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Abstract—Caching contents close to end-users can improve the network performance, while causing the problem of guaranteeing

consistency. Specifically, solutions are classified into validation and invalidation, the latter of which can provide strong cache

consistency strictly required in some scenarios. To date, little work on the analysis of cache invalidation has been covered. In this work,

by using conditional probability to characterize the interactive relationship between existence and validity, we develop an analytical

model that evaluates the performance (hit probability and server load) of four different invalidation schemes with LRU replacement

under arbitrary invalidation frequency distribution. The model allows us to theoretically identify some key parameters that affect our

metrics of interest and gain some common insights on parameter settings to balance the performance of cache invalidation. Compared

with other cache invalidation models, our model can achieve higher accuracy in predicting the cache hit probability. We also conduct

extensive simulations that demonstrate the achievable performance of our model.

Index Terms—LRU, cache, consistency, invalidation, hit probability, server load
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1 INTRODUCTION

CACHE has been extensively employed to enhance the net-
work performance. Benefiting from cache hits, band-

width usage over links, user-perceived delays and loads on
the origin server are reduced appreciably [1]. Information-
Centric Networking (ICN) paradigm has emerged for effi-
cient content distribution, and various candidate architec-
tures including Named Data Networking (NDN) or
Content Centric Networking (CCN), Publish/Subscribe
Internet Routing Paradigm (PSIRP), and Network of Infor-
mation (NetInf) have been introduced. In NDN, every
relayed content is stored in the cache of routers, and it is
used to serve future requests [2]. Ubiquitous caching is one
of the most distinctive features in this novel architecture for
future network.

Owing to the introduction of caching, cache consistency
also has constantly attracted the attention of many research-
ers [3], [4], [5], [6], [7], [8], [9], [10], [11]. Caching generates
numerous copies of contents distributed throughout the
network. If, for example, a master content is updated at
the origin server, the copies of that content stored at the
caches may become outdated. Hence, maintaining cache

consistency is necessary to ensure the copies obtained by
users are valid.

There are two underlying approaches for the cache con-
sistency: validation and invalidation [12]. With validation,
the caches verify the validity of their stored contents with
the origin server periodically and therefore this approach
guarantees weak consistency only. However, some applica-
tions, such as financial transactions, require strong consis-
tency which can only be provided by invalidation.
Moreover, cache invalidation can be classified into four
basic schemes:

Reactive Invalidation. When a request for a content arrives
and there is a corresponding copy existing in the cache, the
cache then sends an If-Modified-Since request to the server,
which in turn will reply either with a 304 Not-modified mes-
sage if the copy is deemed up to date, or with the latest full
data if the copy is stale [13].

Proactive Invalidation With Removing. When a master con-
tent is updated at the server, the server notifies caches of the
change. After receiving notifications, the caches remove the
stale copy [12].

Proactive Invalidation With Renewing. When a master con-
tent is updated at the server, the server pushes the latest
copy to the caches which have stored the stale one [14].

Proactive Invalidation With Optional Renewing. Unlike the
second and third schemes, the notification sent by the server
consists of either an invalidation message or a updated copy
in this scheme. For avoiding the waste that the updated
copy is never subsequently requested at the caches, usually
only the copies of popular contents are renewed, while the
copies of unpopular ones are removed [15].

Formally speaking, most Web applications apply valida-
tion rather than invalidation to maintain cache consistency
due to the extra overhead on the network caused by the lat-
ter [12]. Concretely, for reactive invalidation, each cache hit
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will trigger a verification process, the number of which
increases sharply with network scale expanding. For proac-
tive invalidation, the server has to maintain per-content sta-
tus consisting of a list of all caches that have the copies of
this content. As the number of contents enlarges and the
copies are more widely distributed throughout the network,
such status could become too enormous to maintain. There-
fore, how to reduce above overhead is the most imperative
issue to be addressed when deploying the cache invalida-
tion. In particular, the forth scheme, proactive invalidation
with optional renewing, can reduce the content status over-
head and the number of invalidation messages by only
maintaining the status of specific contents at the server [15].
Nevertheless, how many specific contents should be main-
tained to achieve a decrease of the overhead without appre-
ciably affecting the network performance is another issue
that needs to be addressed.

Unfortunately, most of the current work of cache invali-
dation is focused on the specific strategies [7], [8], [9], [10],
[16]. Little work has been proposed on establishing theoreti-
cal models to analyze the cache invalidation quantitatively.
In this paper, we propose an analytical model to evaluate
the performance of above four invalidation schemes with
LRU replacement. The frequency of content update can fol-
low any distribution in our model. Additionally, in order to
estimate the overhead that is extra but necessary to guaran-
tee the strong cache consistency, we take the actively renew-
ing load into the consideration of total server load.
Furthermore, our model takes great advantages on extensi-
bility and accuracy compared with other cache invalidation
models.

The major contributions of our work are:

� We model four invalidation schemes with LRU
replacement by using conditional probability to
characterize the interactions between existence and
validity under arbitrary invalidation frequency dis-
tribution. In our analysis, we compute the hit proba-
bility and server load.

� We use our model to estimate the performance of
four invalidation schemes, and identify some key
parameters that affect their performance. Particu-
larly, we theoretically give the point of the highest
hit probability for the proactive invalidation with
optional renewing. In addition, we generalize some
principles of parameter settings to balance the hit
probability and server load.

� We perform numerical simulations to demonstrate
that our model can achieve high accuracy in predict-
ing the hit probability and server load for individual
content requests. We also apply our model to realis-
tic traffic data to estimate the invalidation effect on
the cache hit probability.

The remainder of this paper is organized as follows. In
the next section, we review the related work. In Section 3,
we describe the invalidation model and discuss some basic
assumptions. Section 4 models the four invalidation
schemes and gives analytical expressions respectively. Sec-
tion 5 evaluates the accuracy of our model and presents the
simulation results. Finally, conclusions and future work are
given in Section 6.

2 RELATED WORK

Thanks to the significance of caching to the web applications,
improving the caching performance has always been a hot
topic in the networking research community for decades.
Thereinto, a considerable amount of works on replacement
policies for a single cache were produced, from classical
LRU, LFU, FIFO and RANDOM algorithms to modified
LRU-K [17], LFRU [18] and many other ones. However, the
requirement for line-rate operation limits the complexity of
the cache replacement policy. Thus most of the cache systems
commonly apply LRU algorithm that is easy to be imple-
mented as well as has a complexity ofOð1Þ [1].

2.1 Evaluating the Performance of LRU Cache

Many analytical models for evaluating the performance of
LRU cache also have been established in these years. The
first exact model was provided by King [19] to estimate the
hit probability of the cache. Flajolet et al. [20] then gave a
simpler expression. Regrettably, the computational over-
head of [19] and [20] grows exponentially with the cache
capacity and the number of contents increasing. Almost at
the same period as [20], Dan et al. [21] developed a simple
approximate analytical model with the computational com-
plexity of quadratic time. About 20 years later, Rosensweig
et al. [22] developed a novel model for general-topology
cache networks by utilizing the work in [21].

With the development of networking, cache network is of
a more massive scale and an efficient model to evaluate the
caching performance is urgently needed. A more widely
used model was proposed by Che et al. [23] in 2002, origi-
nally known as the characteristic time approximation. The
analytical model in [23] provides extremely accurate results
at low computational overhead under the traffic of Indepen-
dent Reference Model (IRM for short), and a theoretical
explanation for the success of this model is given in [24].

Based on the characteristic time approximation, Martina
et al. [25] proposed a unified methodology to analyze the
performance of cache systems. The study in [25] extends the
traffic condition relied on in [23] from IRM to renewal traf-
fic, leading to much broader applicability.

The above research works provide fundamental models
that can be expanded to some specific cache scenarios, such
as cache consistency.

2.2 Cache Consistency and Analytical Models

The problem of cache consistency is another extensively
studied topic in networking, especially with the emergence
of CCN. As we mentioned earlier, the approaches for cache
consistency can be divided into validation and invalidation.

Cache validation provides only weak consistency. The
basic validation scenario is the Time-to-live (TTL) cache
where each content is associated with an expiration time of
a constant [3] or a variable parameter [4]. The first request
presented after the expiration time is forwarded to the
server, which successively sends a valid copy to the cache.
Analytical models for TTL-based cache were given in [5],
[6]. The problem of placing replicas under the widely used
TTL-based consistency scheme has been investigated [26].
Freshness and Timestamp are also common technologies
for validation in cache networks. Amadeo et al. [27] added a
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timestamp to the data packets to facilitate the evaluation of
their freshness, so as to decide whether to remove them
from the cache. Vural et al. [28] proposed an analytical
model that captures the trade-off between multi-hop com-
munication costs and data item freshness.

In contrast, cache invalidation, commonly classified into
the reactive and the proactive, can provide strong consis-
tency. Several invalidation strategies have been proposed
such as Leases [7] for distributed file system, Piggyback
server invalidation [8], IR-based cache invalidation [9], Bit-
Sequences [10] for mobile environments, cache invalidation
strategies in wireless environments [16], etc.

There is little work on modeling the cache invalidation
until 2018 that Detti et al. [11] proposed an analytical model
to evaluate the performance of LRU cache that takes into
account of reactive invalidation and proactive invalidation
with removing. In the Detti model, the invalidation event is
considered as an independent random process. While in our
model, the invalidation event is associated with the existence
event, and these two events are regarded as a pair of interac-
tions that are characterized by conditional probability. For
computing the hit probability of proactive invalidation with
removing, both Detti model and our model can achieve a
very high accuracy. However, Equations (5) and (6) pre-
sented in [11] for computing the hit probability of reactive
invalidation, indeed, ignore the fact that the requests for out-
dated copies stored in cache can not be regarded as a hit
event. The hit probability of reactive invalidation obtained
from these two equations is identical to the hit probability
without invalidation, which has been validated in our com-
parison results in Section 5. Besides, the Detti model can not
be developed to compute the hit probability of proactive
invalidation with optional renewing that is able to enable a
better performance than other invalidation schemes [15].

The model proposed in our work is more extensible than
the Detti model, and can achieve a higher accuracy on pre-
dicting the hit probability of reactive invalidation. More-
over, to the best of our knowledge, we are the first to
propose an accurate analytical model to estimate the perfor-
mance of proactive invalidation with optional renewing
under a few assumptions which are commonly applied in
cache modeling and presented in the next section.

3 MODEL DESCRIPTION

3.1 Assumptions and Notations

Using the notations described in Table 1, we make the fol-
lowing assumptions:

� We consider a collection of M same size contents.
Without loss of generality, the size of each content is
equal to 1 and therefore the cache capacity C and
occupancy size O can be measured in the unit of con-
tent quantity [23]. For some contents of different
sizes, we can divide them into constant sized chunks
[24], [29]. The modeling process is only related to the
characteristic time, and has nothing to do with
the content size [23]. We assume that the contents of
the size of 1 in order to simplify the calculation.

� Let fRm
i g1i¼1 be a sequence of request arrivals for con-

tent m. The request probability of content m is am

which is constant and independent of all past
requests. It corresponds to the IRM widely used in
many studies of network cache [19], [20], [21], [23].
In our work, we adopt a Zipf law to model am

am ¼ K

RðmÞz ; (1)

where K ¼ 1=
PM

m¼1
1

RðmÞz is the Zipf normalization
factor, RðmÞ ¼ 1; 2; . . . ;M is the popularity rank of
contentm, and the exponent z is a parameter ranging
between 0.65 and 1 generally.

� User requests for all contents arrive according to a
Poisson process with mean arrival rate �. Thus, the
requests for content m also arrive according to a
Poisson process with mean arrival rate �m ¼ am�
based on the above assumptions.

� In order to simplify the analysis, we do not consider
the delay in data transmission. In other words, if a
cache miss happens, a new content copy will be
instantly downloaded from the server. It should be
noted that the data transmission delay will have an
impact on the probability of the request hitting the
valid content copy. We discuss this impact in Appen-
dix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2021.3098459.

TABLE 1
Notations

Notation Meaning

C;O Cache capacity and cache occupancy size
L Server load
M The number of different contents
Nm

u ðtÞ The number of updates for contentm by time t
Nm

r ðtÞ The number of requests for contentm by time t
am Request probability of contentm
�; �m Request rate of total contents and contentm
Pe; P

m
e Mean existence probability of total contents and

contentm
Ph; P

m
h Mean hit probability of total contents and content

m
Pv; P

m
v Mean validity probability of total contents and

contentm
Pm
e;v The joint probability of existence and validity for

contentm
Pm
ejv The conditional probability of existence given

validity for contentm
Pm
vje The conditional probability of validity given

existence for contentm
Tc Cache characteristic time
Tm
s ; Tm

u Expiration time and update time of contentm
mm
s Expected value of the expiration time for content

m
F ðtms Þ CDF of the expiration time for contentm
Frði; tÞ CDF of the content arriving time in the ith

interval
Y ðmÞ The number of contentm’s copy stored in the

cache
Y The number of all contents’ copies stored in the

cache
Mp The topMp popular contents
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� Since the size of the invalidation message in the
interactions between the server and cache is tinier
than that of the data packet, we ignore the former
impact on the server load.

3.2 The Characteristic Time Approximation

LRU cache can be regarded as a stack. When a content
request arrives and gets a cache hit, the content copy in
cache will be reinserted into the top of the stack. Otherwise,
a cache miss occurs and a new content copy will be down-
loaded from the server and inserted into the top of the stack.
If the stack size reaches the limit, a content copy at the bot-
tom of the stack will be evicted (We call this event eviction).
The time that a content copy moves from the top to the bot-
tom without any cache hits taking place and finally is
evicted from the stack is described as the cache characteris-
tic time Tc in the characteristic time approximation [23].

With the consideration of Tc, a content m’s copy exists in
the cache at time t, if and only if the last request for content
m arrives at the cache in the interval ðt� Tc; t�. By assuming
that the requests for content m arrive according to a Poisson
process with rate �m, the probability Pm

e that content m’s
copy is in the cache can be computed as

Pm
e ¼ 1� e��mTc : (2)

Let Y ðmÞ denote the number of content m’s copy stored
in the cache. Obviously, it takes value 1 if a content m’s
copy exists in the cache and 0 otherwise. Let Y denote the
number of all contents’ copies stored in the cache. Under
the assumption that the size of each content is equal to 1,
the expected number of all contents’ copies stored in the

cache is written as E½Y � ¼ E
PM

m¼1 Y ðmÞ
h i

¼ PM
m¼1 E

½Y ðmÞ� ¼ PM
m¼1 1 � Pm

e . With regard to a stable cache system,
the space of the cache is always full, and thus E½Y � ¼ C.
Then we can get a fixed point equation as follows:

XM
m¼1

ð1� e��mTcÞ ¼ C: (3)

The value of Tc can be obtained by calculating the unique
root of this equation [23], [24].

3.3 Probability of Validity

In this section, we give a basic model to describe whether a
content copy in cache is valid when a request for it arrives.
In order to eliminate the influence of the cache capacity
limit, we assume that the cache capacity is infinite and all
contents’ copies have been stored already.

As shown in Fig. 1, the server updates the content m
according to a point process fTm

u ðiÞ; i ¼ 0; 1; 2; . . .g where
Tm
u ðiÞ represents the time that the update takes place. Thus,

we have Tm
u ðiÞ � Tm

u ðiþ 1Þ for each i ¼ 0; 1; 2; . . . with
Tm
u ð0Þ ¼ 0. Let fTm

s ðiÞ; i ¼ 0; 1; 2; . . .g represent an i.i.d.
sequence with a common distribution F ðtms Þ. We shall inter-
pret Tm

s ðiÞ as the content expiration time between Tm
u ðiÞ and

Tm
u ðiþ 1Þ, i.e., Tm

s ðiÞ ¼ Tm
u ðiþ 1Þ � Tm

u ðiÞ. In order to avoid
trivialities, we also suppose that Tm

s ðiÞ 6¼ 0, which means
multiple updates for content m cannot occur simulta-
neously. Let

mm
s ¼ E½Tm

s ðiÞ� ¼
Z 1

0

tms dF ðtms Þ; (4)

denote the mean time between successive updates and
Nm

u ðT Þ denote the number of updates for content m by time
T . Then we have [30]

lim
T!1

Nm
u ðT Þ
T

¼ 1

mm
s

: (5)

In each interval Tm
s ðiÞ, the content m’s copy hit by the

first request (the dotted arrows in Fig. 1) is stale and we call
this event invalidity. Then it is removed from the cache and
a new copy is downloaded from the server. Therefore, the
subsequent requests (the solid arrows) can obtain valid cop-
ies in this interval and we call this event validity.

Let us consider validity in a single interval first. Without
loss of generality, the start time of the interval is supposed
to be 0 as shown in Fig. 2. According to the above descrip-
tion, if a request arriving at t yields validity, there must be at
least one request arriving in the grey area.

Assuming that the request arrival for content m is a Pois-
son process, the number of requests in any interval of length
t is Poisson distributedwithmean �mt. That is, for all s; t � 0

PfNm
r ðtþ sÞ �Nm

r ðsÞ ¼ ng ¼ e��mt ð�mtÞn
n!

; (6)

where Nm
r ðtÞ represents the number of requests that have

occurred up to time t and Nrð0Þ ¼ 0. So the probability that
the request for content m arriving at t yields validityin the
ith interval can be expressed as

Pm
v ði; tÞ ¼ 1� PfNm

r ðtÞ ¼ 0g ¼ 1� e��mt: (7)

For Poisson process, the time t is uniformly distributed
over ½0; Tm

s ðiÞ�

Frði; tÞ ¼ t

Tm
s ðiÞ : (8)

Hence the expected value of Pm
v ði; tÞ in the ith interval is

Pm
v ðiÞ ¼

Z Tm
s ðiÞ

0

Pm
v ði; tÞdFrði; tÞ

¼
Z Tm

s ðiÞ

0

1

Tm
s ðiÞ ð1� e��mtÞdt:

(9)

Fig. 1. Requests for content m, where the dotted arrows yield invalidity
and the solid arrows yield validity.

Fig. 2. Consider validity in a single interval.
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Now we reconsider validity with all intervals. The valid-
ity probability Pm

v can be expressed as the value of the
weighted accumulation of Pm

v ðiÞ. On the basis of (9), we
have

Pm
v ¼ lim

T!1

XNm
u ðT Þ

i¼0

Tm
s ðiÞ
T

Pm
v ðiÞ

¼ lim
T!1

XNm
u ðT Þ

i¼0

1

T

Z Tm
s ðiÞ

0

ð1� e��mtÞdt:
(10)

Hence, on the basis of (5) and (10), the expected value of
Pm
v can be expressed as

E½Pm
v � ¼ E lim

T!1

XNm
u ðT Þ

i¼0

1

T

Z Tm
s ðiÞ

0

ð1� e��mtÞdt
" #

¼ lim
T!1

XNm
u ðT Þ

i¼0

1

T
E

Z Tm
s ðiÞ

0

ð1� e��mtÞdt
" #

¼ lim
T!1

Nm
u ðT Þ
T

Z 1

0

Z tms ðiÞ

0

ð1� e��mtÞdtdF ðtms Þ

¼ 1

mm
s

Z 1

0

Z tms

0

ð1� e��mtÞdtdF ðtms Þ:

(11)

The validity probability and hit probability mentioned
below both refer to their respective expected values.

In the model assumptions, it is assumed that the data
transmission delay is out of consideration. However, based
on (7), (8), (9) and (11), the influence of transmission delay
on the validity probability can be given as presented in
Appendix A, available in the online supplemental material.

4 CACHE INVALIDATION WITH LRU REPLACEMENT

In this section, we give a complete model with the consider-
ation of both existence and validity to derive the cache hit
probability and server load.

As illustrated in Fig. 3, the requests for content m are
classified into four types:

� non-existence and invalidity: when Rm
1 arrives, there is

no copy of content m existing in the cache. Mean-
while, it is the first request in the interval
½Tm

u ðiÞ; Tm
u ðiþ 1ÞÞ.

� existence and validity: the next request Rm
2 arrives

before the characteristic time Tc and is not the first
request in ½Tm

u ðiÞ; Tm
u ðiþ 1ÞÞ.

� non-existence but validity: the third request Rm
3 is also

not the first request in ½Tm
u ðiÞ; Tm

u ðiþ 1ÞÞ but arrives
after Tc.

� existence but invalidity: the last request Rm
4 arrives

before Tc but is a first request in ½Tm
u ðiþ 1Þ;

Tm
u ðiþ 2ÞÞ.

Thus, only the requests of type existence and validity can
yield cache hits, otherwise cache misses take place. For con-
tent m, let us denote the probability of existence and validity
in the ith interval as Pm

e;vðiÞwhere e represents the event exis-
tence and v represents the event validity. Then the hit proba-
bility of contentm can be expressed as

Pm
h ðiÞ ¼ Pm

e;vðiÞ ¼ Pm
ejvðiÞ � Pm

v ðiÞ; (12)

or

Pm
h ðiÞ ¼ Pm

e;vðiÞ ¼ Pm
vjeðiÞ � Pm

e ; (13)

where Pm
ejvðiÞ and Pm

vjeðiÞ are conditional probabilities. Then
the average hit probability of contentm is

Pm
h ¼ E lim

T!1

XNm
u ðT Þ

i¼0

Tm
s ðiÞ
T

Pm
h ðiÞ

" #
; (14)

and average hit probability of total contents is

Ph ¼
XM
m¼1

amPm
h : (15)

Now we can model the four different schemes of cache
invalidation separately and give the hit probability as well
as server load based on (12), (13), (14) and (15).

4.1 Reactive Invalidation

Considering that different characteristic time Tc and content
expiration time Tm

s have different effects on the analysis of
Pm
ejv and Pm

vje, we model the cache behavior in two cases as
follows:

4.1.1 Tc > Tm
s ðiÞ

Assuming that a request Rm
1 arrives at time t as shown in

Fig. 4a. If it yields a validity event, there must be at least one
request arriving in ½0; tÞ (the grey area). Let t0 denote the
time that the first request Rm

0 arrives in ½0; tÞ. Since Tc >
Tm
s ðiÞ and 0 � t0 < t < Tm

s ðiÞ, we have t0 < t < Tc. That
is to say, there must be a copy of content m existing in cache
at time t and thus Pm

ejvðiÞ ¼ 1. On the basis of (9) and (12),
we have

Pm
h ðiÞ ¼ Pm

v ðiÞ ¼
Z Tm

s ðiÞ

0

1

Tm
s ðiÞ ð1� e��mtÞdt: (16)

Fig. 3. Classification of the requests for contentm, i ¼ 0; 1; 2; . . .

Fig. 4. If there is a request arriving in grey area, Rm
1 must yield an exis-

tence and validity event.
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4.1.2 Tc � Tm
s ðiÞ

As shown in Fig. 4b, we can separate the interval ½0; Tm
s ðiÞÞ

into two periods: ½0; TcÞ and ½Tc; T
m
s ðiÞÞ. If the arrival time t

of Rm
1 is in ½0; TcÞ, the analysis is the same as that with Tc >

Tm
s ðiÞ. Otherwise, t is in ½Tc; T

m
s ðiÞÞ. If there is a copy of con-

tent m existing in cache at time t, there must be a request
Rm

0 arriving in ½t� Tc; tÞ. That is to say, Rm
1 must yield a

validity event and Pm
vje ¼ 1. With the assumption that the

requests arrive according to a Poisson process, the arrival
time t of Rm

1 is uniformly distributed. Therefore, the proba-
bility of 0 � t < Tc is Tc=T

m
s ðiÞ and the probability of Tc �

t < Tm
s ðiÞ is 1� Tc=T

m
s ðiÞ. Then the hit probability of con-

tentm can be written as (17) based on (2), (12), (13) and (16).

Pm
h ðiÞ ¼ P0�t<Tc � Pm

ðe;vÞj0�t<Tc
ðiÞ þ PTc�t<Tm

s ðiÞ � Pm
ðe;vÞjTc�t<Tm

s ðiÞðiÞ

¼ Tc

Tm
s ðiÞP

m
ðejvÞj0�t<Tc

ðiÞ � Pm
vj0�t<Tc

ðiÞ

þ Tm
s ðiÞ � Tc

Tm
s ðiÞ Pm

ðvjeÞjTc�t<Tm
s ðiÞðiÞ � Pm

ejTc�t<Tm
s ðiÞ

¼ 1

Tm
s ðiÞ

Z Tc

0

ð1� e��mtÞdtþ 1� Tc

Tm
s ðiÞ

� �
ð1� e��mTcÞ:

(17)

Consequently, according to (5), (14), (16) and (17), we
have

Pm
h ¼ 1

mm
s

Z Tc

0

Z tms

0

ð1� e��mtÞdtdF ðtms Þ

þ 1

mm
s

Z 1

Tc

nZ Tc

0

ð1� e��mtÞdt

þ ðtms � TcÞð1� e��mTcÞ
o
dF ðtms Þ:

(18)

4.2 Proactive Invalidation With Removing

For proactive invalidation with removing, not only eviction
but also invalidity makes content copies nonexistent in the
cache, causing the cache to be not always full. With regard
to this fact, the cache occupancy size O can be represented
by means of two bounds: (i)when cache is full, evidently the
first bound is C, (ii)otherwise, only the valid contents can
stay in the cache and the second bound can be expressed
approximately as

PM
m¼1 1 � Pm

v . We take the minimum value
of both

O � min C;
XM
m¼1

1 � Pm
v

( )

¼ min C;
XM
m¼1

1

mm
s

Z 1

0

Z tms

0

ð1� e��mtÞdtdF ðtms Þ
( )

:

(19)

In addition, the time that a content copy moves from the
top to the bottom and finally to the outside of the cache
without any hits taking place (eviction event) cannot be char-
acterized by Tc due to the invalidity event. Let T 0

c denote the
new characteristic time.

Hence, by substituting T 0
c for Tc in (17), previous analyti-

cal expressions obtained for reactive invalidation can be

rewritten as follows:

Pm
h ¼ 1

mm
s

Z T 0
c

0

Z tms

0

ð1� e��mtÞdtdF ðtms Þ

þ 1

mm
s

Z 1

T 0
c

nZ T 0
c

0

ð1� e��mtÞdt

þ ðtms � T 0
cÞð1� e��mT 0

cÞ
o
dF ðtms Þ;

(20)

and the value of T 0
c can be derived by calculating the unique

root of the following equation:

O ¼
XM
m¼1

Pm
h : (21)

4.3 Proactive Invalidation With Renewing

For proactive invalidation with renewing, when the server
updates a content, it will push a new content copy to the
cache to renew rather than to remove the stale one. Hence
the invalidity event has no influence on the cache hit behav-
ior. In other words, as long as a content copy exists, the
request for it will yield a cache hit. According to (2), we have

Pm
h ¼ 1� e��mTc : (22)

4.4 Proactive Invalidation With Optional Renewing

Different from proactive invalidation with renewing, proac-
tive invalidation with optional renewing only updates the
topMp popular contents. For unpopular ones, it will remove
the stale copies of them from the cache. Let us denote the hit
probabilities of popular contents and unpopular contents as
Pm
h pop and Pm

h unpop respectively. Thus, we have

Pm
h ¼ Pm

h pop;m � Mp;

Pm
h unpop; otherwise:

:

(
(23)

where

Pm
h pop ¼ 1� e��mT 00

c ; (24)

and

Pm
h unpop ¼ 1

mm
s

R T 00
c

0

R tms
0 ð1� e��mtÞdtdF ðtms Þ

þ 1
mm
s

R1
T 00
c

n R T 00
c

0 ð1� e��mtÞdt
þðtms � T 00

c Þð1� e��mT 00
c Þ
o
dF ðtms Þ:

(25)

The value of new characteristic time T 00
c can also be

obtained by calculating the fixed point equation as follows:

O0 ¼
XM
m¼1

Pm
h ¼

XMp

m¼1

Pm
h pop þ

XM
m¼Mpþ1

Pm
h unpop; (26)

where the cache occupancy size O0 can be expressed as

O0 � minfC;Mp þ
PM

m¼Mpþ1 P
m
v g ;Mp < C;

C ; otherwise:

�
(27)
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4.5 Server Load

For reactive invalidation and proactive invalidation with
removing, the server load is equal to the miss rate of the
cache. Then we have

L ¼
XM
m¼1

�mð1� Pm
h Þ ¼ �ð1� PhÞ: (28)

For proactive invalidation with renewing, the server not
only responds to the miss stream, but also actively pushes
content copies to update the stale ones in the cache. Hence
the server load can be separated into two parts: direct load
and push load. Obviously, the calculation of direct load is
the same as (28). With regard to push load, the server
pushes a new copy if and only if there is a stale one existing
in the cache. For each update point, the probability of the
content m’s copy existing in the cache is 1� e��mTc based on
(2) and the update rate is 1=mm

s . Then we have

L ¼ �ð1� PhÞ þ
XM
m¼1

1

mm
s

ð1� e��mTcÞ: (29)

For proactive invalidation with optional renewing, since
the server only updates the firstMp contents, the total server
load can be written as

L ¼ �ð1� PhÞ þ
XMp

m¼1

1

mm
s

ð1� e��mT 00
c Þ: (30)

5 PERFORMANCE EVALUATION

The aim of this section is threefold. First, we validate the ana-
lytical expressions obtained previously against simulations
to evaluate the accuracy of our model, and also we compare
our model with Detti model on reactive invalidation and
proactive invalidation with removing. Second, we assess the
impact of the cache invalidation on the LRU cache. Third, we
compare the four different schemes of cache invalidation
under expiration time, cache capacity as well as the number
of actively renewed contents respectively and wish to get
some common insights on the parameter settings.

In order to implement the experiment, we developed a
simulation platform based on Python. A user simulator, a
cache simulator as well as a server simulator are created in
our platform. The user simulator requests for contents
according to the Zipf model. If the requested content is in
the cache and not outdated, a cache hit event will be
recorded. Otherwise, a cache miss will be recorded. An
LRU stack is installed on the cache simulator that is used to
respond to the user requests and receive the invalidation
messages from the server. Besides, the server simulator is in
charge of maintaining the content update information and
sending invalidation messages actively or reactively accord-
ing to different invalidation schemes.

Except where otherwise stated, we consider a cache
capacity with C ¼ 100, where requests arrive for 5000 con-
tents following a Poisson distribution with mean rate � ¼

Fig. 5. Cache hit probability for individual contents.
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20 req=s. The request probability is modeled by a Zipf distri-
bution with exponent z ¼ 0:8. In addition, for proactive
invalidation with optional renewing, we set Mp ¼ 20. With-
out loss of generality, it is supposed that the higher the
request probability of the content, the lower the content ID.

5.1 Cache Hit Probability

For measuring the accuracy of our model, we denote the hit
probability error as

d ¼ jPhmodel
� Phsim j

Phsim

; (31)

where Phmodel
and Phsim are the mean hit probabilities of the

model and simulation respectively.
Fig. 5 characterizes the hit probability of individual con-

tents with four schemes of cache invalidation. Only the first
50 contents are shown to avoid cluttering the figure. For com-
prehensive assessments, we set up three distributions of
expiration time Tm

s which are constant (Figs. 5a, 5d, 5g and
5j), uniformly distributed over [0,20] (Figs. 5b, 5e, 5h, and 5k)
and exponentially distributed with mean rate 0:1req=s
(Figs. 5c, 5f, 5i, and 5l). In particular, Figs. 5j, 5k, and 5l show
an apparent piecewise point at ID ¼ 20 for reasons of only
the top 20 contents being renewed. As revealed in above fig-
ures, the analytical curves match the simulation results sur-
prisingly within the maximum error of less than 1.2 percent,
which illustrates the extremely high accuracy of ourmodel.

Given space limitations, we only consider Tm
s with a

exponential distribution with mean rate 1=mm
s in the follow-

ing part of this paper.
Fig. 6 shows the comparison between Detti model and

our model on reactive invalidation. The results of the simu-
lations of reactive invalidation and no invalidation are also
presented in Fig. 6. It is obvious to see that the Detti model
for reactive invalidation, in practice, is to describe the no
invalidation where the requests for outdated contents
stored in the cache are also counted for a cache hit. The error
of Detti model between the simulation of no invalidation is
0.34 percent, but it is 22.11 percent between the simulation
of reactive invalidation. With this just the opposite is, the
error of our model between the simulation of reactive invali-
dation is only 0.24 percent.

Fig. 7 shows the comparison between Detti model and
our model on proactive invalidation. The curves of Detti
model and our model are almost coincided and make a
quite good agreement on fitting the hit ratio of the simula-
tion of proactive invalidation. In Figs. 6 and 7, the mean
expiration time is all set to 10s.

Fig. 8 shows the impact of different mean expiration time
mm
s on the hit probability Ph. Since the invalidity event makes

no difference to the cache hit behavior in the proactive
invalidation with renewing, the curve of which can be
regarded as a baseline that is equivalent to the hit probabil-
ity without consideration of content expiration. From Fig. 8,
we can see that the hit probabilities of reactive invalidation
and proactive invalidation with removing increase gradu-
ally and approach the baseline while the mean expiration
time increasing. The smaller the mean expiration time, the
greater the impact of it on the hit probability. Additionally,
it is noticed that proactive invalidation with removing has a
higher hit probability than reactive invalidation, because
the former leaves more space for caching by removing stale
content copies from the cache.

The hit probability of proactive invalidationwith optional
renewing in Fig. 8 is distinctive. The curve of it increases
when mm

s is less than 4s and then decreases and approaches
the baseline from above. To explain this phenomenon, we
recall the definition of the average hit probability Ph first.
According to (15), highly popular contents contribute a lot to
Ph. Therefore, when mm

s is small, there is enough space to
store the popular contents in the cache, making the hit proba-
bility of them close to 1.With the increase ofmm

s (but still very
small), the hit probability of unpopular contents grows, thus
causing the overall hit probability to be higher. When mm

s is
further larger, unpopular contents will crowd out popular
ones in the cache, which lessens the hit popularity of the lat-
ter and then leads to a reduction in the overall hit probability.
Also be noted that, when the cache is in a critical state of satu-
ration or unsaturation (corresponding to the interval [4,8] in
Fig. 8), the approximate Equation (27) provides a slight error
of less than 4.28 percent.

Fig. 9 shows the impact of different cache capacities C on
the hit probability Ph. As the cache capacity increases, the hit
probabilities of the four invalidation schemes grow. How-
ever, due to the impact of content expiration, (i) the curves of

Fig. 6. Comparison between Detti model and our model on reactive
invalidation.

Fig. 7. Comparison between Detti model and our model on proactive
invalidation with removing.
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reactive invalidation and proactive invalidation with remov-
ing steadily flatten out and tend to merge to the validity
probability, (ii) and the curve of proactive invalidation with
optional remains basically invariable, while the cache capac-
ity further increases. Since the top 20 popular contents are
updated actively and the contribution of hit probability from
them is more remarkable, the proactive invalidation with
optional renewing has a higher hit probability even than the
baseline when the cache capacity is small.

5.2 Server Load

Considering that the requests for stale contents impose
additional traffic burdens on the server, we compare the
impact of the four invalidation schemes on the server load
in this section.

Fig. 10 shows the impact of different expiration time mm
s

on the server load. Owing to indiscriminately updating, the
proactive invalidation with renewing produces much more
load for the server. Similarly, the proactive invalidation with
optional renewing also produces the extra update traffic of
the top 20 popular contents, hence resulting in apparently
more load for server compared to the reactive invalidation
and proactive invalidation with removing when mm

s is small.
However, the extra load of proactive invalidation with
optional renewing is much lower than that of the proactive

invalidation with renewing. Besides, associating Fig. 10 with
Fig. 8, it is seen that the proactive invalidation with optional
renewing can achieve a great improvement on hit ratio with-
out bringing too great extra load when the server updates
the contents at a high frequency. As mm

s increases, the server
updates contents at a slower rate and generates lower update
load, which brings the server load of the four schemes of
cache invalidation basically consistent.

Fig. 11 shows the impact of different cache capacities C
on the server load. The curve of the proactive invalidation
with renewing grows nearly linearly with the increase of C,
due to the server updating all contents stored in the cache.
By contrast, the other three schemes of cache invalidation
produce lower server load steadily, among which the proac-
tive invalidation with optional renewing produces slightly
more (less than 4.37 percent in Fig. 11).

5.3 The Setting ofMp in Proactive Invalidation With
Optional Renewing

By comparing Figs. 9 and 11, we observe that the proactive
invalidation with optional renewing generates almost iden-
tical load for the server with the reactive invalidation and
proactive invalidation with removing. However, the hit
probability of the former is up to 28.77 percent higher than
that of the latter. Additionally, since the small cache capac-
ity limits the amount of the cached contents, most of the
contents in the cache are the popular ones. Based on this
fact, proactive optional renewing is able to outperform the
proactive renewing in both hit rate and server load when
the cache capacity is small. Concretely speaking, (i) in case
of the small cache capacity of Fig. 9, for the proactive
optional renewing, the positive updating mechanism allows
popular contents to stay in the cache longer and the positive
eviting mechanism makes unpopular contents stay in the
cache shorter. Under the co-action of these two mechanisms,
the cache with small capacity can store more popular con-
tents which contribute significantly more to the total cache
hit probability. Thus, the hit probability of the proactive
optional renewing is higher than that of the proactive
renewing. (ii) In case of the small cache capacity of Fig. 11,
as soon as the content (whether it is popular or not) in the
cache is updated, the server in the proactive renewing
scheme will push a new copy. However, in the proactive

Fig. 8. Hit probability versus mean expiration time, by fixing cache capac-
ity to 100.

Fig. 9. Hit probability versus cache capacity, by fixing mean expiration
time to 10s.

Fig. 10. Server load versus mean expiration time, by fixing cache capac-
ity to 100.
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optional renewing scheme, the pushing event only occurs
when the popular content in the cache is updated. Thus, the
server load of the proactive optional renewing is lower than
that of the proactive renewing. In the following section, we
will pay particular attention to the performance of the pro-
active invalidation with optional renewing and derive some
principles on the parameter setting.

Since the key to the proactive invalidation with optional
renewing is to update the top Mp popular contents and the
cache capacity also has an impact on the setting of Mp, we
set different Mp=C and record the corresponding hit proba-
bility and server load as shown in Figs. 12 and 13 respec-
tively. It is noticed that with Mp growing, the hit probability
increases first and then decreases, while the server load
increases and basically flattens out. Therefore, an appropri-
ate Mp=C should be selected to balance the hit probability
and server load of which the proactive invalidation with
optional renewing can achieve better performance.

Furthermore, from Figs. 12 and 13, we can see an appar-
ent turning point in each curve when C � 200. To figure out
this point, let us recall the curve of proactive invalidation
with optional renewing in Fig. 8, where when the cache is in
a critical state of saturation or unsaturation, the hit probabil-
ity reaches maximum. Thus we can set Mp0 to keep the
cache in this state and obtain these turning points.

According to (27), this state can be expressed approxi-
mately as

C � Mp0 þ
XM

m¼Mp0þ1

Pm
v : (32)

Hence, Mp0 can be derived by calculating the positive
integer root of the above equation, if and only if C >PM

m¼1 P
m
v . Then we redraw two curves of proactive invali-

dation with optional renewing with different cache capaci-
ties in Figs. 12 and 13 respectively, where the new curves
(solid curves) basically pass through the turning point of
each original curve.

The customizable parameter setting on Mp in the proac-
tive invalidation with option renewing greatly enhances the
flexible application of this scheme. By settingMp to different
values, we can obtain different combinations of hit probabil-
ity and server load to meet the demands of various cache

systems. Figs. 12 and 13 demonstrate that: (i) the increase of
Mp causes both hit probability and server load to rise rap-
idly, and then causes the hit probability to fall slowly and
the server load to rise slowly; (ii) the variation magnitude of
the hit probability becomes larger than that of the server
load as the cache capacity growing. Further, based on the
above two points respectively, it is concluded that (i) limit-
ing Mp to a smaller value could achieve a lower server load,
but at the cost of lower hit probability; (ii) the cost of
increasing the server load by raising the value of Mp out-
weighs the benefit of increasing the cache hit probability,
and the gap between the cost and benefit becomes larger
with the increase of cache capacity. Therefore, we could
gain some principles on the setting of Mp: (i) when the
server has sufficient load capacity, choosingMp close toMp0

can improve the hit probability greatly, (ii) otherwise,
choosing a relatively small Mp can maintain the server load
at a low level but still obtains a fairly high hit probability.

5.4 The Performance Evaluation in Realistic Traffic

In order to evaluate four invalidation schemes performance,
we apply our model to realistic traffic data that is obtained
from the open APIs provided by Wikipedia.1 It is important

Fig. 11. Server load versus cache capacity, by fixing mean expiration
time to 10s.

Fig. 12. Hit probability versus Mp=C for proactive invalidation with
optional renewing, by fixing mean expiration time to 10s.

Fig. 13. Server load versus Mp=C for proactive invalidation with optional
renewing, by fixing mean expiration time to 10s.

1. Wikipedia’s open interface: https://wikimedia.org/api/rest_v1
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to note that the APIs only offer the number of page edited
times and corresponding date, and we use the interval
between two consecutive editing events as the content expi-
ration time. In the following part, first, we analyze the real
distribution of content expiration time. Second, we compare
four invalidation schemes with real distribution of content
expiration time. Third, we reduce the mean expiration time
to reflect the effect of invalidation on cache hit probability.

Fig. 14 shows the real distribution of content expiration
time in Wikipedia. The data ranges from January 1, 2015 to
December 31, 2019. Since the smallest time interval is day in
the data, we use the ratio of the number of all page edits to
the number of edited pages for the day to approximately
represent the single page edits per day, and then we use the
ratio of 24 	 3600ðsÞ to the single page edited times per day
to present the expiration time of the single page. The count-
ing result approximately follows a norm distribution with
m ¼ 45547 and s ¼ 2630.

Similarly, to avoid cluttering the figure, only the hit prob-
abilities of the top 50 contents are marked in Fig. 15. Since
the hit probability of proactive invalidation with renewing
is not affected by the expiration time, the curve of it can be
regarded as a curve without invalidation. It is clearly to see
that the curves of four invalidation schemes are almost coin-
cide. That is because the mean content expiration time is
45547s which is large enough to eliminate the impact of
invalidation on cache hit probability. The content is evicted
from the cache due to the cache capacity limitation far
before it reaches the expiration time.

Fig. 16 shows the impact of different mean expiration
time on the hit probability of four invalidation schemes. It
has been seen that the large mean expiration time has
scarcely influence upon hit probability in Fig. 15. Thus, we
decrease the mean expiration time, m, to improve the influ-
ence of invalidation. Besides, in order to maintain the shape
of the norm distribution, the other parameter, s, is scaled
down. The distributions of expiration time in Fig. 16
are N 45547; 26302ð Þ, N 4554; 262:92ð Þ, N 455; 26:32ð Þ and
N 45; 2:62ð Þ in descending order of m. As shown in Fig. 16,
with the reduction of mean expiration time, the curve of

four invalidation schemes gradually diverge, which means
that the impact of invalidation on hit probability is gradu-
ally strengthened. The hit probabilities of the four invalida-
tion schemes are proactive optional renewing, proactive
renewing, proactive removing and reactive from the largest
to the smallest, which is also consistent with the order in
Fig. 8.

Fig. 17 shows the hit probability of proactive invalidation
with optional renewing for individual contents under
N 45547; 26302ð Þ, N 4554; 262:92ð Þ, N 455; 26:32ð Þ and N 45; 2:62ð Þ
in descending order of m respectively. For proactive invali-
dation with optional renewing, the hit probabilities of popu-
lar contents and unpopular contents are different. However,
this difference is not significant in the curve due to the large
mean expiration time as shown in Figs. 5a, 5b, and 5c. Only
when the mean expiration time is relatively small as shown
in Fig. 5d, the difference become obvious and an apparent
piecewise point appears at ID = 20. The advantages of pro-
active invalidation with optional renewing over other three
schemes also become notable as shown in Fig. 16 at m ¼ 45.

Fig. 14. The distribution of content expiration time counted from Wikipe-
dia from January 1, 2015 to December 31, 2019, which is fitted with a
norm distribution whose shape parameters are m ¼ 45547 and s ¼ 2630.

Fig. 15. The hit probabilities of four invalidation schemes for individual
contents under the norm distribution of expiration time with m ¼ 45547
and s ¼ 2630.

Fig. 16. The hit probability of four invalidation schemes versus mean
expiration time. The values of mean expiration time are 45s, 455s, 4554s
and 45547s respectively.
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5.5 The Summary of Simulation Results and
Insights

In this section, we measure the performance of the proposed
model, draw comparisons with an existing model, assess
the invalidation impact on the LRU cache and compare four
different schemes of cache invalidation. Through the above
simulations, some important results and insights can be
summarized as follows:

� Our model can achieve a fairly high accuracy on pre-
dicting the hit probability and server load of four
cache invalidation schemes.

� Our model is more accurate than the currently pro-
posed model in calculating the hit probability of the
reactive invalidation.

� Due to the mechanism of positively updating popu-
lar contents, the invalidation with proactive optional
renewing has a better performance against other
invalidation schemes when the cache capacity is
tight and the content expires frequently.

� When the cache is in the critical state of saturation
and unsaturation, the hit probability of the invalida-
tion with proactive optional renewing can reach
maximum. Surprisingly, this cache state can be real-
ized by settingMp in accordance with our model.

� In general, the proactive invalidation with proactive
optional renewing can be prioritized when the sys-
tem requires strong cache consistency. Particularly,
by settingMp to reasonable values in different scenes
as we mentioned in Section 5.3, this invalidation
scheme can achieve better performance on balancing
the hit probability and server load.

� In the simulation with the real distribution of content
expiration time, the effect of invalidation on cache
performance is obvious only when the mean expira-
tion time is small.

� In some networks with real-time features (e.g., IoT
networks), the content expiration time is small. If the
server performance is high and the network

bandwidth is abundant, applying proactive invalida-
tion with optional renewing is a good choice. Other-
wise, this scheme can also be used, because the
server load can be reduced by decreasing the num-
ber of actively renewed contents at the expense of a
little hit probability.

6 CONCLUSION

In this paper, we address the problem of modeling four
schemes of cache invalidation with LRU replacement. By
applying conditional probability to characterize the interac-
tions between existence and validity, we derive analytical
expressions for cache hit probability and server load under
arbitrary frequency distribution. The simulation results
demonstrate that our model is able to achieve more extensi-
bility and exceedingly high accuracy than the Detti model.
Also, we compare the performance of four different invali-
dation schemes, among which the proactive invalidation
with optional renewing has better scalability and, further,
can obtain the performance balance by reasonable parame-
ter settings.

Though the model of invalidation presented here is for
LRU caches, we believe it can be adapted to other caches
with which the characteristic time is able to be associated.
In addition, the insights gained through a single cache also
can be expanded to guide the design of invalidation
schemes in cache networks. Furthermore, how the time-
varying content popularity, future traffic (e.g., IoT) as well
as the distribution of contents’ copies affect the model of
cache invalidation are also attractive topics. We would keep
on investigating these issues in the future.
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