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Bézier curves

* Bézier curves/splines developed by
* Paul de Casteljau at Citroen (1959)
* Pierre Bézier at Renault (1963)
for free-form parts in automotive design




Bézier curves

* Today: Standard tool for 2D curve editing

* Cubic 2D Bézier curves are everywhere:
* Inkscape, Corel Draw, Adobe lllustrator, Powerpoint, -
* PDF, Truetype (quadratic curves), Windows GDI, -

* Widely used in 3D curve & surface modeling as well




Curve representation

* The implicit curve form f(x,y) = 0 suffers
from several lImitations: \




Curve representation

* The implicit curve form f(x,y) = 0 suffers
from several limitations:

* Multiple values for the same x-coordinates

. ... d
* Undefined derivative d—i} (see blue cross)

X ——N—— — — % — %

 Not Invariant w.r.t axes transformations




Parametric representation

* Remedy: parametric representation c(t) = (x(t),y(t))

* Easy evaluations
* The parameter t can be interpreted as time

* The curve can be interpreted as the path traced by a moving particle



Modeling with the power basis,

* Example of a parabola: f(t) = at* + bt + ¢

f(t) = (D t2 + (_02) t + ((1))

0.5

1-0.5




Modeling with the power basis,

no thanks!

* Examples of a parabola: f(t) = at* + bt + c: the coefficients of
the power basis lack intuitive geometric meaning
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Back to the drawing boara

* A point on a parametric line

b{ = (1 —t)by + th,



Back to the drawing boara

* Another point on a second parametric line

b} = (1—-t)by +tb,
bl = (1 —t)bg + tb,



Back to the drawing boara

* A third point on the line defined by the first two points

bl = (1 —t)bg + tb,

b5 = (1 —t)b} + tb]



Back to the drawing boara

* And then simplity--

bl = (1 —t)by + th,

b5 = (1 —t)b} + th]
b} = (1 —-t)by + tb,
b = (1—-t)[(1 —t)bg + tby] + t[(1 — )by + tb,]

b5 = (1 —t)%by + 2t(1 — t)by + t2b,



Back to the drawing boara

* We obtained another description of
parabolic curves

* The coefficients by, b1, b, have a
geometric meaning

b3 = (1 —t)?by + 2t(1 — t)by + t%b,



Example re-visited

* Let’s rewrite our initial parabolic curve example in the new basis

0=+ (Der ()

f(t) = ((1)) (1—1t)% + (8) 2t(1 —t) + ((1)) t?



Example re-visited

* The coefficient have a geometric meaning

* More Intuitive for curve manipulation

\
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f(t)= (;JU— t)” + (S)Zt(‘l—t)+((1)]t2



Another example




Going further

* Cubic approximation
* Given 4 points:  po(t) =po, Pi(t) =p1, P2(t) =Pz P3(L) = Ps
* First iteration po = (1 —t)py + tp,
pi=(1-0p, +tp;
p; = (1 —t)p, + tps
o 2Nd jteration ps = (1 —t)*py + 2t(1 — t)p, + t*p,

pi =1 —-t)*p, +2t(1 — t)p, + t?ps

* Curve
c(t) = (1 —-1t)3py + 3t(1 —t)?p, + 3t2(1 — t)p, + t3ps



Throughout these examples, we just
re-invented a primitive version of the
de Casteljau algorithm

Now let's examine it more closely -
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De Casteljau algorithm

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* [terate, until only one points is left
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De Casteljau algorithm

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* [terate, until only one points is left



De Casteljau algorithm

s /y:\\

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* [terate, until only one points is left



De Casteljau algorithm

* Algorithm description
* Input: points by, b,,..b, € R3
* Output: curve x(t),t € [0,1]

« Geometric construction of the points x(t) for given t:
b?(t) = bir I = O, vy, n
by (t) = (1 —t)b]~'(t) + t bl (t)
r=1,..,n i1=0,..,.n—r

* Then by (t) is the searched curve point x(t) at the parameter value t



De Casteljau algorithm

* Repeated convex combination of control points
(r) _ (r—1) (r—1)
b; " = (1-1t)b, +tb:

1+1

bgo) b,

bi®
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De Casteljau algorithm

* Repeated convex combination of control points

b =1 -6)b" P +th{ [V
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De Casteljau algorithm

* Repeated convex combination of control points

b =1 -6)b" P +th{ [V
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De Casteljau algorithm

* Repeated convex combination of control points
b =1 -6)b" P +th{ [V

N N
& &
(0) __t (1) _ ¢t (2)
b > b
2 J\ 1 J\ bO V4
& &
(0) (1) 2
b3 t b2 t bg) t

De Casteljau scheme




De Casteljau algorithm

* The intermediate coefficients b; (t) can be written in a triangular matrix: the
de Casteljau scheme:

bO — b8
b, = bg b%)

b, =hb bl . .. b1 BT =x(t)



De Casteljau algorithm

Algorithm:
forr=1..n
for 1=0..n-r
b = (1-t)b{" " + t bl
end

end

The whole algorithm consists only of
repeated linear interpolations.

return b\



De Casteljau algorithm: Properties

* The polygon consisting of the points by, ..., b,, is called Bézier polygon
(control polygon)

* The points b; are called Bézier points (control points)

* The curve defined by the Bézier points by, ..., b,, and the de Casteljau
algorithm s called Bézier curve

* The de Casteljau algorithm is numerically stable, since only convex
combinations are applied.

* Complexity of the de Casteljau algorithm
« 0(n%) time
* 0(n) memory
* with n being the number of Bézier points




De Casteljau algorithm: Properties

* Properties of Bézier curves:
* Given: Bézier points by, ..., b,
Bézier curve x(t)
* Bézier curve Is polynomial curve of degree n

* End points interpolation: x(0) = by, x(1) = b,,. The remaining Bézier
points are only approximated in general
* Convex hull property:

Bézier curve Is completely inside the convex hull of its Bézier polygon



De Casteljau algorithm: Properties

* Variation diminishing
* No line intersects the Bézier curve more often than its Bézier polygon

* Influence of Bézier points: global but pseudo-local
* Global: moving a Bézier points changes the whole curve progression

* Pseudo-local: b; has its maximal influence on x(t) at t = %

 Affine invariance:

* Bézier curve and Bézier polygon are invariant under affine
transformations

* Invariance under affine parameter transformations



De Casteljau algorithm: Properties

* Symmetry
* The following two Bézier curves coincide, they are only traversed In
opposite directions:

x(t) = [by, ...b,]  x'(t) = [b,, ... b,]

* Linear Precision:
* Bézier curve is line segment, if by, ..., b,, are colinear

* [nvariance under barycentric combinations



Recap

de Casteljau algorithm



Bézier Curves
Towards a polynomial description



Bézier Curves
Towards a polynomial description

b,




Polynomial description of Bézier curves

* The same problem as before:
* Given: (n + 1) control points by, ..., b,
* Wanted: Bézier curve x(t) with t € [0,1]

* Now with an algebraic approach using basis functions



Desirable Properties

* Useful requirements for a basis:

 Well behaved curve
* Smooth basis functions
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* Local control (or at least semi-local)
* Basis functions with compact support



Desirable Properties

* Useful requirements for a basis:

 Well behaved curve
* Smooth basis functions

* Local control (or at least semi-local)
* Basis functions with compact support

 Affine invariance:

* Appling an affine map x - Ax + b on
* Control points
* Curve

Should have the same effect
* |n particular: rotation, translation
* Otherwise: interactive curve editing very difficult



Desirable Properties

* Useful requirements for a basis:

* Convex hull property:
* The curve lays within the convex hull of its control points
* Avoids at least too weird oscillations

* Advantages

* Computational advantages (recursive intersection tests)
* More predictable behavior



summary

* Useful properties
* Smoothness
* Local control / support
* Affine invariance
* Convex hull property

Notations

Curve

SS

~

basis function control points

\ P
\ ’

n
SO = ) bi(Op;
=1




Affine Invariance

* Affine map: x > Ax + b

* Part I: Linear invariance — we get this automatically

* Linear approach:

f(t) =21 bi(Op; = Xi=1 b;i(t)

[p)

)
L

p
\pi(z) /

» Therefore:  A(f(t)) = AZT, bi(0)py) = Xieq bi(©)(4p))



Affine Invariance

* Affine Invariance:
* Affine map: x > Ax+ b
 Part ll: Translational invariance

zn: bi(t)(p; +b) = zn: b;(t)p; + Zn: bi(t)b = f(t) + (i bi(t)> b
i=1 i=1 i=1 i=1

* For translational invariance, the sum of the basis functions must be one everywhere
(for all parameter values t that are used).

* This is called “partition of unity property”
* The b;'s form an “affine combination” of the control points p;

* This is very important for modeling



Convex Hull Property

* Convex combinations:
« A convex combination of a set of points {p4, ..., P»} is any point of the form:

L Apiwith Y, 4y =landVi=1..nm:0< ;<1

* (Remark: 4; < 1 is redundant)

* The set of all admissible convex combinations forms the convex hull of the
point set

* Easy to see (exercise): The convex hull is the smallest set that contains all points
{p1, ...,p»} and every complete straight line between two elements of the set



Convex Hull Property

* Accordingly:
* |f we have this property
Vte Q: Y bi(t) =1and Vt € Q,Vi:b;(t) =0
the constructed curves / surfaces will be:

* Affine invariant (translations, linear maps)
* Be restricted to the convex hull of the control points

* Corollary: Curves will have /inear precision
* All control points lie on a straight line
= Curve Is a straight line segment

* Surfaces with planar control points will be flat, too



Convex Hull Property

* Very useful property in practice
* Avoids at least the worst oscillations
* no escape from convex hull, unlike polynomial interpolation
* Linear precision property Is intuitive (people expect this)
* Can be used for fast range checks

* Test for intersection with convex hull first, then the object

* Recursive intersection algorithms in conjunctions with subdivision rules (more on
this later)

A



Polynomial description of Bézier curves

* The same problem as before:
* Given: (n + 1) control points by, ..., b,
* Wanted: Bézier curve x(t) with t € |0,1]

* Now with an algebraic approach using basis functions

* Need to define n 4+ 1 basis functions

* Such that this describes a Bézier curve:
B{(t), ..., BJl(t) over [0,1]

n

x(t) = ) BI'(®)- by

=0



Bernstein Basis

* Let’'s examine the Bernstein basis: B = {Bé"),Bl("), ...,B,?”}
* Bernstein basis of degree n:
Bi(n) (t) — (7:) ti(l _ t)n—i — B(degree)

i—th basis function

where the binomial coefficients are given by:
( n!
(n) =t for0<i<n

. 0 otherwise

l




Binomial Coefficients and Theorem




, B™W () = () ti(1 - )n
Examples: The first few (&)

* The first three Bernstein bases:

BSO) =1

Bgl) =1-1 Bl(l) =t

B =(1-1)? B =2t1-1t) BP =1t

B =1-03 B®=3t1-0? B®:=3c2(1-t) B :=1¢3



Examples: The first few

BM =1t
Bl(l) =1
n=1 (linear)
B, B,

B{? = (1 -1)?
Bl(z) = 2t(1—1t)

2
l;é: ) o— 152
n =2 (quadratic.)
By B,
B,

Bi(n) (t) — (7;) ti(l _ t)n—i

BSO) =1
B = (1-1t)3
B3 = 3t(1 - t)?
B == 3t2(1 -0
33(3) — ¢3

n =3 (cubic)

062U 08



Bernstein Basis

* Bézier curves use the Bernstein basis: B = {Bén),Bl(n), ...,B,§">}
* Bernstein basis of degree n:

Bi(n) (t) = (7:) ti(l _ t)n_i — B.(degree)

i—th basis function

n=2 (quad.) " n=3 (cubic) " n=10
BO Bz 08 BO B3 08
Bl 06 Bl B2 06

0.2 04 06 08 1 0 02 04 06 08 1 0 0.2 04 06



Bernstein Basis

* \What about the desired properties?
* Smoothness
* Local control / support
* Affine invariance
* Convex hull property



Bernstein Basis: Properties

- B ={B, B, ... B} B (1) = (7)1 — o)

* Basis for polynomials of degree n
mothness J

* Each basis function Bi(n) has Its maximum at t = i

mrol (semi—local)}




Bernstein Basis: Properties

-8 ={B, B, ...B"} B (1) = () (1 — o)

Affine invariance} %hull property J

* Partition of unity (binomial theorem) ! n=
1=(1-t+¢t)

> BP@® = (t+(1-0)" =1
=0




What about the desired properties?

* Smoothness
* Local control / support
* Affine Invariance

* Convex hull property



Bernstein Basis: Properties

_ (p) pm M) )y _ (M i _i
+B = {BO" 8™, ., B } B (t) = (i)t‘(l — t)n-i
* Recursive computation

B'(t) = (1 — t)B" V() + tB™ V(1 - t)
with Bg(t) = 1,Bl*(t) = 0 for i & {0 ...n}

* Symmetry

B/'(t) =B, _;(1—1t)
* Non-negativity: Bl.(")(t) >0 forte|0..1]




Bernstein Basis: Properties

- B ={B, B, ... B} B (1) = (7)1 — o)

* Non-negativity

B'(t) >0for0<t<1
Br(0)=1,  B}0)=--=Br0)=0
Bf(1)=--=B}_,(1) =0, B(1) =1




Recap

de Casteljau algorithm

()= p.B"

tE[0.1]

Bernstein form



Recap

Bernstein form

()= 5"

t€[0.1]

Useful properties for basis functions

Curve basis function  control points | ° Smoothness
s ’

oo n \N , * Local control / support
\\ﬁ k’ . . .
— * Affine invariance
f@) = ) B;(t)p;

* Convex hull property




Degree elevation

* Given: by, ",b,, = x(t)
» Wanted: by, ..., by, by.1 = X(t) with x = X

e Solution:



Degree elevation
* Given: by, ",b,, = x(t)
« Wanted: by, ..., b,,, b1 = X(t) with x = X

e Solution:



Proof

* Let's consider
-8 =1 -0)(;)a-omit = ()@ -ori-ie
_nri-t ("7 1) (1 —t)n+i-igl

n+1 l
Similarly
LBR() = — B (1)

n+1 1



Proof

n n
- fO=10-D+tf® =[1-0+ t]zB?(wPi = ) 11— OBI®) + B (O]P
) =0 . i=0 N
n @ n+1—i i+1 n+1-—i i+1
=2 0O n+1 n+1 . — n+1 _ n+1 _
% mAZI n+1 B+ n+1 B (t)]P‘ Z n+1 B (t)P‘Jan+1B‘+1 Ol
L 5 . i=0 i=0
©
o — n +1—1i i
27 BUHL(H)P, + Z—BT‘“ P,
8 '_O n+1 l ()l _1n+1 l ()ll
;z_+1§n - nti
— 1 l
= ) T BOP ) g B 0P
i=0 n i=0 7} Adding nullterms, i =n+1,i =0
n+1 ]
ZB"“(t) ntl- lP- +—p,
NI Tl

=0



Degree elevation: Example
4

.¢.



Degree elevation: Example
4
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Degree elevgtion: Example
4

2 d
4
@
1
4 .
b — b= I _ 1 \p.
b, = b, by =——b;_,+(1--L-)b,



Degree elevei\tion: Example
& O

1 ¢1
2 2
@
b — b= I _ 1 \p.
b, = b, by =—b;_,+(1--L)b,



Degree elevation: Example
& O

¢1

4

¢ ®

3

- 4
b — b= I _ 1 \p.
b, = b, by =—b;_,+(1--L)b,



Degree elevation: Example
& O

.¢.



Degree elevation: Example
4




Degree elevation

bo= Do

b,
For repeated degree elevation, the Bezier polygon converges to the
Bézier curve. (slow convergence)



Degree elevation
<>




Bézier Curves

Subdivision



Subdivision

* Given: by, ..., b, = x(t),t € |0,1]

* Wanted: b(()l), e b,gl) — xD (1),
bi?, ... b? - x@ (1),

with x = x@W y x@



Subdivision: Example

de Casteljau scheme



Subdivision: Example

de Casteljau scheme



Subdivision
Solution: b = bi, b® = b2~ fori=0,...,n

That means that the new points are intermediate points of the
de Casteljau algorithm!

bi .
~_ b2

bo - b'(';»



Curve range

parameterization: t € [0,1]



Curve range

t = —0.25




Summary & Outlook

* Bézier curves and curve design
* The rough form is specified by the position of the control points
* Results: smooth curve approximating the control points
* Computation / Representation:

* de Casteljau algorithm
* Bernstein form e

* Problems:
* High polynomial degree
* Moving a control point can change the whole curve
* Interpolation of points
* —Bézier splines



