022 and this puts
heavy pressure on the current Internet. Furthermore, a large
amount of redundant or repetitive traffic is transmitted on the
Internet when a large number of users watch the same video,
which leads to the inefficiency of network bandwidth resource
utilization and unfairness between users. However, with the
TCP/IP protocol as the core, current Internet architecture only
cares about the source and destination address of the data, but
not the content itself, so it cannot effectively solve the problem
of redundant transmission. Whereas, Named Data Networking
(NDN) [2], centering on content instead of the address, can
reduce redundant network traffic dramatically, especially under
the content distribution scenario [12][13][14][20][40].

NDN is a clean-slate future Internet architecture that
shifts the host-centric communication model to content-centric
model supporting among unique content names, in-network
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caching, and name-based routing. NDN can reduce redundant
network traffic of content distributions by the ability of content
aggregation, which means the request from multiple clients for
the same content only needs to be replied with one piece of
content on the network links instead of corresponding multiple
copies. There are two types of aggregation in NDN, Pend-
ing Interest Table (PIT) aggregation and Content Store (CS)
aggregation. The PIT aggregation means that when an NDN
node receives multiple Interests packets with the same name,
it may fill them in one PIT entry instead of multiple entries,
and then forward the Interests packet to the upstream node
only once. Then the Data packets with the same name will
only be transmitted once on the link, thereby greatly reducing
network bandwidth consumption. While the CS aggregation
means that the NDN nodes can directly return the requested
content cached in local CS without forwarding the request to
the data source.

It is worth mentioning that whether deployed on the edge
of the network or inside the network, NDN nodes have
the capability of aggregation. In the broad scenarios, whose
network structure is often a tree-like hierarchical structure,
the resource bottleneck phenomenon is more obvious at the
higher-level network links. Each NDN nodes have the capa-
bility of aggregation if it receives multiple Interest packets
with the same name whether deployed on the edge or inside
the networks. So our proposed GB algorithm is also applicable
for broad NDN networks scenarios, not just home networks.
In addition, from the perspective of video playback mode,
real-time TV broadcasting is the main scenario we consider
because it is an important type of video service scenario. More
than that, even in video-on-demand scenarios, for some hot
videos, there may also exist some concurrent requests for an
identical video from multiple users, and if these requests are
aggregated, the traffic of duplicate data will be reduced.

As a popular technology used for video distribution appli-
cations on the Internet, Dynamic Adaptive Streaming (DAS)
can be deployed on NDN and can improve its performance by
leveraging the aggregation capability of NDN. The pioneering
NDN work [2] and some research results [3] demonstrates
that NDN advantage against TCP/IP in the content distribution
scenario. The reason is that NDN can reduce redundant
network traffic of content distribution by the ability of content
aggregation, which means the request from multiple clients for
the same content only needs to be replied with one piece of
content on the network links instead of corresponding multiple
copies. Through comprehensively analyzing, we consider that
the essential difference between DAS in the TCP/IP network
and DAS in NDN is that there exists not only bandwidth
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competition but also the possibility of collaboration (content
aggregation) among clients in NDN. Therefore, the adaptive
bitrate (ABR) algorithm designed for multi-client scenarios
over NDN should take into full consideration the aggregation
capability of NDN to improve the performance of video
distribution in NDN.

Existing research on client-based DAS over NDN only
considers bandwidth competition among clients rather than
aggregation ability of NDN, which leads to unsatisfactory per-
formance of video distribution services in multi-client scenario
suffered from low aggregation ratio. Therefore, the aggregation
ability of NDN should be fully considered to further improve
the performance of DAS in NDN. Besides, since the content
may be fetched from different cache nodes in NDN, it is
difficult or unrealistic to coordinate clients’ behavior through
centralized control or direct communication among clients.
That is to say, bitrate adaptive of DAS over NDN can be
regarded as a distributed collaborative optimization problem.
Therefore, we need to design a fully client-side ABR algorithm
over NDN that can achieve an optimal overall quality of ex-
perience (QoE) of multiple clients and guarantee their fairness
by proactive aggregation among clients as much as possible.
Here, QoE fairness refers to the fairness of QoE among the
clients watching the same video. In this paper, we adopt the
Jain’s Fairness Index [7] as the metric of fairness for users’
QoE. It is a well-accepted metric that measures whether users
or applications in the network share system resources fairly
while not unduly sensitive to atypical network flow patterns.

In this paper, we propose a distributed ABR algorithm
for NDN based on game theory because it is efficient in
solving the distributed collaborative optimization problem.
By modeling the process of bitrate adaptive in NDN as a
non-cooperative incomplete information game, i.e. Bayesian
game, we propose a distributed bitrate adaptive algorithm
based on the process of solving for the Bayesian game. In
this game, a single client is regarded as one player, and the
network and the rest of the clients is another player. The client
can request a video segment with the bitrate corresponding
to the Bayesian Nash Equilibrium (BNE) point according
to the appropriate payoff function pair we designed, which
synthetically considers the factors such as available bandwidth,
buffer occupancy, video bitrate, etc. To our knowledge, this is
the first ABR algorithm that considers proactive bitrate request
aggregation in a multi-client DAS scenario over NDN.

The main contributions of this paper are as follows:
• Model the multi-client DAS over NDN as a Bayesian

game: We model the multi-client DAS over NDN as a
Bayesian game and design a payoff function pair for play-
ers. Then, this game is transformed into a complete but
imperfect information game by Harsanyi transformation,
and each client can issue an appropriate bitrate request
by solving the BNE problem.

• Client-side ABR algorithm for NDN based on game
theory: We propose a novel client-side ABR algorithm
based on game theory that can achieve proactive aggrega-
tion among clients as much as possible without requiring
coordinating with other clients or scheduling by a central
controller. The proposed algorithm can optimize the over-

all QoE of multiple clients and guarantee their fairness
while reducing the consumption of network bandwidth.

• Prototype developed on realistic NDN platform: We
evaluate the proposed algorithm on ndnSIM, a simulator
for NDN. And we develop a dynamic adaptive video
streaming system over NDN (DAS-NDN) based on Lib-
dash. Experimental results on simulation and realistic
platform show that the GB algorithm outperforms the
comparison algorithms in terms of overall QoE, fairness,
and network bandwidth utilization in the multi-client
DAS scenario of NDN.

The rest of this paper is organized as follows. In Section II,
the related work on the single-client and multi-client adaptive
video streaming transmission scheme for NDN is presented
mainly. In Section III, the system architecture and QoE model
are established and the problem is described. In Section IV,
we build a Bayesian game model for multi-client DAS over
NDN and propose a novel client-side ABR algorithm based on
game theory. Simulation and real-world experimental results
are given in Section V and VI, respectively. Finally, in Section
VII, we summarize the work of this paper and make further
prospects for future research work.

II. RELATED WORK

Existing ABR algorithms in NDN can be classified into two
categories based on design objective, single-client algorithm,
and multi-client algorithm. If an algorithm only makes bitrate
decisions based on the current client itself, it is a single-
client algorithm, while if an algorithm considers the QoE of
all clients and the utility of network resources, it is a multi-
client algorithm. Because the client-side algorithms designed
for HTTP can be mitigated to NDN by being slightly modified,
we also introduce some related researches for HTTP.

A. Single-client Adaptive Video Streaming

There are not so many single-client ABR algorithms specif-
ically designed for NDN. Liu et al. [26] introduced a hop-
by-hop adaptive video streaming scheme called HAVS-CCN.
They encode the video into multiple layers with different
bitrates based on H.264/SVC, and the node drops some
enhancement layers, sacrificing a certain amount of video
quality in exchange for smooth video playback when the
network is congested and the link capacity cannot maintain
the requested video quality. Awiphan et al. [27] made further
improvements on HAVS-CCN to improve the performance
of rate adaptation and video streaming. They designed an
algorithm that allows Interest adaptation in a hop-by-hop
way along with the proactive content caching. However, these
schemes will bring extra overhead to network nodes.

There are some typical algorithms in HTTP that are purely
client-side based [10], [29]-[31], [33], [34], which can be
introduced to NDN network by minor modification. Although
there are lots of similarities in adaptive video streaming
between NDN and HTTP based on IP networks, due to the
characteristics of the NDN network architecture such as in-
network caching and multipath forwarding, the bitrate adaptive
algorithms design for HTTP suffer from drawbacks such as
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large bandwidth estimation errors and low network resource
utilization when applied directly to NDN.

More importantly, the performance of these single-client
algorithms can not be well improved because it does not
consider the capability of request aggregation in NDN. And
they are prone to unfairness issues because each client makes
a bitrate decision from his perspective only.

B. Multi-client Adaptive Video Streaming

To the best of our knowledge, there exists only one multi-
client DAS algorithm designed for NDN. Alt et al. [28] for-
mulated the quality adaptation decision for QoE maximization
in ABR video streaming as a contextual multi-armed bandit
problem. They proposed a sparse Bayesian contextual bandit
algorithm, which can provide real-world video players with
quality adaptation decisions based on the network context.
Although they considered the issue of fairness among multiple
clients, they did not consider the aggregation capability of
NDN in the multi-client scenario, which may lead to low band-
width utilization. Moreover, they modified the architecture of
the NDN.

In the TCP/IP based network, many researchers [13], [17]-
[19] proposed some schemes by controlling the download
rate of the video segments to achieve relative fairness among
multiple clients. Recently, some researches studied the bitrate
adaptive for DASH based on cooperative game [25], [35]-[37],
or non-cooperative game [32] models. The approaches based
on cooperative game theory rely on centralized control, which
is difficult to be mitigated in NDN. Based on non-cooperative
game theory, [32] proposed an algorithm that can optimally
allocate the server’s limited export bandwidth to multiple
clients. However, in their proposed solutions, an additional
HTTP session is required to be maintained between the client
and the server, which is also impossible in NDN.

In this paper, we want to design a client-side ABR algorithm
over NDN that can achieve optimal and fair QoE for multiple
clients by leveraging the aggregation capability of NDN with-
out requiring coordinating with other clients or scheduling by
a central controller.

III. SYSTEM MODELING AND PROBLEM FORMULATION

A. System Architecture

The architecture of dynamic adaptive streaming over NDN
is shown in Fig.1. The video file is encoded into fixed-
duration segments that are made available at the video server
with multiple bitrates, and the client adaptively requests video
segments of appropriate bitrate aiming at maximizing his
watching experience.

Firstly, the client requests a manifest file called Media
Presentation Description (MPD) which containing information
and metadata about this video. The client then requests video
segments of appropriate bitrate instructed by bitrate controller
module based on the information such as network states
and buffer size, etc. Finally, the requested video segments
are transmitted over the NDN network via NDN Forwarding
Daemon (NFD) [4] to the local video buffer, and taken out
when playback.
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Fig. 1: Architecture of dynamic adaptive streaming over NDN.

It should be highlighted that in multi-client scenario of DAS
over NDN, which is different from DAS over TCP/IP, there
is not only competition in bandwidth but also cooperation
in bitrate aggregation among the clients. The reason is that,
in NDN, if multiple clients request the same bitrate version
of the same video segment simultaneously, only one copy
of the video segment will be transmitted, which will reduce
the transmission of redundant data dramatically. However,
since it is difficult for clients to communicate with each
other directly or scheduling by a central controller in DAS
over NDN, we hope to design a distributed ABR algorithm
that can improve the overall QoE of clients by increasing
the aggregation probability of video requests issued by them.
Besides, the proposed ABR algorithm should ensure fairness
among the clients as much as possible.

B. QoE Model

A widely considered metric of the performance of video
streaming service is the quality perceived by the end users
from enjoying the service, so-called QoE. We introduce the
QoE metric proposed by [33], which is widely accepted and
used in the literatures such as [27][30][31]. The QoE metric is
a linear combination of the following three key components:

Video quality: The relationship between bitrate level and
QoE are positively correlated, but not linearly proportional.
In the case of a relatively low video bitrate level, a small
increase in bitrate level will bring a considerable improvement
in QoE. Whereas, the increase in bitrate level may not have
a significant improvement for the user’s QoE in the case of a
high bitrate level. Consequently, we define the video quality
as qr, where q is the bitrate level of the video segment and
r ∈ (0, 1] is a constant. According to [38], we set the default
value of r to 0.6.

Quality switching: This component measures the consis-
tency of video quality during playback and is defined as the
difference in video quality between two consecutive video
segments

∣∣∣ q−q̄
q

∣∣∣, where q̄ is the bitrate level of the previous
video segment. After designing in this fashion, we can ensure
that the switching of video quality from high to low will has
a greater impact than that of switching from low to high. In
other words, this design is consistent with people’s preference
for higher video quality.

Interruption time: The total duration of buffered video seg-
ments was used to represent the size of the buffer. The video
playback will be paused if the requested segment can’t arrive
before the buffer is empty, which we call interruption. The
interruption time can be formulated as max( size(q)b −B, 0)
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with size(q) being the size of the selected segment, B being
the current size of the buffer and b being the bandwidth it
takes up to download it.

Then, the QoE for a specific client when watching a video
segment with bitrate level q can be formulated as following:

qoe =qr − α

∣∣∣∣q − q̄

q

∣∣∣∣− βmax(
size(q)

b
−B, 0). (1)

Here, the α and β are non-negative weighting parameters
corresponding to the video quality switching and interruption
time, respectively. Video viewers can set these two parameters
according to their preferences. A relatively large α indicates
that the viewer is particularly concerned about video quality
switching. A relatively large β indicates that a viewer is very
concerned about interruption time.

Furthermore, we define QoE of the i-th client during the
whole video (with a total of K segments) playback process
as:

QoEi =

K∑
k=1

qi(k)
r − αi

K∑
k=2

∣∣∣∣qi(k)− qi(k − 1)

qi(k)

∣∣∣∣
− βi

K∑
k=1

max(
size(qi(k))

bi(k)
−Bi(k), 0),

(2)

where qi(k) and size(qi(k)) denote the bitrate level and
actual size of the k-th segment obtained by the i-th user,
respectively. Bi(k) and bi(k) denote the size of the buffer
and the bandwidth occupied when the i-th user downloaded
the k-th segment, respectively.

C. Problem Description

Through a comprehensive analysis of the technical archi-
tecture and user requirements of adaptive streaming in NDN,
we can formulate the multi-client adaptive video streaming
in NDN as a distributed optimization problem. The ultimate
goal of bitrate adaptation in multi-client scenario over NDN
is to maximize the overall QoE of all users watching this
video, while achieving fairness among users. Since geometric
mean of all users’ QoE embodies both the overall efficiency
and fairness of DAS system among users, our goal of bitrate
adaptation can be formulated as maximizing the geometric
mean of QoE of all users.

Assuming there are N clients who watch the same video, the
optimization problem of multi-client adaptive video streaming
in NDN can be modeled as follows

max
qi(k)

QoE = (
N∏
i=1

QoEi)
1
N ,

s.t. qi(k) ∈ Q, ∀i = 1 · · ·N, ∀k = 1 · · ·K,

Ci(t) ≤ CBL(t).

(3)

Here, Ci(t) is the bandwidth occupied by client i at time
t, and CBL(t) is the size of the bottleneck bandwidth in the
network at time t. Therefore, the constraint is that the band-
width occupied by each client cannot exceed the bottleneck
bandwidth on the network at any time. Q is the set of all
available video bitrate levels.

Client2

Client1

Router1 Router2
Server

Network12M

12M

20M15M

Fig. 2: Multi-client DAS scenario: Two clients want to watch the
same video. The numbers in red indicate the maximum limited
bandwidth of corresponding links, the same below.
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Fig. 3: Multi-client DAS over the TCP/IP based network. The
numbers in blue indicate the occupied bandwidth on corresponding
links, the same below. The reasonable result that can be achieved in
the end is two clients each obtains half of the bottleneck bandwidth.

As it is uneconomical and complex to set up a centralized
architecture for DAS over NDN which adopts a pull-based
transmission paradigm, each client cannot know the value of
the bottleneck bandwidth, nor can they know the total number
of clients watching the same video through the bottleneck link.
Therefore, the solution to the optimization problem of multi-
client adaptive video streaming in NDN cannot be obtained
by directly solving Eq.(3).

In this paper, we will design a distributed client-side bitrate
adaptive algorithm that can improve the geometric mean of
QoE of clients formulated as Eq.(3) without direct communi-
cation among the clients or scheduling by a central controller
while improving network bandwidth utilization.

IV. GAME THEORY BASED ADAPTIVE BITRATE
ALGORITHM

A. Motivation

In order to explain our idea more clearly, we illustrate the
difference between multi-client DAS in NDN and TCP/IP
using a simple example. Considering a scenario shown in
Fig.2, two clients are watching the same video clip through
a shared bottleneck link. The reasonable result of multi-client
video distribution service in TCP/IP network is that the two
clients get 7.5Mbps network bandwidth respectively as shown
in Fig.3, and each client can watch the video with bitrate below
7.5Mbps.

As a contrast, multi-client video distribution service in the
NDN network can improve the QoE for all users who are

Client2

Client1

Router1 Router2
Server

NDN
12M/12M

12M/12M

12M/20M12M/15M

Fig. 4: Multi-client DAS over the NDN. The ideal result is that the
requests of video segment bitrate from the two client requests are
aggregated and then both clients occupy 12M network bandwidth.
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watching the same video segment by leveraging the capability
of aggregation as shown in Fig.4. In this scenario, if client
1 and client 2 request the same bitrate version of the same
video segment, only one copy of the video segments will be
transmitted on the bottleneck link. Under ideal conditions,
all clients can watch video segments with higher bitrate
simultaneously. Moreover, this also guarantees the fairness of
video distribution service among multiple clients because they
watch the same bitrate version of the video.

It can be seen that under ideal conditions, the multi-client
DAS in NDN can not only achieve fairness among multiple
clients but also improve the utilization of network bandwidth
resources, thereby improving the satisfaction of all clients.
The main reason is that DAS in NDN can leverage the
capability of aggregation to reduce redundant traffic in the
network drastically and then improve the efficiency of video
distribution service.

Since the video content may be fetched from different cache
nodes in NDN, it is difficult or unrealistically to coordinate
clients’ behavior through centralized control or direct com-
munication among clients in DAS over NDN, we hope to
design a distributed ABR algorithm which can improve the
QoE of clients by increasing the aggregation probability of
video requests issued by them. In this paper, we will design
a distributed ABR algorithm based game theory, which is a
mathematical theory that is capable of solving a distributed
collaborative optimization problem.

B. Non-cooperation Game model for DAS over NDN
Game theory studies situations in which many players

make decisions independently, and it can be classed into
cooperation game and non-cooperation game. In this paper,
we want to design a distributed algorithm that can improve
the geometric mean of QoE of clients formulated as Eq.(3)
without direct communication among the clients or scheduling
by a central controller while improving network bandwidth
utilization. Non-cooperative game is a feasible solution to
accomplish this goal.

Therefore, we model the bitrate adaptive for multi-client
DAS over NDN using the non-cooperation game theory. In
this scenario, each client neither knows the bandwidth of the
bottleneck link nor the number of users who watch the same
video through this bottleneck link, so each client can only
make bitrate decisions according to its state. According to the
classification of the non-cooperation game theory, this scenario
can be modeled as a non-cooperative incomplete information
game, i.e. Bayesian game. Furthermore, the distributed opti-
mization of bitrate adaptive for multiple clients in NDN can
be achieved by solving the BNE problem.

In this game model, we first need to determine the three
elements of the game: player, Strategy, and Payoff. Through
the above conversion method, we define player 1 as a single
client and player 2 as the rest of the network. The strategy
that player 1 can choose is the available video bitrate that
is described in the MPD file. The strategy that player 2 can
choose is the amount of bandwidth allocated to player 1.

Assuming that a player has a private message (not known
to other players), then the different values of the private

information are called different types [5] of the player. Since
player 1 is a single client, it is not aware of the network
conditions, and its primary concern is the amount of bandwidth
that other clients in the same network have already occupied,
while this information is only known to player 2. We use
w to represent the total bandwidth occupied by other clients
in the same network, upon that the w is the type (a term of
game theory) of player 2. Although the specific size of w is
unknown to player 1, its prior probability distribution is known
to subject to the Gaussian truncation distribution [5]. In each
decision round, the client chooses a strategy from his strategy
space that can maximize his payoff.

In a non-cooperative game, each client makes a decision
only based on its payoff function. Therefore, the payoff
function should be designed with the capability of encouraging
the clients to issue the same bitrate request. Player 1’s payoff
function should reflect its profit and the cost of obtaining the
profit and can help the client to achieve higher cost-effective
decisions. The most important goal of player 2’s payoff
function is to achieve fair bandwidth allocation and then to
achieve proactive aggregation of requests among clients. After
comprehensively considering multiple influencing factors and
conducting multiple experiments, the payoff functions we
designed are as follows.

p1(br_q, b) =
qoe

1 + eθ(br_q−λb)
, (4)

p2(b, w) = −(1−
b

w
)2. (5)

Here, br_q denotes the bitrate of the video segment, b is
the bandwidth allocated to player 1 by player 2, w is the
total bandwidth occupied by other clients. The θ is a weight
parameter that balances the proportional relationship between
gain and cost. The larger the θ, the higher the cost of choosing
a high bitrate, indicating that the client’s strategy at this time
tends to be more conservative. The λ is the parameter related
to the buffer status of the client and is generally set to 1.0, or
0.8 if buffer occupancy is less than 33%. From the definition
of payoff function for player 1, the more the bitrate of the
video segment exceeds the allocated bandwidth, the smaller
the value of the payoff function will be.

For player 1’s payoff function Eq.(4), the numerator qoe (as
shown in Eq.(1)) is his gain of watching the video, and the
denominator is used to adjust the value of the payoff function
according to the bitrate requested. The denominator is always
larger than 0, which means that as long as the video segment is
requested, there exists cost. If the requested bitrate level of the
video segment is too high and exceeds the network bandwidth
limit, the requested video segments will be delayed or even
dropped, which will cause playback interruption. This form of
the denominator is designed to penalize this behavior and to
induce users not to request excessive bitrates level.

For player 2, since the optimal game result of the multi-
client video service is that all clients get bandwidth fairly, that
is, the aggregation of the requested content is fully achieved,
and there will be w = b. Accordingly, the Eq.(5) is designed
to allow player 2 to reach its maximum value at b = w.
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Through the Harsanyi transformation, we can transform
incomplete information game into a complete but imperfect
information game by introducing Nature as a participant into
the game [39], which can be analyzed by Bayesian Law and
other probability theory. After that, the client can determine
the bitrate of the video segment to be requested according to
the BNE point of the game.

C. Solution of Bayesian Nash Equilibrium Problem for Bitrate
Adaptive

We should analyze the payoff function pair of this game to
solve the BNE problem. The real value of w is only known
to player 2 and his payoff gets maximum when b = w which
means player 1 can share bandwidth fairly with the others
at this moment. The w subjects to the Gaussian truncated
distribution between a and A (the lower and upper limits
of bottleneck link bandwidth, respectively), with average µw,
variance σ2

w and probability density function f0(w):

f0(w) =
1
σw

ϕ(w−µw

σw
)

Φ(A−µw

σw
)− Φ(a−µw

σw
)
. (6)

Here, ϕ(ξ) = 1√
2π

e−
1
2 ξ is the standard normal distribution

and Φ(ξ) = 1
2 (1 + erf( ξ√

2
)) is its cumulative distribution

function. Where erf(x) is the error function as shown below:

erf(x) =
2√
π

∫ x

0

e−t2 dt. (7)

In each decision round, the choice of player 2 only depends
on w and the optimal response corresponding to the selection
of the most suitable b is denoted by s∗2:

s∗2(w) = argmax
b

p2(b, w) = w. (8)

Simultaneously, the optimal response for player 1 is denoted
as follows:

s∗1(w) = argmax
q

p1(q, w). (9)

Now, as strategy s∗1 is the optimal response to s∗2 and
knowing that s∗2 is the optimal response to any strategy by
player 1, (s∗1,s∗2) is as a subgame-perfect equilibrium [5] for
each decision round. The uncertainty on the type of player
2 make player 1’s response sub-optimal. In the first decision
round, player 1 has no information on player 2’s type, and it
chooses to act the BNE:

s∗1 = argmax
q

∫ A

a

p∗1(q, δ)f0(δ) dδ, (10)

where f0(δ) is as shown in Eq.(6), and p∗1(q, δ) is the maxi-
mum payoff that player 1 can get at this time.

Because Eq.(9) is a nonlinear function, and the integral
formula cannot be derived directly, the approximate solution
of the integral can be calculated according to the Simpson’s
Rule [6]. In the process of repeating the game, the player 1
can obtain the estimated value of w continuously and update
the estimated distribution of w, so that the estimation of w is
more accurate and the bitrate selection of the video segment
is more reasonable.

Before each decision round, player 1 gets some information
about player 2’s type from the previous segment to modify the
probability distribution of w. Thus, player 1 can estimate b by
the download speed of the previous segment which is revealed
from the size and transmission time of the segment:

b̂ =
size(q)

T2 − T1
. (11)

With T1 being the time when the first Interest packet is sent
and T2 being the time when the last data packet is received.
Thus, the estimated value of w is defined as follows:

ŵ = b̂. (12)

The process of the game is continually repeating and we can
update the prior estimation for w after each decision round.
After a sequence of n further refined estimates of the type
(ŵ1, ŵ2, ..., ŵn), we can update the prior estimate by using
the mean and variance unbiased estimators:

m̂w =
1

n

n∑
i=1

ŵi, (13)

v̂2w =
1

n− 1

n∑
i=1

|ŵi − m̂w|2. (14)

Then, we can estimate the new prior distribution parameters
for w, average µ̂w and variance σ̂2

w by (15) and (16):

µ̂w = m̂w +
ϕ(x1)− ϕ(x2)

Φ(x2)− Φ(x1)
v̂w, (15)

σ̂2
w = v̂2w[1 +

x1ϕ(x1)− x2ϕ(x2)

Φ(x2)− Φ(x1)
− (

ϕ(x1)− ϕ(x2)

Φ(x2)− Φ(x1)
)
2

].

(16)
With x1 = a−m̂w

v̂w
, x2 = A−m̂w

v̂w
, ϕ(ξ) being the standard

normal distribution and Φ(ξ) being its cumulative distribution
function as mentioned above.

For the first segment, the prior estimate of w is set empir-
ically in advance. Besides, the lower limit of it is always 0
and the upper limit is maximum bandwidth estimated. After
the acquisition of update prior estimation, the algorithm will
iterate all available bitrate figure out the payoff of player 1 by
Eq.(10) and choose to request the bitrate that can maximize
payoff. Through the continuous update prior estimation, player
1 will have more and more knowledge of player 2 and choose
an appropriate bitrate to request.

D. Algorithm Workflow

Based on the analysis of the gaming process, the workflow
of the game theory-based (GB) ABR algorithm is shown in
Algorithm 1.

Firstly, the client needs to get some basic information: B
is the total duration of buffered video segments in the local
buffer. b is the bandwidth allocated by the player 2 to the
player 1, that is, the average bandwidth during the download
of the previous segment. C is the estimated bandwidth. q̄ is
the bitrate of the previous segment.

Before making a bitrate decision, the client updates the
estimated distribution of w based on the previous request, as
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shown in lines 6-9. Next, client sets the value of λ based on the
local buffer condition, as shown in lines 10-14, where Bmax is
the total size of the local buffer. All preparations are completed
and the bitrate selection is now started, as shown in lines 15-
23. Traverse for all available bitrates without abandon unless
the selected bitrate brings interruption to the client. There are
two purposes for this: 1. Preventing interruption which has
a fatal blow to the client’s QoE; 2. Excluding some bitrates
that do not meet the requirements, and reducing the amount
of calculation.

Although we can get the average bitrate of the video
segment for each bitrate, the actual size values of them are
not known until they are received by the client. For a video
segment that requested by a client, the expectation value of
the payoff is calculated according to Eq.(2). Finally, the client
selects the bitrate that maximizes the expected value of the
payoff.

Algorithm 1 Game Theory Based Adaptive Bitrate Algorithm

Require: B, b, C, q̄
Ensure: highest_bitrate

1: B ← Get_Buffer();
2: C ← Get_Estimate_Bandwidth();
3: b← Get_Last_Download_Speed();
4: q̄ ← Get_Last_Download_Bitrate();
5: highest_bitrate← Get_Lowest_Bitrate();
6: w ← b;
7: Set_W (w);
8: µ̂n ← calculate_average_w();
9: σ̂2

n ← calculate_var_w();
10: if B < 0.33 ∗Bmax then
11: λ = 0.8;
12: else
13: λ = 1.0;
14: end if
15: for allavailablebitrate do
16: if 2 ∗ current_bitrate/C < B then
17: current_p_1← calculate_p_1();
18: if current_p_1 > p_1 then
19: p_1 = current_p_1;
20: highest_bitrate = current_bitrate;
21: end if
22: end if
23: end for

It can be seen from the Algorithm 1, for a single user
to watch a single video segment, the complexity of the GB
algorithm only depends on the number of candidate bitrate
levels (indicated by Navl). Therefore, the complexity can be
expressed as O(Navl). In fact, the Navl is a small integer
(usually less than 20 [24]) and the complexity of the GB
algorithm is quite low, given the computing power of today’s
hardware devices, the delay caused by the GB algorithm’s
computing is negligible. It is worth mentioning that although
the basic unit of data transmission in NDN is a chunk, and
a video segment is composed of a sequence of consecutive
chunks. When a user watches a video, the bitrate decision is
made for each video segment, not for each chunk, so the ABR

algorithm is run once per segment. Besides, since the proposed
algorithm is a client-side adaptive bitrate algorithm, each
client makes decisions only based on his state and network
conditions. Therefore, the number of concurrent users will not
affect the complexity of the proposed algorithm running on
each client, even if the users are on different live channels.

V. PERFORMANCE EVALUATION FOR SIMULATION

Experiments on the simulation environment are flexible,
which allows us to evaluate the proposed algorithm on all
metrics conveniently. The simulation experiment in this section
is carried out on ndnSIM [11] (an NS-3 based NDN simulator).

We compare the proposed algorithm with three classic
ABR algorithms, namely Rate-Based (RB) [9], Buffer-Based
(BB) [8], and Buffer Occupancy based Lyapunov Algorithm
(BOLA) [10], whose data transmission methods are modified
to be suitable for adaptive streaming in NDN. The adaptive
bitrate algorithms work in the application layer, so they can run
on different network architectures, such as NDN or TCP/IP. In
the TCP/IP network, the clients only need to send an "HTTP
GET" instruction to request the desired video segments. The
actual data transmission process is undertaken by the TCP pro-
tocol. However, due to the lack of aggregation capabilities, the
DAS running on the TCP/IP networks cannot aggregate usersąŕ
requests, so there exists repeated data transmission, resulting in
low system performance. While in the NDN network, which
has no mature transport layer protocols, the transmission of
video data needs to be implemented by applications itself.
First, the provider named and published MPD files and video
files that have been segmented according to NDN rules. A
video client gets an MPD file by sending corresponding Inter-
ests, and it will get video relevant information by resolving this
file. Then it sends out sequences of Interest packets according
to the name and the number of video blocks. When the block
ID in the returned Data packet matches the FinalBlockID field
in its MetaInfo, the client can reassemble the received Data
packets into a complete video segment for playback.

The reason for not comparing with existing ABR algorithms
in NDN is that most of the existing algorithms modify the
architecture of NDN more or less, which is inconsistent
with our design philosophy. We perform simulations in the
following two scenarios:

Scenario 1: Under the premise of fixed bottleneck band-
width, multiple clients request the same video;

Scenario 2: Under the premise of fluctuating bottleneck
bandwidth, multiple clients request the same video.

Finally, we introduce some performance metrics used in
evaluating the performance of algorithms from different per-
spectives, such as the sum of all users’ QoE, fairness, aggre-
gation ratio, and bandwidth resource utilization.

A. Performance Metrics

We introduce several metrics for evaluating the performance
of the bitrate adaptive algorithm.

• Sum of All Users’ QoE: This performance metric can
directly reflect the overall service quality of the DAS
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system, assuming a total of N clients, as shown in
Eq.(17):

QoEsum =
N∑
i=1

QoEi, (17)

where N represents the total number of clients watching
video simultaneously.

• Average Video Quality: The arithmetic mean of the
video quality watched by users during the video playback
process, as shown in Eq.(18):

Qaq =
1

K

K∑
k=1

q(k)r, (18)

where q(k) is represented by the index of the correspond-
ing bitrate, and r ∈ (0, 1] being a constant set to 0.6.

• Average Video Quality Switching: The average switch-
ing of video quality during video playback, as shown in
Eq.(19):

Qqs =
1

K − 1

K∑
k=2

|q(k)− q(k − 1)|, (19)

which reflects the smoothness of the video switching.
• Average Interruption Time: The average interruption

time during video playback, as shown in Eq.(20), in
seconds:

Qit =
1

K

K∑
k=1

max(
size(q(k))

b(k)
−B(k), 0), (20)

which reflects the stability of the video playback process.
• Geometric Mean of QoE: The geometric mean not only

reflects the overall watching experience of all clients
but also the difference among the clients, as shown in
Eq.(21).

QoEgm(k) = (

N∏
i=1

QoEi(k))
1
N , (21)

where k represents the k-th video segment.
• Jain’s Fairness Index: The Jain’s fairness index [7]

defined as Eq.(22) is used to measure whether users or
applications in the network share system resources fairly,
the closer the value is to 1, the fairer it is:

J(y) =
(
∑n

i=1 yi)
2

(n
∑n

i=1 y
2
i )
, (22)

where y is a metric that needs to be measured for fairness,
and n indicates that there are n users in total.

• Aggregation Ratio: NDN has ubiquitous caching and
PIT that can achieve Interest aggregation. Then the ag-
gregation among multiple clients can improve content
distribution efficiency by reducing redundant data trans-
mission. The larger the value of this metric, the higher
the aggregation ratio requested by the user. The metric is
defined as follows:

Ar(k) =
agg(k)

N
, (23)

Bottleneck

NDN

...

Client 1

Client 2

Client N

Router 1 Router 2 Video 
Source

Time

Bandwidth

Link

Fig. 5: Topology of simulation.

where agg(k) represents the number of users for which
Interest aggregation has occurred among all N users
requesting the k-th segment.

• Amplification Factor of Bandwidth: The bandwidth
amplification factor is defined as the ratio of user’s
perceived bandwidth to the actually bandwidth used to
transmit video data, where the user’s perceived bandwidth
is the sum of the bitrate of all video segments received by
all users in the whole video playback process. This metric
is used to measure the reduction of redundant data traffic
as shown in Eq.(24):

Afb =

∑N
i=1

∑K
k=1 br_qi(k)∑K

k=1 C(k)
, (24)

where br_qi(k) denotes the bitrate of the k-th segment
requested by the i-th user, and we have a total of N
users and K segments. C(k) indicates the bottleneck
bandwidth spent to obtain the k-th segment.

B. Simulation Setup

We use ndnSIM as the simulation platform which is an
open-source network environment simulator for NDN based on
ns-3. The topology of the simulation and realistic experiments
is shown in Fig.5, including multiple clients, routers, and a
video source. The video source and clients are distributed at
the edge of the network, and multiple clients will compete for
bottleneck bandwidth resources, which is a typical scenario
widely used in multi-client adaptive video stream research
[14]-[16]. The links in the network are bidirectional, and
the client-to-router bandwidth is set to 10Mbps, while the
bottleneck link bandwidth between routers is set to 5Mbps.
The bandwidth between the router and the video server is set
to 5Mbps and 10Mbps in the scenario of two clients and five
clients respectively.

The video source contains the video Big Buck Bunny [23]
requested by the clients, and also contains the MPD file
required for the requested video. The video file is divided
into 299 fixed-length 2 seconds video segments, and each
video segment is encoded into 20 different bitrate levels with a
fixed resolution of 1080p [24] according to the MPEG-4 AVC
standard. The average bitrate of each quality level is shown in
Table I.

The cache size of each NDN node is 15MB, and the cache
replacement strategy selects the Least Recently Used (LRU)
algorithm, the routing strategy is selected as Best-Router. The
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TABLE I: Requestable video bitrate

Index Average Bitrate (bps) Index Average Bitrate (bps)
1 45652 11 791182
2 89283 12 1032682
3 131087 13 1244778
4 178351 14 1546902
5 221600 15 2133691
6 262537 16 2484135
7 334349 17 3078587
8 396126 18 3526922
9 522286 19 3840360
10 595491 20 4219897

simulation time is set to 200 seconds and 400 seconds in
the scenario of two clients and five clients respectively. The
client’s local buffer size is set to 30 seconds, the screen reso-
lution is 1920× 1080, and start delay is set to 4 seconds. The
client selects different algorithms to experiment in scenarios
with fixed bottleneck bandwidth and scenarios with fluctuating
bottleneck bandwidth, respectively. The setting of the four
algorithms involved in the experiment are as follows:

• RB: The weighted average of predicted bandwidth and
measured bandwidth is used as the predicted bandwidth
to be used when making a bitrate decision for the next
video segment with weight set to be 0.5.

• BB: The client reduces the bitrate of the next requested
video segment when the local buffer size is less than 8s
and increases it when the buffer size is larger than 14s.
Otherwise, the requested bitrate remains unchanged.

• BOLA: The input weight parameter for prioritizing play-
back utility with the playback smoothness is set to be
γ = 2.5.

• GB: In the scenario of two clients, the parameter α = 1.2,
β = 2.5, θ = 0.3. And in the scenario of five clients, the
parameter α = 0.5, β = 3.0, θ = 0.3.

• Opt: The algorithm is the optimal solution can be
achieved in theory. Since Opt cannot be implemented
on the realistic platform, the experimental results are
only given in the simulation. In addition, the curves of
aggregation ratio and the geometric mean of QoE are a
straight line in all experiments, so they are omitted.

C. Simulation Results Analysis

1) Scenario with Fixed Bottleneck Bandwidth (Two
Clients): The final experimental results for scenario of two
clients with fixed bottleneck bandwidth are shown in Fig.6,
Fig.7 and Table II.

TABLE II: Components of QoE (two clients with fixed bottleneck
bandwidth)

Algorithm RB BB BOLA GB Opt
Video Quality 11.35 9.22 10.12 10.35 18

Video Quality Switching 0.14 0.04 0.17 0.09 0
Interruption Time 0.59 0 0 0 0

The RB algorithm makes bitrate decisions only based on
estimated bandwidth, so it requests a higher bitrate of the
video segments at the beginning. However, when two clients
get video clips through the bottleneck link simultaneously, the

(a) RB (b) BB

(c) BOLA (d) GB

Fig. 6: Dynamic process of bitrate aggregation ratio and geometric
mean of QoE during video playback (two clients with fixed
bottleneck bandwidth).

available bandwidth may fluctuate. This will affect the accu-
racy of the bandwidth estimation, thus leading to inappropriate
bitrate requests, resulting in frequent bitrate switching and
playback interruption. Thus clients using the RB algorithm
get the worst overall QoE.

The BB algorithm has an excellent performance in quality
switching because it makes decisions only based on buffer
size. However, the quality of video segments received by
two clients is quite different, which results in unfairness.
The average video quality of the BB algorithm is the lowest
because the BB algorithm always makes bitrate decisions
conservatively. As its goal is to maintain the fill ratio of the
local buffer, the BB algorithm is relatively stable. Moreover,
the BB algorithm only increases or decreases one quality level
at a time, and does not change the quality of the requested
video when the buffer is substantially unchanged, so it can
achieve a fairly small value of average video quality switching.

The BOLA algorithm has the largest quality switching
because the BOLA algorithm increases or decreases the quality
level by more than one level each time compared to the BB
algorithm. Since the BOLA algorithm adopts the Lyapunov
optimization theory to maximize video quality while minimiz-
ing playback interruptions, the bitrate decisions it makes are
higher than the BB algorithm on average quality levels and it
also does not suffer from playback interruptions.

The GB algorithm we proposed considers video quality
switching and playback interruption as negative components
of the payoff function, and the local buffer status is mapped
as a corresponding parameter and introduced to it. Based
on this payoff function, the client requests an appropriate
bitrate of a video segment, which results in rare playback
interrupting or drastic video quality switching during the
experiment of the GB algorithm. More importantly, the GB
algorithm achieves optimal overall QoE and fairness because
of the largest aggregation ratio without the requirement of
direct communication among the clients or scheduling by
a central controller. This means the GB algorithm has the
capability of proactive aggregation of bitrate requests among
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clients. The reason is that participants in the game are assumed
to be perfectly rational, and the payoff function guides them
to maximize their utilities when making decisions with the
majority, which results in bitrate requests aggregation with
high probability.

From the perspective of Jain’s fairness index, the GB
algorithm is still excellent. However, this fairness index is only
explained from the perspective of overall quality. It can only
explain the fairness of the algorithm to a certain extent. That
is, although there may be only a small number of segments
requesting the same bitrate for the two clients, after the end of
the entire video playback, there may not be much difference
in the sum of the quality levels of all the segments of the
two clients. This can also explain why the performance of
the RB algorithm is the worst, but it is the closest to the GB
algorithm in the fairness index. Therefore, fairness should also
be combined with the QoE geometric mean curve of Fig.12.
From this point of view, the GB algorithm is still the best.
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Fig. 7: Results of performance metrics for different algorithms (two
clients with fixed bottleneck bandwidth).

For the purpose of showing the influence of the three weight
parameters in our algorithm on the user’s QoE, we conducted
several comparative experiments (as shown in Fig.8) in this
scenario. The value of α and β can reflect the preference
of different users for videos. In order to test the impact of
different preferences on the user’s QoE, we set different α and
β values in the experiment, and keep the value of θ constant.
And θ is used to amplify punishment. The larger θ, the more
conservative the user’s strategy and the smaller the profit, but
the more adaptable to scenarios where bandwidth changes
drastically. Similarly, when conducting θ-related experiments,
we keep α and β unchanged.

Fig.8 (a) verifies the impact of different values of α on
the QoE. Since the interruption time is always zero, the
interruption time is not shown in the figure (the same in (b)
and (c)). The larger the α is, the more attention the user pays
to quality switching, but the average video quality obtained
by the user will also decrease accordingly.

Fig.8 (b) is the verification result of the influence of β.

The larger β is, the more sensitive the user is to interruption
of playback. From another perspective, the weight of video
quality and quality switching in QoE has become lower.
Therefore, the video quality will decrease and the quality
switching will increase.

Fig.8 (c) verifies the impact of different values of θ on the
QoE. The larger the θ, the more conservative strategy the user
will adopt. That means that the bitrate of the video requested
by the user will be lower, and the quality switching will not
be greatly affected.

(a) The effect of α on video quality and quality switching (where β=3.0, θ=0.3)

(b) The effect of β on video quality and quality switching (where α=0.5, θ=0.3)

(c) The effect of θ on video quality and quality switching (where α=0.5, β=3.0)

Fig. 8: The influence of different weight parameters on video
quality and quality switching.

2) Scenario with Fixed Bottleneck Bandwidth (Five
Clients): The final experimental results for the scenario of five
clients with fixed bottleneck bandwidth are shown in Fig.9,
Fig.10 and Table III.

TABLE III: Components of QoE (five clients with fixed bottleneck
bandwidth)

Algorithm RB BB BOLA GB Opt
Video Quality 10.84 9.18 12.11 12.77 18

Video Quality Switching 0.26 0.07 0.18 0.01 0
Interruption Time 2.62 0 0 0 0
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(a) RB (b) BB

(c) BOLA (d) GB

Fig. 9: Dynamic process of bitrate aggregation ratio and geometric
mean of QoE during video playback (five clients with fixed
bottleneck bandwidth).
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Fig. 10: Results of performance metrics for different algorithms
(five clients with fixed bottleneck bandwidth).

Compared with the scenario of two clients, the competition
in the scenario of five clients becomes more complex. Even if
the bandwidth of the bottleneck link is fixed, the accuracy of
bandwidth prediction will be reduced due to incomplete state
information of the client-side and more combinations of video
request aggregation. Therefore, in this case, the performance
of the RB algorithm is relatively worse. It is worth noting that
the QoE geometric mean of the RB algorithm has a different
coordinate range than the other three. This is because the
playback interruption of the RB algorithm is too frequent and
the interruption time is too long so that the QoE of a single
video segment obtained by the QoE calculation Eq.(1) will
appear to be less than zero (an extremely poor experience).

The BB and BOLA algorithms take into account the local
cache on the client, reducing the dependence on the accuracy
of the bandwidth prediction, and thus can obtain better per-
formance than the RB algorithm.

As to the GB algorithm, due to the formulation of the payoff
function we designed, the optimal strategy to maximize the

Fig. 11: Bandwidth trace.

payoff for each client is bitrate requests aggregation. This
scheme can cope with more complex situations, so a better
aggregation ratio and amplification factor of bandwidth are
obtained compared to the two client scenarios.

3) Scenario with Fluctuating Bottleneck Bandwidth (Two
Clients): In this scenario, the bandwidth of the bottleneck
link changes according to a preset trajectory as Fig.11. The
experimental results of this scenario are shown in Fig.12,
Fig.13 and Table IV.

TABLE IV: Components of QoE (two clients with fluctuating
bottleneck bandwidth)

Algorithm RB BB BOLA GB Opt
Video Quality 10.67 9.03 9.36 11.50 18

Video Quality Switching 0.14 0.03 0.15 0.06 0
Interruption Time 0.56 0 0 0 0

Compared with the fixed bandwidth scenario, the per-
formance of all algorithms in the scenario with fluctuating
bottleneck bandwidth has decreased to different degrees. The
reason is that the RB, BOLA, and GB algorithms all use the
estimated bandwidth more or less. Although the BB algorithm
makes bitrate requests decisions based on the locally cached
video segments, the transmission of video segments is also
affected by fluctuating bandwidth.

(a) RB (b) BB

(c) BOLA (d) GB

Fig. 12: Dynamic process of bitrate aggregation ratio and geometric
mean of QoE during video playback (two clients with fluctuating
bottleneck bandwidth).
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Fig. 13: Results of performance metrics for different algorithms
(two clients with fluctuating bottleneck bandwidth).

Thanks to its powerful adaptive capabilities of the GB
algorithm, the aggregation ratio of it is still much larger than
the other three algorithms. The reason is that each user takes
into account the optimal decisions that other users can make,
and then chooses the video bitrate that maximizes their revenue
without interrupting playback.

D. Summary
In summary, for the case of fixed bottleneck bandwidth, we

performed two client and five client simulation experiments.
With the number of clients increasing from 2 to 5, the results
show that the performance of our algorithm is equally robust
and even better, while the performance of other algorithms
has dropped a lot. This is mainly due to our proactively
considering the aggregation of multiple client requests to the
greatest extent possible. The greater the number of clients,
the greater the likelihood of aggregation, and the better the
experimental results will be.

In the case of fluctuating bottleneck bandwidth, we made
the number of clients keep consistent and then verified the
performance of our algorithm. Under the premise that the
bandwidth changes from constant to additional fluctuation,
although the performance of all algorithms is degraded, the
performance degradation of our algorithm is the smallest.
With its powerful adaptive features, the GB algorithm allows
each user to consider the optimal decisions others can make,
and then choose the video bitrate that maximizes his revenue
without interrupting playback. For a single user, after several
segments have been tried, they can achieve bitrate aggregation
with other users, so that their respective gains can be effec-
tively guaranteed.

VI. PERFORMANCE EVALUATION FOR REALISTICALLY
NETWORKING SCENARIOS

In order to further verify the performance of the GB algo-
rithm and exhibit its feasibility and applicability, we develop
a realistically experimental platform called DAS-NDN and
perform algorithm performance evaluation on it.

A. DAS-NDN implementation and Experiment Environment
Construction

We develop the DAS-NDN based on Libdash ([21], [22])
which is the standard for adaptive video stream implementa-
tion in HTTP with a good adaptive algorithm interface. The
DAS-NDN consists of the following four modules:

• Video Playback Module: The video playback module is
the interface for the user to watch the video by decoding
the video segments and interacting with the video service.
This module is developed using QT tools.

• Status Collection Module: This module is responsible
for collecting the related statuses information, such as the
local buffer size of the client, network bandwidth, delay,
etc. These statuses are important references for decision-
making by the bitrate adaptation module.

• Adaptive Bitrate Decision Module: The adaptive bitrate
decision module invokes the corresponding algorithm
according to the user’s choice, and performs bitrate
decision, and then sends the decision result to the NDN
transmission module. So far, we have implemented RB,
BB, BOLA, and GB algorithms in this module.

• NDN Transmission Module: This module is an interface
between the NDN network and the adaptive video stream
clients. It is responsible for wrapping the requested in-
formation into the form of Interest packets in NDN and
receiving the NDN formatted data packets returned by
the video source or router.

Due to limited laboratory conditions, we only set up a
relatively simple scenario shown in Fig.5. Although such
a topology is simple but typical, it is widely used in the
evaluation of adaptive video schemes. The video for testing
is Big Buck Bunny, an animated type of video.

All video segments and MPD files are available in the
video source. The video segments are encoded according to
the AVC standard and available for request. When the video
source receives the Interest packets, it parses it and, corre-
spondingly, returns the packet encapsulated according to the
NDN protocol. To evaluate the performance of the algorithms,
the bandwidth limit module uses the Linux Traffic Control
tool (TC tool) to limit the bandwidth so that the bottleneck
bandwidth between the two routers fluctuates between 4Mbps
and 7Mbps.

Two clients are watching the video at the same time, and
the duration of playback is the entire video. Clients to Router
1 and Router 2 to the video source are directly connected
through the network cable with 100Mbps bandwidth, and the
bandwidth between Router 1 and Router 2 is the bottleneck
link. Each client is equipped with an i7-3770 processor and
16GB memory, while ndn-cxx (NDN C++ library with eXper-
imental eXtensions) 0.5.0 and NFD 0.5.0 are installed running
on 64-bit Ubuntu 16.04 LTS.

B. Experiment Results Analysis

The DAS-NDN we developed can run stably on a real-
istic NDN platform. We evaluate RB, BB, BOLA, and GB
algorithms using DAS-NDN, and the experimental results are
shown in Fig.14 and Table.V. From the perspective of the sum
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of all users’ QoE, the evaluation result of the GB algorithm
in the realistic platform is still the best.

TABLE V: Components of QoE (realistically modeled networking
scenario)

Algorithm RB BB BOLA GB
Average Video Quality 12.83 14.37 15.20 15.38

Average Video Quality Switching 0.32 0.04 0.03 0.04
Average Interruption Time 0.41 0 0 0

2466 

2963 

3110 

3182 

0 500 1000 1500 2000 2500 3000

GB

BOLA

BB

RB

(a) Sum of all users’QoE

0.99395 

0.98977 

0.99745 

0.99934 

0.9840 0.9860 0.9880 0.9900 0.9920 0.9940 0.9960 0.9980 1.0000

GB

BOLA

BB

RB

(b) Jain’s fairness index

11.71%

53.85%

64.21%

76.59%

0%

20%

40%

60%

80%

RB BB BOLA GB

(c) Aggregation ratio

1.07 

1.49 1.51 
1.64 

0.00

0.50

1.00

1.50

RB BB BOLA GB

(d) Amplification factor of bandwidth

Fig. 14: Results of performance metrics for different algorithms
(realistically modeled networking scenario with two clients).

In a realistic network environment, there exists much more
unknown and uncontrollable factors, which will have a great
impact on the performance of the algorithms, so the aggre-
gation ratio of GB algorithm is a bit lower than that in the
simulation scenario, but it is still much higher than the other
three algorithms.

The main reason is that the playback time in the realistic
platform is about three times longer than in the simulation
environment (more segments are counted). Because we take
into account the complexity of the realistic network environ-
ment, the use of relatively long playback times allows for more
accurate experimental results.

Whereas the average video quality is higher and the average
interruption time is smaller in the actual platform experimental
results because the bottleneck bandwidth is greater in the
realistic environment than in the simulation environment. We
can find that the average video quality of the RB algorithm
is the highest in the simulation experiment, but becomes the
lowest in the actual experiment. Because all algorithms have
the same simulation duration in simulation experiments, clients
using RB algorithms always request too high a bitrate resulting
in more playback interruptions due to incorrect estimates
of bandwidth. However, the corresponding number of video
segments obtained by RB is also much lower than other
algorithms, resulting in the highest average video quality. But
in the actual platform experiments, the client ended up playing
the whole video (with the same number of segments acquired)

regardless of which algorithm was used, and RB certainly had
the lowest average video quality as we expected.

In terms of fairness, aggregation radio, and bandwidth
resource utilization, we can also draw similar conclusions
to simulation experiments, although the relevant performance
metrics are declined due to the complexity of realistic network
environments. We could find that the aggregation ratio of the
GB algorithm is much higher than that of other algorithms,
which is the fundamental reason why our algorithm performs
well. We model the adaptive video streaming system for
multiple clients over NDN as a Bayesian game. Based on
the pre-designed payoff function, the client can make the
bitrate decision according to the solution of Bayesian Nash
Equilibrium. In the process of repeated games, a more accurate
distribution of type can be obtained. Thus, video segments
requested by different clients are much more likely to be
aggregated. Accordingly, we demonstrate the effectiveness of
the proposed algorithm in a realistic network scenario.

VII. CONCLUSION

In this paper, we propose a multi-client dynamic adaptive
video streaming algorithm named GB. We introduce game the-
ory into adaptive video streaming for multiple clients scenarios
of NDN and model it as a Bayesian game, and the clients can
make effective bitrate decisions according to Bayesian Nash
Equilibrium of this game. The proposed GB algorithm for
NDN can achieve proactive aggregation of requests among
clients as much as possible without client-to-client direct
communication or scheduling by a central controller. We have
performed detailed evaluations and contrast experiments for
the proposed algorithm with others on the simulation platform
and the realistic network environment. Experimental results
show that, compared with the other three comparative algo-
rithms, the GB algorithm can produce a higher performance
in overall QoE, fairness, and bandwidth resource utilization,
etc. It is worth mentioning that our algorithm needn’t change
the architecture of the current NDN network and add no
explicit signaling between clients. However, because the pay-
off function pair involves too many related parameters, the
function we currently proposed is only designed according to
our experience, and we are sure that it still has a lot of space
for improvement. A possible solution is introducing a neural
network instead of a hand-designed payoff function pair that
can guide the clients to make better bitrate decisions.
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