
494 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Software-Defined Multimedia Streaming System
Aided By Variable-Length Interval

In-Network Caching
Jian Yang , Senior Member, IEEE, Zhen Yao , Bowen Yang , Xiaobin Tan,

Zilei Wang , Member, IEEE, and Quan Zheng

Abstract—Explosive growth in video traffic volumes incurs a
high percentage of redundancy in today’s Internet, following
the 80–20 rule. Fortunately, the advanced in-network cache is
considered as an effective scheme for eliminating the repetitive
traffic by caching the popular content in network nodes.
Besides, the emerging software-defined networking (SDN) enables
centralized control and management, as well as the collaboration
between network devices and upper applications. Moreover, the
Network Functions Virtualization is also developed to support for
customized network functions, including caching and streaming.
This inspires us to design an SDN-assisted multimedia streaming
Video-on-Demand system, integrating in-network cache, to
improve the quality of service. The designed architecture is capable
of reducing the redundant traffic via the reusable duplications.
In particular, it can achieve greater performance gains by
deploying specific scheduling policy. We further propose a variable-
length interval cache strategy for RTP streaming, which can
realize the self-adaptive adjustment of the size of cached video
segments based on their access patterns. Our goal is to efficiently
utilize the limited storage resources and increase the cache hit
ratio. We present the theoretical analysis to demonstrate the
attainable performance of the proposed algorithm; furthermore,
the integrated system design is implemented as a prototype
to show its feasibility and applicability. Ultimately, emulation
experiments are conducted to evaluate the achievable performance
improvement more comprehensively.

Index Terms—Software defined networking, in-network cache,
multimedia streaming system, OpenFlow, Video-on-Demand.

I. INTRODUCTION

V IDEO services occupy a substantial percentage of today’s
network traffic. According to the forecast from Cisco [1],

IP video traffic will be 82% of all consumer Internet traffic by

Manuscript received May 29, 2017; revised October 31, 2018 and January
9, 2018; accepted July 9, 2018. Date of publication August 1, 2018; date of
current version January 24, 2019. This work was supported in part by the
Equipment Preliminary R&D Project 6141B0801010a, in part by the National
Natural Science Foundation of China under Grant 61573329, in part by the
State Key Program of National NSF of China under Grant 61233003, and in
part by the Youth Innovation Promotion Association CAS. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Christian Timmerer. (Corresponding author: Jian Yang.)

The authors are with the School of Information Science and Technology,
University of Science and Technology of China, Hefei 230027, China (e-mail:,
jianyang@ustc.edu.cn; yaozhen1@mail.ustc.edu.cn; ybw92@mail.ustc.edu.cn;
xbtan@ustc.edu.cn; zlwang@ustc.edu.cn; qzheng@ustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2862349

2021, up from 73% in 2016. And every second, nearly a million
minutes of video content will cross the network by that time.
Such video demand can quickly saturate these networks, and
then lead to delay, jitter, as well as packet loss when providing
video services, thus making it challenging to guarantee end users
acceptable Quality of Service (QoS) and Quality of Experience
(QoE).

According to the studies on understanding user behavior of
video services [2], [3], the video popularity exhibits skewness,
which well follows the Pareto Principle [4], specifically, 20%
of the video objects account for 80% of all accesses. This fact
implies that the popular video objects have higher frequency of
accesses. Therefore, if unicast is adopted to stream the video,
considerable redundant traffic will be incurred due to the repeti-
tive accesses to the same videos. Although IP multicast is capa-
ble of forwarding data to a group of the interested receivers in a
single transmission, the data reception of the multicast members
are synchronous, and it does not support personalized service
such as Video-on-Demand (VoD). In conclusion, the multicast
is not beneficial for reducing video traffic redundancy over the
time domain. The root reason for the incompetence of the cur-
rent network to deal with the video traffic redundancy lies in
its end-to-end principle designed, which keeps the core network
devices (routers) simplified and optimized to only forward data
packets, while moving the intelligence as much as possible to
the terminal nodes.

To solve this problem, application-level innovation is intro-
duced to improve the efficiency of the video content delivery.
Content Delivery Network (CDN) [5] has been deployed upon
traditional network protocol stack, aiming for delivering con-
tent to end-users with high availability and high performance. It
relies on the content duplication from origin server to the proxy
servers distributed across the network, and enables fast and re-
liable delivery by retrieving content locally to provide nearby
service. There are many well-known CDN service providers
like Akamai [6] and Limelight [7], devoted to hosting the con-
tent of third-party content providers in their servers, which are
further replicated on several servers spread over the world, and
then transparently redirect the customers’ requests to the “best
replica” [8]. However, CDN is a logical overlay network that
sparsely deploys proxy servers, and it is not beneficial for re-
ducing the redundant video traffic between the end-users and
the chosen proxy server. A worse case is that if a CDN server

1520-9210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7329-4738
https://orcid.org/0000-0003-4000-8130
https://orcid.org/0000-0002-3309-8759
https://orcid.org/0000-0003-1822-3731
mailto:jianyang@ustc.edu.cn
mailto:yaozhen1@mail.ustc.edu.cn
mailto:ybw92@mail.ustc.edu.cn
mailto:xbtan@ustc.edu.cn
mailto:zlwang@ustc.edu.cn
mailto:qzheng@ustc.edu.cn

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 495

lies outside the Autonomous System (AS), a large number of
incoming cross-domain redundant traffic may be induced, since
each streaming session corresponding to the end user is treated
individually.

Recently, network landscape is dramatically changing so as
to support intelligent and dynamic nature of future network
and applications. Network Functions Virtualization (NFV) [9]
is being widely studied and developed in recent years, which
makes it possible to customize and deploy new functions on the
core network devices. Different from the conventional routers in
IP networks, the network node in the context of NFV supports
content cache such as SmartRE [10], which is referred to as in-
network cache [11]. Naturally, in-network cache is integrated
on network nodes instead of the storage servers such as CDNs,
thus capable of caching or delivering content at the network
layer, and further bringing the content as close as possible to
the users. Consequently, it succeeds in reducing the redundant
traffic inside the edge network, and avoids redirecting too many
requests to the proxy servers outside the ISP’s network.

Although NFV reduces equipment costs and decreases the
time to market while attaining scalability, elasticity, and agility,
there are numbers of challenges to migrate to NFV over today’s
static inflexible network architectures. Software defined net-
working (SDN) [12] provides a scalable, elastic and on-demand
framework well suited to the dynamic NFV networking require-
ments for both virtual and physical networking infrastructure
[13]. OpenFlow [14] is the first platform implementing the
SDN principles. It provides an interface to enable interaction
between the control plane and the data plane. In this paper,
we utilize the network knowledge obtained from the Openflow
Controller in the context of SDN-enabled NFV, in order to de-
sign a software-defined VoD system with the aid of in-network
cache for achieving an efficient video content delivery.

A. Contributions

In this paper, we propose a SDN-based multimedia streaming
system for in-network cache architecture, achieving video de-
livery from the network node closest to end users, thus reducing
transmission delay and redundant traffic, to improve QoS/QoE.
The main contributions are listed as follows:

� Relying on the SDN architecture, we design a software-
defined video streaming system framework equipped with
in-network cache. A cache strategy module is abstracted
for optimizing the content cache of the VoD service. This
open architecture enables the service provider to deploy
advanced cache strategies flexibly and agilely.

� We propose a variable-length interval cache strategy for
the in-network cache architecture, capable of: a) Adap-
tively adjusting the length of the video segments cached
following with the trend of the popularity to increase cache
hit ratio; b) Aggregating the repetitive video requests over
the time domain to reduce the redundant video traffic; c)
Dynamically synchronizing the sliding cache window with
playback to release storage space for improving cache util-
ity. Consequently, the storage resource of the global net-
work can be allocated more appropriately and efficiently.

� We present the theoretical analysis and emulation results
to demonstrate the achievable performance improvement.
Furthermore, a prototype system is built to show the fea-
sibility and applicability of the proposed solution.

II. RELATED WORK

A. NFV Based CDN and In-Network Cache

There are plenty of contributions demonstrating that NFV is
beneficial for improving CDN. For instance, the works [15],
[16] both conceived respective frameworks for CDN scenario
by enabling the virtual nodes or applications based on NFV, to
achieve an efficient content distribution with a low overall cost
for CDN providers. The authors of [17] also presented a new
optimization technique for cache distribution with underlying
virtualization tools, and an intelligent migration algorithm for
virtual content delivery functions. The work [18] designed an
effective multimedia transmission by using OpenStack, so as
to construct NFV for the sake of providing the services of high
quality to users through CDN. Akamai Technologies and Juniper
Networks have also proposed an elastic commercial CDN solu-
tion by leveraging SDN and NFV to efficiently utilize available
network resources in [19]. Despite the achievements made by
these contributions, the redundant traffic between the end-users
and the proxy servers still has not been eliminated.

Since in-network cache is considered able to further reduce
the repetitive traffic, it has garnered lots of attention from
academia. In [20], the concept of resource management was
introduced for in-network caching environments. A probabilis-
tic in-network caching method for information-centric network-
ing (ICN) was proposed, for reducing caching redundancy and
making efficient utilization of available cache resources along a
content delivery path. The work [21] conceived a solution lever-
aging the in-network cache capacity of Content Centric Net-
work/Named Data Networking (CCN/NDN), to distribute and
pre-cache the video segments encapsulated by MPEG-Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) according to a
specific proactive content caching scheme, thus achieving higher
quality and reliability of video delivery without interruption
for mobile users. In [22], the optimal content assignment for
two in-network caching policies, i.e., Single-Path Caching and
Network-Wide Caching was proposed for NDN. These works
already show that in-network cache achieves significant perfor-
mance improvement over conventional cache frameworks based
on proxy servers, while it is hard to realize an efficient global
management in traditional networks, that is why SDN is intro-
duced in the following.

B. SDN Assisted Video Streaming and Cache Management

Several solutions utilized SDN to construct video streaming
systems. The contribution of [23] investigated the realization of
the OpenFlow-controlled network orchestration for facilitating
efficient scalable video coding (SVC) streaming to heteroge-
neous clients. An SDN based CDN and ISP collaboration archi-
tecture was proposed in [24] for managing the high volume and
long living flows such as video distribution. In [25], a distributed

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

496 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

OpenFlow-based QoS architecture was designed for optimizing
end-to-end QoS provision over multi-domain SDNs. In our pre-
vious work [26], we considered the joint admission control and
routing optimization for video streaming service in the con-
text of software-defined networking. However, these solutions
hardly concerned about the beneficial cache capability.

Integrating in-network caching with SDN is one of the hot
spots in current research. The work [27] presented a solu-
tion for integrating the caching functionality in a LTE network
based on SDN technology. In [28], an architecture named Con-
tentSDN was presented, which combined ICN with SDN to-
gether, and provided transparent in-network caching for content
delivery. In [29], an efficient, transparent and highly config-
urable OpenFlow-assisted in-network caching service named
OpenCache was proposed for improving the distribution effi-
ciency. However, the OpenCache Node conceived in [29] is an
independent server deployed on the edge of the network, and the
request scheduling is based on redirection with the assistance of
the OpenFlow controller, which is similar to the mechanism of
CDN. By contrast, the in-network cache we present in this paper
is integrated on the OpenFlow Switches, so that the transmission
of video streams need not follow the end-to-end principle.

C. Cache Replacement Strategies

Many classical content replacement algorithms have been
designed for conventional caching systems. For instance, simple
static policies such as Least Recently Used (LRU) and Least
Frequently Used (LFU) are widely used in practice for their
simplicities and ease of implementation [22], [30] and [31].
Besides, the contributions [32] and [33] both proposed online
learning cache replacement methods respectively, which relyed
on learning the video popularity over time and forecasting its
trend. Despite the performance improvement achieved, all the
contributions above are based on popularity prediction that may
be inaccurate, and insist on caching the entire objects.

Hence, in order to improve the cache utilization, many studies
focused on caching video segments. In [34], the author took into
account the information of the recent user behavior to predict
future segment requests, and further proposed two strategies
with a different level of coordination between the cached video
segments in the network, to increase the cache hit ratio and
reduce bandwidth consumption. The authors of [35] extended
the basic interval caching policy [36] for handling mixed work-
loads consisting of long movies and short interactive clips in
a multimedia server system. Motivated by this work, we tailor
the variable-length interval cache strategy for software-defined
video streaming system with in-network cache, aiming for sub-
stantially reducing the redundant video traffic.

The rest of this paper is organized as follows. We describe
the software-defined multimedia streaming architecture with
variable-length in-network cache in Section III. Section IV
presents the variable-length interval cache scheme for the pro-
posed software-defined multimedia system. In Section V, we
give the theoretical analysis on the performance of the proposed
cache strategy. In order to demonstrate the feasibility and ap-
plicability, we design and implement a prototype system for

TABLE I
NOTATIONS USED IN VARIABLE-LENGTH INTERVAL CACHE STRATEGY

Fig. 1. Software-defined multimedia streaming system with in-network cache.

the proposed solution in Section VI. Furthermore, emulation
experiments are conducted in Section VII to comprehensively
investigate the achievable performance of the proposed strat-
egy. Finally, we draw a conclusion in Section VIII. The main
notations used in variable-length interval cache strategy can be
found at TABLE I.

III. SOFTWARE-DEFINED MULTIMEDIA STREAMING

ARCHITECTURE WITH IN-NETWORK CACHE

This section aims for presenting the overview of the software-
defined multimedia streaming architecture with variable-length
in-network cache.

A. System Architecture

Fig. 1 shows the conceived software-defined multimedia
streaming system, which is mainly designed for the VoD sce-
narios that content providers deploy video streaming services in
ISP’s small-scale edge/access networks. The system is primarily

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 497

Fig. 2. Architecture of software-defined multimedia streaming system with
in-network cache.

composed of OpenFlow Controller, Media Streaming Server,
Management Server, OpenFlow Switches, and Terminals. As
the provider of the video content, the Media Streaming Server
has all available video contents, and a media application is de-
ployed on it to receive video requests and generate RTP video
stream for each session. Correspondingly, a media player oper-
ates on the terminal to trigger requests, receive and play back the
video streams. The Management Server acts as the brain of the
system, utilizing the topology, cache distribution and link-state
information obtained from the OpenFlow Switches to run spe-
cific cache strategies. The OpenFlow Controller is responsible
for controlling the behaviors of the OpenFlow Switches accord-
ing to the intention of the Management Server. The Cache called
in-network cache is integrated into the OpenFlow Switch rather
than a proxy server, which is different from the traditional net-
work. It means that the OpenFlow Switch is capable of both
file management and content delivery. The SDN architecture
is leveraged for its centralized control and management, abil-
ity of information collection and status monitoring, as well as
the collaboration enabled between network nodes and the upper
applications.

The system components are depicted in the architecture di-
agram of Fig. 2. Media Streaming Server has a fundamental
function of providing VoD services, including video content
management and RTP streaming. Management Server acts as
a bridge between data plane and control plane, since that it is
capable of instructing the data caching and video streaming ac-
cording to the specific cache strategy, i.e., the variable-length
interval cache strategy described below. Specifically, it contains
Global Cache Manager, User Manager, and Cache Policy. The
Global Cache Manager maintains the information of content
cached in distributed OpenFlow Switches. User Manager has
the capability of Authentication, Authorization and Account-
ing (AAA) for a complete access service, while the abstracted
Cache Policy makes decisions based on the distribution infor-
mation of cached content to improve the utilization of cache.
The OpenFlow Controller is made up of several modules in-
cluding Topology Manager, Routing Manager, and Event Man-
ager. The Topology Manager component assists the collection
of network status information, and the other two enable the

Management Server to configure the OpenFlow Switches for
forwarding, caching, as well as streaming. All the OpenFlow
Switches are equipped with storage, thus having the abilities of
local cache management, link state monitoring, and RTP data
processing. The Local Cache Manager in OpenFlow Switches
supports basic file operations. Besides, the information of links
(topology and bandwidth), as well as caches (status and distribu-
tion) provided by Local Cache Manager are both generated and
raised as events periodically to OpenFlow Controller, then sub-
mitted to Management Server through TCP socket. RTP Tools
[37] operate as a network function of caching RTP data, or read-
ing corresponding output files and sending RTP streams to the
Terminals. In order to enable OpenFlow Controller to realize the
function of in-network cache management and content delivery,
we extend OpenFlow protocol by defining new events related to
the storage management and video streaming respectively.

Fig. 1 also depicts the video transmission aggregation relying
on the in-network cache for reducing redundant traffic. Open-
Flow Switches of the delivery path have a chance to duplicate
and cache the corresponding RTP data packets. Thus, any re-
quest from other users for the same video can be served by
the switches with cache rather than by the Media Streaming
Server. Following this principle, the videos may spread all over
the network. Hence, an effective cache management dedicated
for video streaming over SDN is highly desired for the sake of
efficient cache utilization. In this paper, we will adopt interval
caching technique to develop in-network cache for streaming
video over SDN, rather than the cache techniques for caching
entire video objects.

B. Variable-Length Interval Caching Technique

Considering that the RTP Tools in OpenFlow Switches have
the capability of identifying, printing, parsing and streaming for
fine-grained RTP data, and the attainable timestamp information
can also be used to measure the length of cached video segments,
which can be arbitrarily specified by assigning corresponding
parameters. So it inspires us to implement the proposed variable-
length interval caching in a scenario of RTP streaming.

As explained in the above subsection, the cache in Open-
Flow switches is controlled by Global Cache Management in
Management Server. Once an OpenFlow Switch is instructed
by Global Cache Management to cache a specific video stream,
a local file is created to host RTP data packets, which contains
a basic unit of the cache referred to as variable-length interval
window as illustrated in Fig. 3. Specifically, the whole video file
is considered as a time axis with fixed length, while the portion
cached by a switch is a window of a certain length sliding over
the time axis of the video. Since the granularity for window
allocation is the Group of Pictures (GOP), of which the length
is negligible compared to the window’s size in general, so we
neglect the influence caused by video encoding, and reasonably
assume that the length of the window merely depends on the
arrival pattern of the video requests, which is referred to as the
probability distribution of their arrival times. In Section-IV, we
will discuss the strategy for forming the cache window. Nat-
urally, the video requests in the same window reuse a single
stream from the upstream OpenFlow switch, thus aggregating

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

498 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Fig. 3. Illustration of variable-length interval caching.

the redundant video traffic over time domain. It should be noted
that the interval cache technique only caches the video traffic
within the cache window.

Since Global Cache Manager in Management Server controls
the cache in the OpenFlow switches, it dynamically maintains
the data structure of the storage organization based on linked
lists and STL maps as shown in Fig. 4, which contains the map-
ping relationships between video objects and windows, as well
as windows and requests. The notations in Fig. 4 are given as
follows. The i-th video object is denoted by Ci (i = 1, . . . , N),
where N is the number of video objects available in the Stream-
ing Media Server. The j-th cache window of the i-th video
object is represented by Wi,j (j = 1, 2, . . . , Li), where Li is the
total number of cache windows for the video object Ci . Rk

i,j

and Tk
i,j respectively denote the k-th request to the video object

i in the window Wi,j and its arrival time. As depicted in Fig. 4,
the video object list consists of video objects Ci (i = 1, . . . , N),
and a video object Ci is associated with a window list consist-
ing of windows Wi,j , which may be associated with different
switches. A window Wi,j contains a request list with requests
Rk

i,j (k = 1, 2, . . . ,Ki,j), where Ki,j is the total number of the
requests in the window Wi,j . As shown in Fig. 4, each win-
dow keep a record of Window ID, Content ID, Switch Datapath
ID (DPID), etc. The Switch DPID assigned to the window is
to indicate which switch it belongs to. In addition, Start Time,
Length, Number of Requests and Average Interarrival Time are
the attributes of the window object.

C. Basic Operating Process

The basic operating process of the system depicted in Fig. 1 is
described as follows. When a user triggers a request to the Media
Streaming Server, the server parses the received message, and
extracts user’s IP address, video ID, as well as the arrival time,
which are further submitted to the Management Server. The
User Manager Module in the Management Server authenticates
this user based on User ID associated with IP address, and au-
thorize the access to the video services. For the authorized user,
Management Server utilize link status provided by OpenFlow
Controller as well as the cache distribution provided by Global
Cache Manager to determine the content delivery path for the
user. A simplest way to determine the delivery path is applying
the shortest-path method to achieve the nearest delivery of the
video content as discussed in Section IV-C.

Once the delivery path is determined, the Manager Server
maps all actions into commands executable in the OpenFlow
Switches, which are configured by OpenFlow Controller, and
then updates the cache information maintained in Global Cache
Manager. The OpenFlow Switch which receives the command
of providing the corresponding video content starts a process to
transmit the RTP packets to the user through RTP Tools, except
for the case of cache miss, where Media Streaming Server will
still deliver the video since there is no better cache window
available in OpenFlow Switches. If a switch on the delivery
path has not cached the video content in its external memory
space, it receives a command triggered by the Global Cache
Manager to create a new window to host the served request, and
caches the RTP packets delivered from the upstream switch also
by utilizing RTP Tools.

IV. VARIABLE-LENGTH INTERVAL WINDOW BASED

IN-NETWORK CACHE STRATEGY

In this section, we present a variable-length interval window
based in-network cache strategy for the proposed system.

A. State Machine for Managing Cache Window

For a cache window with the initial time span T as shown in
Fig. 5 (in Building State), assume that n requests have arrived,
and Rn

i,j denotes the last one. The k-th interarrival time between
two consecutive request arrivals for the video object i in the
cache window Wi,j is denoted by Ik

i,j , which is defined as

Ik
i,j =

⎧
⎪⎨

⎪⎩

∞, if k = n = 1

Tk+1
i,j − Tk

i,j , if 1 < k < n

T + T 1
i,j − Tn

i,j , if k = n > 1.

(1)

Note that if n = 1, the interval I1
i,j is assigned with ∞ because

there is no interval. The interval In
i,j between the last request

arrival and the end of the time span is referred to as waiting
time, since it waits for the next request. In addition, we define
Ii,j as the average inter-arrival time of the cache window Wi,j ,
which is calculated as below:

Ii,j =

{∞, if n = 1
∑n−1

k=1 Ik
i,j /(n − 1), if n > 1.

(2)

If there is only one request arrival within time span T , i.e.,
n = 1, average inter-arrival time does not exist, and thus we set
it as ∞. Naturally, smaller average inter-arrival time of a video
object implies more frequent access to this video. Therefore,
inter-arrival time series or average inter-arrival time characterize
the popularity of video objects and the user request pattern at
current time.

In the proposed strategy, state machine pattern is used to
describe and manage the lifetime of a cache window. As shown
in Fig. 5, we define three cache window states, i.e.,

1) Building State: Upon arrival of a request, if there are no
cache windows containing the requested video segment,
which means the request has no suitable window to join,
then an initial cache window with initial length of T is
created. Its size may be adjusted to accommodate less or
more requests before it is frozen. Here, “frozen” implies

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 499

Fig. 4. Data structure of the storage organization.

Fig. 5. Illustration of cache window Wi,j in three states.

no more new arrival requests of the video object corre-
sponding to the cache window will be accepted. Before
the cache window is frozen, the state of the cache window
is defined as Building State. If no cache window exists for
a requested object, a first cache window with a subscript
j = 1 is allocated. Subsequent cache window creations
use monotonically increasing j.

2) Moving State: When the cache window is frozen, it enters
Moving State. During this state, the cache window moves
along the time axis of the video object with the stream-
ing sessions corresponding to their requests. It should be
noted that the size of cache window in Moving State may
be adjusted only when premature termination or VCR-
like operation (pause, jump forward, jump backward) [38]
happens (see Section IV-B).

3) Releasing State: When the video session corresponding to
the first request within the cache window reaches the end
of the video stream, the cache window enters Releasing
State.

B. Variable-Length Interval In-Network Cache Strategy

All the requests within the cache window are dispatched to
the same OpenFlow Switch for reuse a same data block from
cache, thus reducing the redundant the network traffic. When
a user request of the object i is arriving, the proposed cache
strategy operates as follows:

Fig. 6. State transition of cache window and corresponding conditions.

1) If the cache windows which contain the requested video
segment are in Building State and the OpenFlow Switches
corresponding to them have available bandwidth for out-
put the video traffic, then the request is scheduled to the op-
timal OpenFlow switch among them to achieve the short-
est delivery path. A new cache window with a initial size
T is created for each OpenFlow Switch on the delivery
path, which has no cache window.

2) Otherwise, the request will be scheduled to the Media
Streaming Server to start a new RTP session. Further-
more, a new cache window of length T is created for each
OpenFlow Switch on the delivery path.

Below, we discuss on adjusting the size of a cache window.
When a cache window is created, it is assigned with an initial
size of T , and begins to go through a three-state life-cycle. In
these states, the cache window adjusts its size according to the
rules below, which is illustrated by a state transition diagram
Fig. 6.

� Building State: When the cache window Wi,j is in Building
State, then at the end of its current time span, a decision is
made to adjust its size as:
1) If Īi,j = ∞, which implies only one request arrival for

the video object i within the cache window Wi,j . The
cache window is released soon and formed with a size
of 0.

2) If the waiting time In
i,j > Īi,j which implies that the

subsequent request for the video object i becomes less

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

500 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

frequent, the initial cache window is shrunk to the ar-
rival time of the most recent request at the end of the
time span. Then, the cache window is frozen and enters
Moving State.

3) If In
i,j ≤ Īi,j , the cache window keeps the Building

State, and its size grows to the length T
′
, where

T
′
= T − In

i,j + Īi,j , expecting that a new request ar-
rives very soon. At the end of the time span T

′
, the

average inter-arrival time Īi,j and the waiting time In
i,j

are recalculated and the above steps are repeated. Fi-
nally, the cache window will enter Moving state if one
of the situations below happens: a) The request for
the object becomes less frequent as 2); b) The size of
cache window reaches the upper bound Tmax ; c) The
throughput of the OpenFlow switch is exhausted. Ap-
plying such scheme, the requests for most frequently
accessed objects can be served by a same block from
the cache within the switch.

� Moving State: Once a cache window enters Moving State,
the subsequent requests cannot be accommodated by this
cache window. In this case, a new cache window with an
initial size T is created when a new request arrives, and
goes through its life-cycle starting from Building State.
The only two special cases, i.e., premature termination
and VCR-like operations, may lead to the size adjustment
of the cache window in Moving State. The rules for such
adjustments will be described in this section.

� Releasing State: When a cache window enters Releasing
State and a request reaches its end, the cache window is
shrunk to the ending request’s subsequence and be de-
stroyed if all streaming sessions corresponding to the win-
dow are ended.

To prevent an extremely large cache window size, the cache
window size is bounded by an upper bound Tmax .

The session terminations also possibly result in the adjust-
ment of the cache window size. There exist two different types of
session terminations, i.e., complete session termination and pre-
mature session termination. The complete session termination,
in which the session is released at the end of the video stream,
can be handled according to Releasing State described above. If
the premature session termination happens, a later request may
terminate before the earlier requests. In this situation, the size
of the cache window should be carefully adjusted. Without loss
of generality, we only describe the rule of size adjustment for a
cache window in Moving State since similar processing can be
easily derived for the other two states. Consider a cache window
Wi,j in Moving State with consecutive requests R1

i,j to Rn
i,j . If

the session for the request Rk
i,j (1 ≤ k ≤ n) terminates before

anyone else, the size of the cache window is adjusted according
to the rules as follows:

� If Rk
i,j is in the middle of its cache window, i.e., 1 < k < n,

it has preceding and succeeding requests in the same cache
window, and the cache window maintain its current state
and Rk

i,j is removed from the cache window.
� If Rk

i,j is the head of its cache window, i.e., k = 1, R1
i,j is

removed from the cache window. If this request is the only

one in the cache window, the cache window is destroyed
after deleting the request. Otherwise, the head of the cache
window is shrunk to R2

i,j . Thus, the window span between
R1

i,j and R2
i,j is removed.

� If Rk
i,j is at the tail of the cache window, i.e., k = n, Rn

i,j

is deleted from the request list, and the end of the cache
window is shrunk to the extent that Rn−1

i,j is the last request
in the cache window.

After above steps, the parameters of the cache window like
the average inter-arrival time should be updated instantly.

As for the case when VCR-like operations are involved, it will
become more complicated, since the relative access position
of the request may be changed, and therefore influences the
states of the corresponding cache windows. Consequently, the
primary cache strategy described above needs to be extended for
supporting the VCR-like operations, such as pause and resume.
To be specific, the pause operation is handled similar to the case
of premature termination introduced, while the resume and jump
operations are treated as new requests received, but requesting to
play the previous video from certain timestamps after 0 second.
As a result, once again, the variant request will be reallocated
to an appropriate cache window which may be different from
the original one, or rescheduled to the media server in the worst
case. After finishing the VCR-like operations, it should be noted
that the states of all relevant cache windows have to be updated
accordingly. However, due to space limitations, we won’t go
into detail here.

C. Shortest Path Based Video Delivery Strategy

In addition to the cache strategy in the OpenFlow switches
as discussed above, we have to choose the best switch for de-
livering the video content. Here, we apply the shortest path
based video delivery strategy for the proposed software-defined
video streaming system, which is summarized in Algorithm 1.
Specifically, we take the state of cache window, capacity of the
OpenFlow Switch as well as network topology into consider-
ation, to make a decision on choosing the optimal OpenFlow
Switch as the video source, thus achieving proximity principle
based service. The codes from Line 1 to 8 is to search the po-
tential OpenFlow switches, while those from Lines 12 to 17 is
to search OpenFlow switch having shortest path to the user as
well as lowest number of sessions for workload balance. Once
the optimal switch or origin server (in case cache miss occurs),
as well as the delivery path are determined by Algorithm 1, the
switches on the delivery path should create new window and
cache the video traffic as described in Section III-C.

V. PERFORMANCE ANALYSIS AND DISCUSSION

In this section, we discuss the performance of the proposed
cache strategy. As shown in Fig. 4, the requests and cache win-
dows for each video are individually organized, and thus we can
investigate the performance of the proposed strategy by present-
ing the analysis for an individual video. It seems difficult to give
rigorous theoretic results for its performance, since the cache
window is variable which makes it complex. Therefore, we eval-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 501

Algorithm 1: Shortest Path Based Video Delivery Strategy
Input:

Ci : the requested video;
Wi,j : the j-th cache window of Ci ;
Ni,j : ID of the OpenFlow switch in which Wi,j locates;
hi,j : number of hops between the user and the switch
Ni,j ;
mi,j : number of concurrent sessions served by the
switch Ni,j ;
h0 : the number of hops from Media Streaming Server to
the user;
M : the capacity upper bound of the switches;
W (i): the set of available cache windows;

Output: N ∗: the optimal node to deliver the video;
W (i) = φ, hmin = h0 , mmin = M

1: for all Wi,j ∈ Ci do
2: if Wi,j is in Building State and mi,j < M then
3: W (i) = W (i)

⋃{Wi,j}
4: if hi,j < hmin then
5: hmin = hi,j

6: end if
7: end if
8: end for
9: if W (i) == φ or hmin == h0 then

10: N ∗ = Media Streaming Server
11: else
12: for all Wi,j ∈ W (i) do
13: if hi,j == hmin and mi,j < mmin then
14: mmin = mi,j

15: N ∗ = Ni,j

16: end if
17: end for
18: mi,j = mi,j + 1
19: end if
20: return N ∗

uate its performance by analyzing fixed and equal cache window
case that is a degenerated case of our proposed cache algorithm.
Assume the size of all cache windows is T . The requests within
a same cache window except the first request can be served
from cache. The number of concurrent cached streams, N , can
be found by counting the number of arriving requests that fall
within a cache window. Without loss of generality, we assume
the duration of the video object is D. Then, D can be divided
into K = D/T non-overlapping T -length cache windows. Let
the arrivals of requests for this video follow a Poisson Process
distribution with parameter λ. Larger value of λ implies the
video is more popular. The probability of m arrivals for video
object within a T -length cache window is Pm = (λT)m

m ! e−λT .
Thus, the expected number of requests falling in the cache win-
dows that have exactly m arrivals during D, can be expressed
using Bernoulli distribution [39] as follows:

E [Nm] = (m − 1)
�K �∑

k=1

k

(�K�
k

)

(Pm)k · (1 − Pm)�K �−k , (3)

where m − 1 is the number of the cached requests in each of
those T -length cache windows except the first one. The equation
is precise when D is a multiple of T . The expected total number
of the arriving requests for the given video object served from
cache is E [N] =

∑∞
m=2 E [Nm].

Considering the actual cache window may be expanded, and
the additional length may accommodate extra requests serviced
from cache, so above result is the low-bound performance of
our proposed algorithm. The expected number of requests ser-
viced from the upstream OpenFlow switch can be expressed as
Nupstream = λD − E [N].

This means that the video data for Nupstream requests is
retrieved from the upstream switch, which causes the traffic on
the link between the current switch and its upstream switch.

Since the arrival requests follow Poisson Process and the
number of requests is given as m (m ≥ 2) in the cache window
with a determined length T , the joint distribution function of the
n arrival times is the same as that of n order statistics of ran-
dom variables which are independent and identically distributed
(i.i.d) [40], specifically, following the uniform distribution with
the probability density 1/T . Then, the actual length of the cache
window, denoted by Tm , is the time distance between the first
request and the last one. For the cache window having m re-
quests, the arrival times of the first request and the last one are
respectively denoted by tf irst and tlast , and the arrival times of
the other m − 2 requests are defined as ti (i = 2, . . . , m − 1).
The expected actual cache window length can be calculated by
E [Tm] = E [tlast − tf irst].

In order to calculate E [Tm], we first derive the joint probabil-
ity density of tf irst and tlast . For any 0 < y1 < y2 and sufficient
small h > 0 which satisfies 0 < y1 < y1 + h < y2 < y2 + h,
we have the joint probability distribution of tf irst and tlast , i.e.,

P (y1 < tf irst < y1 + h, y2 < tlast < y2 + h,

y1 < t2 , . . . , tm−1 < y2)

= P (y1 < tf irst < y1 + h)P (y2 < tlast < y2 + h)·
m−1∏

i=2

P (y1 < ti < y2)

= m(m − 1)
(

h

T

)2 (
y2 − y1

T

)m−2

. (4)

Then, the joint probability density of tf irst and tlast can be
expressed as

ftf i r s t ,tl a s t
(y1 , y2) = lim

h→0

m(m − 1)(h
T)2(y2 −y1

T)m−2

h2

= m(m − 1)
(y2 − y1)m−2

Tm
. (5)

Hence, the expected actual cache window length can be derived
as

E [Tm]=
∫ T

0

∫ T

tf i r s t

m(m −1)(tlast− tf irst)m−1 · 1
Tm

dtlastdtf irst

=
m − 1
m + 1

T. (6)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Fig. 7. Comparison between simulation and analysis results of the VLCW strategy. (a) Number of requests serviced by all cache nodes. (b) Aggregation efficiency
of a single stream. (c) Total length of the cache windows. (d) Reuse efficiency of the unit cache.

Thus, the expected total length of the cache windows that
have exactly m arrivals during D can be found as follows:

E [Lm] =
m − 1
m + 1

T

�K �∑

k=1

k

(�K�
k

)

(Pm)k (1 − Pm)�K �−k . (7)

Consequently, the total expected actual cache window
length corresponding to the given video object is E [L] =∑∞

m=2 E [Lm], which can approximately characterize the mem-
ory requirement of a video object with a given arrival rate.

Then, the utility of the streams from the upstream switch,
denoted by rupstream , and that of the cache, denoted by rcache ,
can be defined to measure the performance, which are given,
respectively, by:

rupstream = 1 +
E [N]

E [Nupstream]
, (8)

rcache =
E [N]
E [L]

. (9)

By developing a numerical simulator for the proposed
variable-length cache window (VLCW) strategy, we present the
comparison between its practical performances and the anal-
ysis results. Specifically, as for the simulation procedure, we
generated the sequences of requests following the Poisson pro-
cess with different arrival rates by leveraging a request gen-
erator, which were then sent to the request scheduling mod-
ule, to be handled orderly based on the VLCW strategy and

the real-time state of cache windows. Meanwhile, the status of
all cache windows was also maintained and updated depend-
ing on the proposed strategy by an independent management
module. During the process, each request received will be al-
located to an optimal cache window or cause a cache miss,
while each cache window will go through the three-state in its
life-cycle, as described in Section IV-B. With respect to the
parameter settings of the simulator, we only considered the ac-
cesses to a single video object, of which the length D was fixed
to 90 mins. The initial size for cache window T = 3 mins, and
its max size Tmax = 10 mins. The fixed cache window size
for analytical model was set to T = 3 mins as well, and the re-
quest process lasted 200 mins. Experiments with different arrival
rates λ ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4} reqs/min for request
sequences were conducted, which were repeated for 20 times to
average the results.

Fig. 7 depicts the comparison results from four aspects: the
number of requests serviced by all cache windows (i.e., E [N]),
the aggregation efficiency of a single stream (i.e., rupstream),
the total length of cache windows generated during the whole
process (i.e., E [L]) and the reuse efficiency of the unit cache
(i.e., rcache). We can observe that the simulation performance
of the proposed algorithm exceeds the analytical results, espe-
cially for large arrival rate. Fig. 7(a) shows that the number of
requests serviced by cache in simulation is approximately the
same as the theoretical value which is referred to as the lower-
bound, for the reason that it is degraded by disabling the size

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 503

adjustment of cache window in above theoretical derivation.
From Fig. 7(b), it is seen that larger arrival rate can achieve
more efficient utilization of streams. The reason is that the more
intensively the requests arrive, the smaller the interval between
two consecutive requests, and the more requests a cache win-
dow can accommodate, which means a single stream can be
reused by more requests, in turn reducing the redundant video
traffic. Fig. 7(c) indicates that the total length of cache windows,
which is roughly proportional to their amount, increases with
the request arrival rate. Specifically, the cache window in simu-
lation can accommodate more requests compared to the analysis
result, therefore, the number of which may be smaller than ex-
pect, thus resulting in the deviation between these two results
as the arrival rate increases. Besides, a larger arrival rate leads
to more frequent aggregation operations for video streams, thus
achieving higher reuse efficiency of the unit cache as shown in
Fig. 7(d).

As for the computation cost involved, we consider that the
computation overhead is concentrated on the maintenance and
update for the information of network status and cache distribu-
tion, as well as searching for the optimal cache window, rather
than spent in calculating the window size or routing path for
video delivery. Since we just need to recalculate the averaged
interarrival time and the waiting time when a request arrives,
which is based on the simple linear operations without compli-
cated iterations, we can neglect the time cost for calculating the
window size. Besides, the optimal routing path is determined
based on Floyd-Warshall algorithm [41] once the optimal cache
window is selected, of which the time complexity is O(n3),
while due to that the proposed system is implemented in small-
scale edge network where n is relatively small, thus the total
time cost is acceptable. To the contrary, considering that the
data structures were realized based on linked lists and STL
maps as illustrated in Fig. 4, and there are two non-nested for
loops to iterate through the cache windows relevant to a spe-
cific video as shown in Algorithm 1, so the time complexity is
O(nv) + O(nw) for finding the optimal cache window, where
nv is the number of video objects, and nw denotes the number
of cache windows traversed. Moreover, the time complexity for
adding, deleting, modifying and querying operations can be esti-
mated as O(nv) + O(lognw) + O(nr), where nr is the number
of requests in the selected cache window. We can further adopt
the HashTable or HashMap to reduce the time cost in large-scale
network scenario.

VI. PROTOTYPE IMPLEMENTATION

In order to verify the success of our design, we built a SDN
testbed by ourselves to implement a prototype system for the
proposed software-defined multimedia streaming system having
variable-length in-network cache, as illustrated in Fig. 1. The
implementation details of the key components were described
as follows.

� The OpenFlow Switch was implemented as NFV hard-
ware. We chose the commercial NETGEAR WNDR3800
wireless routers as the underlying hardwares, and rebuilt
them by using OpenWrt [42] to obtain economical Open-

Fig. 8. Network topology of the implemented prototype.

Flow switches that support OpenFlow version 1.3. We
chose Kingston’s DataTraveler SE9G2 with 32GB mem-
ory space as the external USB flash disk in OpenFlow
Switch for caching videos. Moreover, each OpenFlow
Switch installed RTP tools, including RTPDump for pars-
ing/caching RTP packets and RTPPlay for sending RTP
data cached by RTPDump.

� We chose POX [43] as the OpenFlow Controller for sim-
plicity, and ran it on a Linux server having three Network
Interface Cards (NICs). The first NIC was connected to
a standard switch TL-SG1024DT with 24 ports, which
was further connected to the WAN ports of all OpenFlow
Switches, in order to construct an out-of-band control-
plane network. The second NIC was connected to the Man-
agement Server to share the information of network and
cache, as well as to receive control messages. The corre-
sponding modules of OpenFlow Controller in Fig. 2 were
also implemented in POX. The network topology of the
prototype was organized as depicted in Fig. 8.

� We also implemented the Management Server in Fig. 2
based on a Linux server having two NICs. One of the NICs
was connected to the OpenFlow Controller for constructing
the control plane, while the other one was connected to the
Media Streaming Server.

� The Media Streaming Server was implemented based on a
Linux server which installed the VLC media player 2.0.8
as the RTP Streaming module to encapsulate the video data
into RTP/UDP. Multiple UDP sockets with different port
number were created for streaming the video data to users,
so that OpenFlow switches were able to identify the flow
corresponding to a specific request.

� The terminal was implemented on a Linux client. It has a
VLC media player installed to decode the received RTP
streams and to play back the video.

We investigated the performance of our proposed solution
based on the above prototype system, and compared it with the
other widely adopted scheduling policies, namely the LRU strat-
egy, which was considered suitable for CDN and ICN networks.
Two different forms of LRU were implemented,i.e., the one
ICN suggested [44], named NNC+LRU, and its simpler variant,
Rdm+LRU strategy [45]. As for NNC+LRU, all nodes along the
content delivery path will remember the data packets as long as

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Fig. 9. Experimental results obtained from the prototype. (a) Real-time
throughput of the server. (b) Real-time number of concurrent RTP streams
in whole network. (c) Real-time number of RTP sessions delivered from all
cache nodes.

possible according to LRU strategy. In contrast, only one node
that has enough space or replaceable objects will be selected
from the ones mentioned above randomly in Rdm+LRU.

In the comparison experiment, the request access rate λ was
set to 2 req/min due to the limited bandwidth and hardware
performance of the prototype system, and the duration of the
video clip was set to 10 mins. At the beginning, no video was
cached in the OpenFlow switches. We investigate the perfor-
mance of the implemented prototype system in terms of the
real-time throughput of the server, the real-time number of con-
current RTP streams in whole network, as well as the real-time
number of RTP sessions delivered from all cache nodes. Fig. 9
presents the comparison results among the three strategies un-
der the same conditions, such as the request sequence, storage

space, and so on. As we can see from Fig. 9(a), VLCW strat-
egy achieves the lowest throughput in most of the time, which
means the minimum number of requests serviced by the server.
Here, we treat the flows in different physical links while be-
longing to the same RTP session as different streams to quantify
the bandwidth consumption of the whole network. Obviously,
VLCW also achieves the least number of streams as illustrated
in Fig. 9(b), thus consuming the least bandwidth. The reason for
this is that VLCW strategy is able to remember a larger amount
of fragments belonging to different videos with limited storage
space, while there are much fewer entire videos cached for the
other two strategies in the same circumstance. Since the requests
are uniformly distributed, the videos desired have more chance
to be obtained from the cache nodes for VLCW strategy, that
is to say, it has a higher cache hit ratio as can be verified by
Fig. 9(c).

Our above experiments based on the prototype system aim
for demonstrating the feasibility of the proposed solution, which
is not a comprehensive performance evaluation. Hence, Section
VII is devoted to comprehensively investigating the performance
of the proposed solution via emulations.

VII. PERFORMANCE EVALUATION

In this section, we comprehensively evaluate the performance
of the proposed solution through emulations.

A. Performance Metrics

In order to evaluate the proposed strategy, we use the follow-
ing metrics:

� Hop Count (h̄): The hop count is defined as the averaged
number of hops from the client to the selected node or the
source server for each request.

� Transmission Delay (t̄): The transmission delay is defined
as the averaged time spent in establishing a RTP session
for each request, from the client issues the request to it
receives the first RTP packet from the selected node or the
media server.

� Cache Load (ρ̄): The cache load is defined as the time-
averaged number of overall concurrent sessions delivered
from the nodes with in-network cache.

� Server Load (ϕ̄): The server load is defined as the time-
averaged number of concurrent sessions delivered from the
server.

� Efficiency Factor (η): The efficiency factor is defined as
the ratio between Cache Load and Server Load. Larger η
implies a higher efficiency of the cache.

� Server Throughput (b̄): The throughput of the server is
defined as the time-averaged total bandwidth occupied for
data delivery.

� Total Storage Length (L̄): The total storage length is de-
fined as the time-averaged total length of all cache windows
on all cache nodes in the cache system.

� Stream Efficiency (rserver): The stream efficiency is de-
rived from the definition of rupstream in V, and is defined
as the aggregation efficiency of a single stream delivered
from the server.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 505

Fig. 10. Network topology of the emulation experiments.

TABLE II
LINK BANDWIDTH AND DELAY OF THE EMULATION NETWORK

� Cache Efficiency (rcache): As defined in V, rcache is the
reuse efficiency of the unit length video segment in the
cache system.

In the following emulation experiments, we will use above
metrics together to systematically evaluate the performance of
the proposed solution.

B. Emulation Environment

Some key settings are described here, including the network
topology and the experiment procedure:

� Network Topology Setting: We use Mininet 2.2.1 [46] to
create a realistic virtual SDN enabled network, i.e., run-
ning real kernel, switch and application code on a single
machine. Since the k-ary tree topology is considered com-
mon and representative for both classical and peer-to-peer
VoD system [34], [47], [48], we determine to construct a
realistic scenario with it. Specifically, we choose a com-
plete 4-ary tree with the depth of 4 (except the server),
to scale up the size of the emulation system, as shown
in Fig. 10, which is composed of 1 server, 21 switches,
and 64 clients. Furthermore, we define the storage capa-
bility of each cache node respectively by software method
according to the settings described in VII-C. The trans-
mission speed of virtual network interface cards (NICs) is
set to 100 Mbps for hosts, and 1000 Mbps for the server
and switches respectively. Moreover, the maximal access
capability of each switch is set to 50 video streams. And
the configuration information for different links are given
in TABLE II. Specifically, we install the RTP tools (RTP-
Dump and RTPPlay) on the Linux host of Mininet as well,
to enable the caching and streaming capabilities of RTP
data for all virtual OpenFlow switch nodes, as well as the
server for simplicity.

� Procedure Setting: We assume that the arrivals of the re-
quests to the server follow a Poisson Process with an aver-
age arrival rate λ. Assuming that accesses to video objects
follow a Zipf-like distribution [4]:

pi =
1
iθ

ΣN
i=1

1
iθ

, 0 < θ ≤ 1, (10)

where N is the total number of available videos and θ
is a skew factor for the popularity. For simplicity, we set
θ = 1 here. We use different video clips having duration
of 10 minutes, 1280 × 720 resolution, and the bit rates
ranging from 2Mbps to 4Mbps. For the benchmark algo-
rithms NNC+LRU and Rdm+LRU, we assume that the
entire videos are transferred to the in-network cache along
with the streams delivered for the first request of them,
while consuming no extra backhaul bandwidth. Besides,
the videos cached stay available all along unless being
removed, even though they have not been generated com-
pletely, which is similar to the scene for VLCW strategy.
Furthermore, we also consider an advanced cache algo-
rithm of better performance between the two proposed
by [34], namely, the Election-based strategy, which is de-
signed for caching video segments in network nodes as
well. Its basic idea is to select the optimal node along the
transmission path with highest potential gain of caching
the segments locally, which are expected to be requested
soon based on the information of the recent user behavior.
Specifically, we set the fixed length of all video segments
to 10 seconds in this emulation.

C. Result Analysis

1) Experiment 1: This experiment was carried out to inves-
tigate the performance of our proposed strategy for different
request access rates λ (req/min), which range from 5 req/min to
25 req/min. We use M to denote the storage capacity of a single
node, which is an integer that denotes the multiples of the entire
video file. Considering that the size of all available videos is
much larger than that can be cached in practice, we set M to
2, that is to say, there are at most 20 mins video data cached in
each switch. The total number of available videos denoted by
N is set to 10, and the default initial size of the cache window
denoted by T is 3 mins. The experimental results were plotted
in Fig. 11.

From Fig. 11(a), we can observe that the server through-
put b̄ increases as raising λ for NNC+LRU and Rdm+LRU
strategies, followed by Election-based strategy, while it almost
remains instant for VLCW. The reason is that the first two strate-
gies operate the cache at the granularity of entire videos, and
fewer number of cached videos leads to a lower cache hit ra-
tio, which involves more cache misses especially for the large
λ, thus increasing the workload of the origin server. By con-
trast, the other two run the cache at the granularity of video
segments, to cache larger amounts of video fragments for ag-
gregating the video requests, so that resulting in a much lower
b̄ which is also insensitivity to λ. Specifically, VLCW outper-
forms Election-based since that the size of its video segment
cached is variable following with the access pattern, namely,
fitting to the video popularity dynamically, thus the cache hit
ratio is further increased. Fig. 11(b) characterizes the cache load
ρ̄, which also indicates that VLCW indeed has a higher cache
hit ratio. From Fig. 11(c), we can observe that VLCW occu-
pies much less cache space than other strategies as well. This
is because VLCW only caches the segments that will certainly
be reused by subsequent requests, and removes the useless por-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Fig. 11. Performance comparison of VLCW, Election-based, NNC+LRU, and Rdm+LRU for different arrival rates. (a) Average throughput of the server, b̄.
(b) Average load of all cache nodes, ρ̄. (c) Average total length of the cached videos, L̄. (d) Average delay for each request, t̄. (e) Average hops for each request,h̄.

TABLE III
EFFICIENCY COMPARISON WITH DIFFERENT ARRIVAL RATES

tions to release space. While the other strategies are all based
on cache replacement policy (LRU), where lots of entire videos
or segments cached will not be accessed until driven out, thus
wasting the storage resource. Fig. 11(d) and Fig. 11(e) illustrate
that t̄ and h̄ change identically, and are similar for VLCW and
Election-based strategies, while both are smaller than those of
NNC+LRU and Rdm+LRU. The reason lies on that the former
two provide higher likelihood to serve the request at the edge
nodes, which are benefited from the diversity of more video
segments cached.

From TABLE III, we can observe that VLCW has a much
higher rcache . This means more requests are handled by the
cache of unit length for VLCW, which is consistent with the
results characterized in Fig. 11(b) and Fig. 11(c). Similarly,
VLCW achieves a higher rserver benefiting from its efficiency
in aggregating the repeated traffic in the time domain. Accord-

ing to the definition of η, it is determined by both ρ̄ and ϕ̄.
Hence, VLCW achieves a higher efficiency factor as well, due
to its higher cache load and lower server load as indicated by
Fig. 11(a) and Fig. 11(b). The experimental results demonstrate
that VLCW outperforms the other three strategies, especially
for the scenario of the large request arrival rate.

2) Experiment 2: This experiment was conducted to inves-
tigate the performance of our proposed strategy for different
numbers of videos N . The corresponding results indirectly char-
acterize the performance influence of the video popularity dis-
tribution. The values of M and T remained the same as those in
Experiment 1, while λ was fixed to 20 req/min, and the range of
N was from 5 to 25. The experimental results are characterized
in Fig. 12.

Fig. 12(a) shows that the server throughput b̄ corresponding
to all strategies grows as increasing the number of video objects,
N . The reason lies in that according to (10), the larger value of
N reduces the popularity of each video, which is not beneficial
for improving the cache hit ratio, and the number of the video
streams from the streaming server are increased consequently.
Fortunately, VLCW uses the limited cache space in the manner
of caching popular video segments of variable size, which enable
it to maintain a relatively high level of cache hit ratio, and to
reduce the growth of b̄. Fig. 12(b) also indicates that VLCW
achieves the slowest reduction of cache hit ratio when increasing
N . Since VLCW caches the video portion within the sliding
window, it achieves the lowest cache space occupation which is
kept insensitive to N , as shown in Fig. 12(c). The average delays
t̄ illustrated in Fig. 12(d) , as well as the average hops h̄ shown
by Fig. 12(e) both increase as raising N for all strategies. This

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 507

Fig. 12. Performance comparison of VLCW, Election-based, NNC+LRU, and Rdm+LRU for different number of videos. (a) Average throughput of the server, b̄.
(b) Average load of all cache nodes, ρ̄. (c) Average total length of the cached videos, L̄. (d) Average delay for each request, t̄. (e) Average hops for each request, h̄.

TABLE IV
EFFICIENCY COMPARISON FOR DIFFERENT NUMBER OF VIDEOS

may be caused by the fact that due to the reduced popularity for
the increased N , more video requests are served by the video
streaming server, which induces more hops. But VLCW has the
minimum h̄ and t̄ benefited from the relatively higher cache hit
ratio than those of the other three strategies.

TABLE IV shows efficiency comparisons for different num-
ber of videos, N . Since VLCW achieves an almost unchanging
value for L̄ and a slightly decreased ρ̄, which are indicated by
the results in Fig. 12(c) and Fig. 12(b), thus it still outperforms
much better than other methods in cache utilization rcache . As
for rserver and η, the other three strategies also perform well
when N is very small, because the video accesses concentrate
on a small set of available videos. However, they are incurred
with much faster performance degradation than VLCW.

3) Experiment 3: This experiment was conducted to illus-
trate the impact imposed by each switch’s storage capacity M
on the performance of the proposed solution. The cache capac-

ity ranges from 1 to 5 times of the size of a video object. The
value of λ and T were both kept the same as Experiment 2, and
N was set to 20. The experimental results were characterized in
Fig. 13.

We can observe from Fig. 13(a) that b̄ reduces as increasing
the cache capacity, M , for NNC+LRU, Rdm+LRU and Election-
based strategies, which benefits from more entire or segmented
videos cached in switch nodes as shown in Fig. 13(c). By con-
trast, it is kept almost constant for VLCW. The reason is that
VLCW only caches the video segments necessary for aggre-
gating the video requests, which has the lowest requirement of
cache capacity as shown in Fig. 13(c). Fig. 13(b), Fig. 13(d) as
well as Fig. 13(e) further confirm that once the minimum cache
capacity is satisfied, increasing the cache space is not beneficial
for improving the performance of the proposed VLCW solution.
In other words, VLCW is able to ensure a high aggregation effi-
ciency for the repetitive video streams even though constrained
by the limited cache space in network nodes.

The further results are shown in TABLE V in terms of cache
efficiency, stream efficiency and efficiency factor. It can be
seen that all NNC+LRU, Rdm+LRU and Election-based gain
significant benefits in both rserver and η as M increases, re-
sulted from their increase in ρ̄ and the corresponding decrease
in ϕ̄ compared to VLCW. However, their cache efficiencies are
still kept a low increase except for Election-based strategy, of
which the total length of videos cached increases relatively slow,
due to the segment-based caching mechanism. From TABLE V,
we can observe that all three metrics for VLCW maintain almost
unchanged level. This also implies that our strategy, VLCW, can
achieve better performance in reducing redundant traffic while
consuming less storage resource.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

508 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 2, FEBRUARY 2019

Fig. 13. Performance comparison of VLCW, Election-based, NNC+LRU and Rdm+LRU for different sizes of storage space. (a) Average throughput of the
server, b̄. (b) Average load of all cache nodes, ρ̄. (c) Average total length of the cached videos, L̄. (d) Average delay for each request, t̄. (e) Average hops for each
request, h̄.

TABLE V
EFFICIENCY COMPARISON FOR DIFFERENT SIZES OF STORAGE SPACE

VIII. CONCLUSION

In order to eliminate the redundant traffic incurred by VoD
service, we designed a software-defined multimedia streaming
VoD system with the aid of in-network cache. A variable-length
interval cache strategy was proposed for improving the uti-
lization of storage resource and the aggregation efficiency of
streams. We presented the theoretic analysis to demonstrate the
attainable performance of the proposed strategy. Furthermore, a
prototype system was developed to verify the feasibility and ap-
plicability of the proposed solution. In order to comprehensively
evaluate the achievable performance improvement, we defined
the performance metrics in terms of hop count, transmission de-
lay, server throughput, cache efficiency etc., and conducted com-
parative experiments with three benchmark algorithms, namely
NNC+LRU, Rdm+LRU and Election-based by emulation. The
experimental results indicate that the performance improvement
is up to 50% reduction in server throughput, 25% decrease in the

hops of the delivery path, 3 to 5 times increase in the utilization
of the storage resource.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 2016-2021,”
Cisco Syst., San Jose, CA, USA, Tech. Rep. 1465272001663118., Sep.
2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/complete-white-
paper-c11-481360.html

[2] I. Ullah, G. Doyen, G. Bonnet, and D. Gaiti, “A survey and synthesis of
user behavior measurements in P2P streaming systems,” IEEE Commun.
Surv. Tut., vol. 14, no. 3, pp. 734–749, Jul–Sep. 2012.

[3] A. Balachandran, “Large scale data analytics of user behavior for improv-
ing content delivery,” Ph.D. dissertation, Carnegie Mellon Univ., Pitts-
burgh, PA, USA, Dec. 2014.

[4] S. Mitra et al., “Characterizing web-based video sharing workloads,”
ACM Trans. Web, vol. 5, no. 2, pp. 1–27, May 2011.

[5] G. Peng, “CDN: Content distribution network,” Research Proficiency
Exam Report, pp. 1–6, Nov. 2004, arXiv:cs/0411069.

[6] Akamai website. 2017. [Online]. Available: https://www.akamai.com/
cn/zh/

[7] Limelight website. 2017. [Online]. Available: https://www.limelight.com/
[8] N. Bartolini, E. Casalicchio, and S. Tucci, “A walk through content de-

livery networks,” in Proc. Int. Workshop Model., Anal., Simul. Comput.
Telecommun. Syst. (Lecture Notes in Computer Science, vol. 2965), Apr.
2004, pp. 1–25.

[9] Chiosi, et al., “Network functions virtualisation: An introduction, benefits,
enablers, challenges and call for action,” in Proc. SDN Open-Flow World
Congr., Oct. 2012, pp. 22–24.

[10] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for coordi-
nated network-wide redundancy elimination,” in Proc. ACM SIGCOMM
Conf. Data Commun., Aug. 2009, pp. 87–98.

[11] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in
Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2006,
pp. 321–332.

[12] S. Sezer et al., “Are we ready for SDN? Implementation challenges for
software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7, pp. 36–
43, Jul. 2013.

[13] ONF Solution Brief, OpenFlow-enabled SDN and Network Functions
Virtualization. Menlo Park, CA, USA: Open Netw. Found., 2014.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

YANG et al.: SOFTWARE-DEFINED MULTIMEDIA STREAMING SYSTEM AIDED BY VARIABLE-LENGTH INTERVAL IN-NETWORK CACHING 509

[14] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–
74, Apr. 2008.

[15] M. Mangili, F. Martignon, and A. Capone, “Stochastic planning for content
delivery: Unveiling the benefits of network functions virtualization,” in
Proc. IEEE 22nd Int. Conf. Netw. Protocols, Oct. 2014, pp. 344–349.

[16] N. Herbaut, D. Negru, D. Magoni, and P. A. Frangoudis, “Deploying a
content delivery service function chain on an SDN-NFV operator infras-
tructure,” in Proc. IEEE Int. Conf. Telecommun. Multimedia, Jul. 2016,
pp. 1–7.

[17] H. Ibn-Khedher, E. Abd-Elrahman, and H. Afifi, “OMAC: Optimal migra-
tion algorithm for virtual CDN,” in Proc. IEEE 23rd Int. Conf. Telecom-
mun., May 2016, pp. 1–6.

[18] J. Kim et al., “An efficient multimedia transmission control methodology
based on NFV,” in Proc. IEEE 5th Int. Conf. IT Convergence Secur., Aug.
2015, pp. 1–4.

[19] “The elastic CDN solution: Dynamic content delivery network built on
NFV and SDN from Akamai and Juniper,” Juniper Netw., Sunnyvale, CA,
USA, Solution Brief 3510532-001-EN, Dec. 2014, [Online]. Available:
https://www.juniper.net/assets/kr/kr/local/pdf/solutionbriefs/3510532-en.
pdf

[20] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management
and resource allocation for information-centric networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 11, pp. 2920–2931, Nov. 2014.

[21] K. Kanai et al., “Proactive content caching for mobile video utilizing
transportation systems and evaluation through field experiments,” IEEE J.
Sel. Areas Commun., vol. 34, no. 8, pp. 2102–2114, Aug. 2016.

[22] Y. Kim and I. Yeom, “Performance analysis of in-network caching for
content-centric networking,” Comput. Netw., vol. 57, no. 13, pp. 2465–
2482, Sep. 2013.

[23] N. Xue et al., “Demonstration of OpenFlow-controlled network orchestra-
tion for adaptive SVC video manycast,” IEEE Trans. Multimedia, vol. 17,
no. 9, pp. 1617–1629, Sep. 2015.

[24] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An SDN-based CDN/ISP
collaboration architecture for managing high-volume flows,” IEEE Trans.
Netw. Service Manage., vol. 12, no. 1, pp. 48–60, Mar. 2015.

[25] H. E. Egilmez and A. M. Tekalp, “Distributed QoS architectures for mul-
timedia streaming over software defined networks,” IEEE Trans. Multi-
media, vol. 16, no. 6, pp. 1597–1609, Oct. 2014.

[26] J. Yang, K. Zhu, Y. Ran, W. Cai, and E. Yang, “Joint admission control and
routing via approximate dynamic programming for streaming video over
software-defined networking,” IEEE Trans. Multimedia, vol. 19, no. 3,
pp. 619–631, Mar. 2017.

[27] M. Kimmerlin, J. Costa-Requena, and J. Manner, “Caching using
software-defined networking in LTE networks,” in Proc. IEEE Int. Conf.
Adv. Netw. Telecommun. Syst., Dec. 2014, pp. 1–6.

[28] A. F. Trajano and M. P. Fernandez, “ContentSDN: A content-based trans-
parent proxy architecture in software-defined networking,” in Proc. IEEE
30th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2016, pp. 532–539.

[29] P. Georgopoulos, M. Broadbent, A. Farshad, B. Plattner, and N. Race,
“Using software defined networking to enhance the delivery of video-on-
demand,” Comput. Commun., vol. 69, pp. 79–87, Sep. 2015.

[30] Z. Li, G. Simon, and A. Gravey, “Caching policies for in-network
caching,” in Proc. IEEE 21st Int. Conf. Comput. Commun. Netw., Jul.
2012, pp. 1–7.

[31] S. Traverso et al., “Unravelling the impact of temporal and geographical
locality in content caching systems,” IEEE Trans. Multimedia, vol. 17,
no. 10, pp. 1839–1854, Oct. 2015.

[32] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching
through online learning,” IEEE Trans. Multimedia, vol. 18, no. 12,
pp. 2503–2516, Dec. 2016.

[33] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video popularity dynamics
and its implication for replication,” IEEE Trans. Multimedia, vol. 17, no. 8,
pp. 1273–1285, Aug. 2015.

[34] M. Claeys et al., “Cooperative announcement-based caching for video-
on-demand streaming,” IEEE Trans. Netw. Serv. Manage., vol. 13, no. 2,
pp. 308–321, Mar. 2016.

[35] A. Dan and D. Sitaram, “Generalized interval caching policy for mixed
interactive and long video workloads,” in Proc. SPIE, Mar. 1996, vol. 2667,
pp. 344–351.

[36] A. Dan and D. Sitaram, “Buffer management policy for an on-demand
video server,” IBM, Yorktown Heights, NY, USA, Tech. Rep. RC 19347,
1994.

[37] H. Schulzrinne, RTP Tools. 2016. [Online]. Available: http://www.cs.
columbia.edu/irt/software/rtptools/

[38] H.-Y. Chen et al., “A novel multimedia synchronization model and its
applications in multimedia systems,” IEEE Trans. Consum. Electron.,
vol. 41, no. 1, pp. 12–22, Feb. 1995.

[39] A. W. Marshall and I. Olkin, “A family of bivariate distributions generated
by the bivariate Bernoulli distribution,” Amer. Statist. Assoc., vol. 80,
no. 390, pp. 332–338, 1985.

[40] L. Devroye, “Laws of the iterated logarithm for order statistics of uniform
spacings,” Ann. Probab., vol. 9, no. 5, pp. 860–867, Oct. 1981.

[41] S. Pallottino, “Shortest-path methods: Complexity, interrelations and new
propositions,” Networks, vol. 14, no. 2, pp. 257–267, 1984.

[42] OpenWrt Project. 2015. [Online]. Available: https://www.openwrt.org/
[43] Open Networking Lab, POX Wiki. 2015. [Online]. Available: https://

openflow.stanford.edu/display/ONL/POX+Wiki
[44] V. Jacobson et al., “Networking named content,” in Proc. ACM 5th Int.

Conf. Emerg. Netw. Exp. Technol., Dec. 2009, pp. 1–12.
[45] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” in

information-centric networks,” in Proc. 11th Int. IFIP TC 6 Conf. Netw.,
May 2012, pp. 27–40.

[46] Mininet Team, Mininet Project. 2017. [Online]. Available: http://
mininet.org//

[47] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous streaming multi-
cast in application-layer overlay networks,” IEEE J. Sel. Areas Commun.,
vol. 22, no. 1, pp. 91–106, Jan. 2004.

[48] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming
systems,” Peer-to-Peer Netw. Appl., vol. 1, no. 1, pp. 18–28, Mar. 2008.

Jian Yang (SM’16) received the B.S. and Ph.D. de-
grees from the University of Science and Technology
of China (USTC), Hefei, China, in 2001 and 2006, re-
spectively. From 2006 to 2008, he was a Postdoctoral
Scholar with the Department of Electronic Engineer-
ing and Information Science, USTC. Since 2008, he
has been an Associate Professor with the Department
of Automation, USTC.

He is currently a Professor with the School of
Information Science and Technology, USTC. His re-
search interests include future network, distributed

system design, modeling and optimization, and multimedia over wired and
wireless and stochastic optimization. He was the recipient of the Lu Jia-Xi
Young Talent Award from Chinese Academy of Sciences in 2009.

Zhen Yao received the B.S. degree in 2015 from
the University of Science and Technology of China,
Hefei, China, where he is currently working toward
the Ph.D. degree with the School of Information Sci-
ence and Technology.

His research interests include software-defined
networking, multimedia transmissions in future net-
works, and in-network intelligence assisted by ma-
chine learning.

Bowen Yang received the B.S. degree in 2014 from
the University of Science and Technology of China,
Hefei, China, where he is currently working toward
the Ph.D. degree with the School of Information Sci-
ence and Technology.

His research interests include multimedia commu-
nications, wireless network, and stochastic optimiza-
tion of multimedia transmissions in future networks.

Xiaobin Tan, photograph and biography not available at the time of publication.

Zilei Wang, photograph and biography not available at the time of publication.

Quan Zheng, photograph and biography not available at the time of publication.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 11,2022 at 02:36:40 UTC from IEEE Xplore. Restrictions apply.

https://www.juniper.net/assets/kr/kr/local/pdf/solutionbriefs/3510532-en.pdf
https://www.juniper.net/assets/kr/kr/local/pdf/solutionbriefs/3510532-en.pdf
http://www.cs.columbia.edu/irt/software/rtptools/
http://www.cs.columbia.edu/irt/software/rtptools/
https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

