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Parametric Curves

• Parametric Curves:
• Think of a curve 𝑐 as the path of a moving particle

• Not always enough to know where a particle went – we also want to 
know when it got there → 𝑐 𝑡

• Parameter 𝑡 is often thought of as time



Parametric Curves

• Parametric Curves:
• A parameterization of class 𝐶𝑘 𝑘 ≥ 1 of a curve in ℝ𝑛 is a smooth map 
𝑐: 𝐼 = 𝑎, 𝑏 ⊂ ℝ ↦ ℝ𝑛, where 𝑐 is of class 𝐶𝑘



Parametric Curves

• Parametric Curves:
• The image set 𝑐 𝐼 is called the trace of the curve

• Different parameterizations can have the same trace.

• A point in the trace, which corresponds to more than one parameter 
value 𝑡, is called self-intersection of the curve



Parametric Curves: Examples

• The positive x-axis
• 𝑐 𝑡 = 𝑡, 0 , 𝑡 ∈ 0,∞

• 𝑐 𝑡 = 𝑒𝑡 , 0 , 𝑡 ∈ ℝ

• Circle
• 𝑐 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ 0,2𝜋

• 𝑐 𝑡 = cos 2𝑡 , sin 2𝑡 , 𝑡 ∈ 0, 𝜋

• 𝑐 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ ℝ



The velocity vector

• The derivative 𝑐′ 𝑡 is called the velocity vector to the curve 𝑐 at 
time 𝑡
• 𝑐′ 𝑡 gives the direction of the movement

• 𝑐′ 𝑡 gives the speed

• Example
• 𝛼 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ 0, 2𝜋

• 𝛽 𝑡 = cos 2𝑡 , sin 2𝑡 , 𝑡 ∈ 0, 𝜋



Regular parametric curves

• Regular parametrization
• A parameterization is called regular if 𝑐′ 𝑡 ≠ 0 for all 𝑡

• A point at which a curve is regular is called an ordinary point

• A point at which a curve is non-regular is called an singular point



Examples: regularity

• Examples: issues with non-regular parameterization



Examples: cusps

Singularities can be desired design features



Examples: cusps

Singularities can be desired design features

Cusp



Change of parameterization

• Given a smooth regular parametrization, an allowable change 
of parameter is any real smooth (differentiable) function

𝑓: 𝐼1 → 𝐼 such that 𝑓′ ≠ 0 on 𝐼1
• It is orientation preserving when 𝑓′ > 0



Change of parameterization

• Parameter Transformations:
• We can regard a regular curve as a collection of regular 

parameterizations, any two of which are reparameterizations of each 
other (equivalence class)

• We are interested in properties that are invariant under parameter 
transformations



Geometric observations

• Tangent vector:
• The tangent line to a regular curve 𝑐 𝑡 at 𝑝0 = 𝑐 𝑡0 can be defined 

as points 𝑝 which satisfy 𝑝 − 𝑝0 ∥ 𝑐0
′ , where 𝑐0

′ = 𝑐′ 𝑡0

• The normalized vector 𝑡 =
𝑐′

𝑐′
is called the tangent vector 



Geometric observations

• The normal plane:
• The normal plane can be obtained as points 𝑝 whose coordinates satisfy 
𝑝 − 𝑝0 ⊥ 𝑐0

′

⇔ 𝑝 − 𝑝0 ⋅ 𝑐0
′ = 0



Geometric observations

• Osculating plane: 密切平面

• Assume the curve 𝑐 𝑡 is not a straight line. Any three arbitrary non-
collinear points 𝑝1, 𝑝2, 𝑝3 determine a plane

• If 𝑝1, 𝑝2, 𝑝3 tend to the same points 𝑝0 of 𝑐, then their plane converges to 
a plane called the osculating plane 𝑇 of 𝑐 at 𝑝0

• The osculating plane is well defined if the first two derivatives 𝑐0
′ and 𝑐0

′′

at 𝑝0 are linearly independent and is give as:
𝑐0
′ × 𝑐0

′′ ⋅ 𝑝 − 𝑝0 = 0



Geometric observations

Observe the distance between 𝑃 𝑡0 + Δ𝑡 and a given 
plane passing through 𝑃 𝑡0 with normal vector 𝑎

𝑎 ⋅ 𝑃 𝑡0 + Δ𝑡 − 𝑃 𝑡0 = 𝑎 ⋅ ሶ𝑃 𝑡0 Δ𝑡 +
ሷ𝑃 𝑡0
2!

Δ𝑡2 +⋯

The distance is minimal when

𝑎 ⋅ ሶ𝑃 𝑡0 = 0, 𝑎 ⋅ ሷ𝑃 𝑡0 = 0

That is when the plane is osculating

→ The osculating plane is the plane that best fits the curve at 𝑃 𝑡0



Geometric observations

• The rectifying plane: 从切平面

• The plane normal to both, the osculating plane and the normal plane, is 
called the rectifying plane 𝑅 and can be obtained as points 𝑝 whose 
coordinates satisfy

𝑐0
′ × 𝑐0

′ × 𝑐0
′′ ⋅ 𝑝 − 𝑝0 = 0



Geometric observations

Normals: any vector in the normal plane is normal to 
the curve, in particular:

• The normal 𝑛 lying in the osculating plane is called the 
principal normal at 𝑝0. 

It has a direction 𝑐0
′ × 𝑐0

′′ × 𝑐0
′

• The normal 𝑏 lying in the rectifying plane is called the 
binormal. 副法向

It has a direction 𝑐0
′ × 𝑐0

′′



The Frenet frame

We can define a local coordinates system on the curve by 
three vectors

• The tangent 𝑡 =
𝑐′

𝑐0
′

• The binormal 𝑏 =
𝑐0
′×𝑐0

′′

𝑐0
′×𝑐0

′′

• The principal normal 𝑛 = 𝑏 × 𝑡



The Frenet frame and associated planes

• The tangent 𝑡 =
𝑐′

𝑐0
′

• the normal plane 𝑝 − 𝑝0 ⋅ 𝑡 = 0

• The binormal 𝑏 =
𝑐0
′×𝑐0

′′

𝑐0
′×𝑐0

′′

• the osculating plane 𝑝 − 𝑝0 ⋅ 𝑏 = 0

• The principal normal 𝑛 = 𝑏 × 𝑡
• the rectifying plane 𝑝 − 𝑝0 ⋅ 𝑛 = 0



Curvature

• Common conceptions of curvature
• Measures bending of a curve

• A straight line does not bend → 0 curvature

• A circle has constant bending → constant curvature



Curvature

Euler’s heuristic approach for planar curves
• Variation of the tangent angle: how much does the curve differ from a 

straight line



Curvature for regular parameterization

The curvature is denoted by 𝜅 and defined as

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3



Examples:

• Consider the circle 𝑐 𝑡 = 𝑟 cos 𝑡 , 𝑟 sin 𝑡 , 0

The curvature is given by

• Consider the helix 𝑐 𝑡 = 𝑟 cos 𝑡 , 𝑟 sin 𝑡 , 𝑎𝑡 , the curvature is

𝜅 𝑡 =
𝑟

𝑟2 + 𝑎2

𝜅 𝑡 =
−𝑟 sin 𝑡, 𝑟 cos 𝑡, 0 × −𝑟 cos 𝑡, −𝑟 sin 𝑡, 0

𝑟3
=

0, 0, 𝑟2

𝑟3
=

1

𝑟



Special case: planar curves

• For a regular planar curve 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

• Sometimes we talk about signed curvature, and then curvature 
can be allowed to be signed (negative, zero, or positive)

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3



Examples

Curvature of circles

• Curvature of a circle is constant, 𝜅 ≡
1

𝑟
(𝑟 = radius)

• Accordingly: define radius of curvature as 
1

𝜅



Curvature in practice

Most of commercial package allow inspecting the quality of the 
curvature



Curvature in practice

Most commercial package allow checking the quality of the 
curvature even meticulously!



Curvature and Road Construction
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Clothoide, Euler Spiral   羊角螺线

𝑐 𝑡 =

න
0

𝑡

cos
𝜋

2
𝑢2 𝑑𝑢

න
0

𝑡

sin
𝜋

2
𝑢2 𝑑𝑢
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Torsion for regular parameterization

Definition
• The torsion 𝜏 measures the variation of the binormal vector

• (deviation of the curve from its projection on the osculating plane, can be 
regarded as how far is the curve is from being a planar curve) and is 
given by

𝜏 𝑡 =
𝑐′ × 𝑐′′ ⋅ 𝑐′′′

𝑐′ × 𝑐′′ 2



Torsion

Examples: 

• Torsion for a planar curve

• Torsion for a quadratic curve



Measuring lengths on curves

The arc length of a curve
• Can be regarded as the limit of the sum of infinitesimal segments along 

the curve

𝑐 𝑡 𝑐 𝑡 + Δ𝑡



Measuring lengths on curves

The arc length of a curve
• The arc length of a regular curve 𝐶 is defined as : 

lengthc = න
𝑎

𝑏

𝑐′ 𝑑𝑡

• Independent of the parameterization (to prove this, use integration by 
substitution)



Measuring lengths on curves

Curve arc length matters in practice (e.g., cable routing 
problems) 



Arc-length parametrized curves



Arc length parametrization

• Consider the portion of 𝑐 𝑡 spanned from 0 to 𝑡, the length 𝑠 of this 
arc is a function of 𝑡:

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑢

• Since 
𝑑𝑠

𝑑𝑡
= 𝑐′ 𝑡 > 0 (why?) → 𝑠 can be introduced as a new 

parameterization



Arc length parametrization

• Consider the portion of 𝑐 𝑡 spanned from 0 to 𝑡, the length 𝑠 of this 
arc is a function of 𝑡:

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑢

• Since 
𝑑𝑠

𝑑𝑡
= 𝑐′ 𝑡 > 0 (why?) → 𝑠 can be introduced as a new 

parameterization

• We have 𝑐′ 𝑠 =
𝑑𝑐

𝑑𝑠
=

ൗ𝑑𝑐
𝑑𝑡

ൗ𝑑𝑠
𝑑𝑡
⇒ 𝑐′ 𝑠 =1

• 𝑐 𝑠 is called an arc-length (or unit-speed) parametrized curve, the 
parameter 𝑠 is called the arc length of 𝑐 or the natural parameter



Reparameterization by arc length

• Arc-length (or unit-speed) parameterization:

• Any regular curve admits an arc-length parameterization

• This does not mean that the arc-length parameterization can be 
computed



Examples

• Find an arc-length parameterization for the Helix: 
cos 𝑡
sin 𝑡
𝑡

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡



Examples

• Find an arc-length parameterization for the Helix: 
cos 𝑡
sin 𝑡
𝑡

𝑠 𝑡 = න
0

𝑡

−sin 𝑢 2 + cos 𝑢 2 + 12𝑑𝑢 = 𝑡 2 ⇒ 𝑡 =
𝑠

2

The arc-length parameterized Helix: 

cos
𝑠

2

sin
𝑠

2
𝑠

2

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑢



Examples

• How about the ellipse 𝛼 𝑡 =
2 cos 𝑡
sin 𝑡
0

?

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑢



Examples

• How about the ellipse 𝛼 𝑡 =
2 cos 𝑡
sin 𝑡
0

?

𝑠 𝑡 = න
0

𝑡

4 − sin 𝑢 2 + cos 𝑢 2𝑑𝑢 = න
0

𝑡

4 − 3 cos2 𝑢 𝑑𝑢

Does not admit any closed form antiderivative

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡



Examples

• How about 𝛼 𝑡 =

𝑡
𝑡2

2

0

?

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡



Examples

• How about 𝛼 𝑡 =

𝑡
𝑡2

2

0

?

𝑠 𝑡 = න
0

𝑡

1 + 𝑢2𝑑𝑢 = 𝑡 1 + 𝑡2 + ln 𝑡 + 1 + 𝑡2

• No straightforward way to write 𝑡 as a function of s!

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡



Geometric consequences of Arc length 
parameterization
• Since 𝑐′ 𝑢 = 1



Geometric consequences of Arc length 
parameterization
• Since 𝑐′ 𝑢 = 1, by noting that 𝑐′ ⋅ 𝑐′ = 1 and taking the 

derivative, we have 𝑐′ ⋅ 𝑐′′ = 0

• 𝑐′′ is perpendicular to 𝑐′ (both lives on the osculating plane) 

• Therefore 𝑐′′ is a direction vector of the principal normal 
(provided that 𝑐′′ ≠ 0)

⇒ 𝑛 =
𝑐′′

𝑐′′



Curvature again

• The curvature of an arc-length parametrized curve (unit speed 
curve) 𝑐 𝑡 simplifies to 

𝜅 = 𝑐′′ 𝑡

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3



Further mathematical formulations: 
Frenet Curves



Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that 
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent 



Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that 
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent 

• Frenet frame
• Every Frenet curve has a unique Frenet frame 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 that 

satisfies
• 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 is orthonormal and positively oriented



Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that 
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent 

• Frenet frame
• Every Frenet curve has a unique Frenet frame 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 that 

satisfies
• 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 is orthonormal and positively oriented

• Apply the Gram-Schmidt process to 𝑐′, 𝑐′′, … , 𝑐𝑛



Gram-Schmidt Process:
Construction of Orthonormal Bases
• Input: Linear independent set 𝑣1, 𝑣2, … , 𝑣𝑛

• Output: Orthogonal set 𝑏1, 𝑏2, … , 𝑏𝑛
• Set 𝑏1 =

𝑣1

𝑣1

• For 𝑘 = 2,… , 𝑛

• ෪𝑏𝑘 = 𝑣𝑘 − σ𝑖=1
𝑘−1 𝑣𝑘 , 𝑏𝑖 𝑏𝑖

• 𝑏𝑘 =
෪𝑏𝑘
෪𝑏𝑘



Planar Curves

The Frenet Frame of an arc-length parametrized planar curve

𝑒1 𝑠 = 𝑐′ 𝑠 𝑒2 𝑠 = 𝑅90∘𝑒1 𝑠

Frame equation

𝑒1 𝑠

𝑒2 𝑠

′

=
0 𝜅 𝑠

−𝜅 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

Signed Curvature

𝜅 𝑠 = 𝑒1
′ 𝑠 , 𝑒2 𝑠 is called the signed curvature of the curve

Tangent vector Normal vector

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3



Osculating circle

Osculating circle
• Radius:       Τ1 𝜅

• Center:      𝑐 𝑠 +
1

𝜅
𝑒2 𝑠



Properties

• Rigid motions
• Rigid motion: 𝑥 → 𝐴𝑥 + 𝑏 with orthogonal 𝐴 (in other words: affine maps that 

preserve distances)
• Orientation preserving (no mirroring) if 𝐴 = +1

• Mirroring leads to 𝐴 = −1

• Invariance under rigid motions for planar curves
• Curvature is invariant under rigid motion

• Absolute value is invariant

• Signed value is invariant for orientation preserving rigid motion

• Rigidity of planar curves
• Two Frenet curves with identical signed curvature function differ only by an 

orientation preserving rigid motion



Fundamental Theorem

Fundamental theorem for planar curves
• Let 𝜅: 𝑎, 𝑏 ↦ ℝ be a smooth function. For some 𝑠0 ∈ 𝑎, 𝑏 , suppose we 

are given a point 𝑝0 and two orthonormal vectors 𝑡0 and 𝑛0. Then there 
exists a unique Frenet curve 𝑐: 𝑎, 𝑏 ↦ ℝ2 such that
• 𝑐 𝑠0 = 𝑝0
• 𝑒1 𝑠0 = 𝑡0
• 𝑒2 𝑠0 = 𝑛0
• The curvature of 𝑐 equals the given function 𝜅

• In other words: for every smooth function there is a unique (up to rigid 
motion) curve that has this function as its curvature



Arc-length Derivative

• Arc-length parameterization
• Finding an arc-length parameterization for a parameterized curve is 

usually difficult

• Still one can compute the Frenet frame and its derivatives. For this we 
define the so called arc-length derivative

• Arc-length derivative
• For a parameterized curve 𝑐: 𝑎, 𝑏 ↦ ℝ𝑛, we define the arc-length 

derivative of any differentiable function 𝑓: 𝑎, 𝑏 ↦ ℝ as 

𝑓′ 𝑠 =
1

𝑐′ 𝑡
𝑓′ 𝑡



Compute the signed curvature

• Computing the Frenet frame
• For 𝑐: 𝑎, 𝑏 ↦ ℝ2, the Frenet frame at 𝑐 𝑡 can be computed as (using arc 

length derivative)

𝑒1 𝑡 = 𝑐′ 𝑠 =
𝑐′ 𝑡

𝑐′ 𝑡
𝑒2 𝑡 = 𝑅90

∘
𝑒1 𝑡

• Computing the signed curvature
• The signed curvature is given by 

𝜅 𝑡 = 𝑒1
′ 𝑡 , 𝑒2 𝑡 =

𝑐′′ 𝑡 , 𝑅90
∘
𝑐′ 𝑡

𝑐′ 𝑡 3



Space Curves

• Frenet frame of arc-length parametrized space curves
• Frenet frame of a Frenet curve in ℝ3

• Tangent vector
𝑒1 𝑠 = 𝑐′ 𝑠

• Normal vector

𝑒2 𝑠 =
1

𝑐′′ 𝑡
𝑐′′ 𝑡

• Binormal vector
𝑒3 𝑠 = 𝑒1 𝑠 × 𝑒2 𝑠



Frenet Frame of Space Curves

• Frenet–Serret equations

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

′

=
0 𝜅 𝑠 0

−𝜅 𝑠 0 𝜏 𝑠
0 −𝜏 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

• The signed curvature still is 𝜅 𝑠 = 𝑒1
′ 𝑠 , 𝑒2 𝑠



Frenet Frame of Space Curves

• Frenet–Serret equations

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

′

=
0 𝜅 𝑠 0

−𝜅 𝑠 0 𝜏 𝑠
0 −𝜏 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

• The torsion 𝜏 𝑠 = 𝑒2
′ 𝑠 , 𝑒3 𝑠 measures how the 

curve bends out of the plane spanned by 𝑒1 and 𝑒2

𝜏 𝑡 =
𝑐′ × 𝑐′′ ⋅ 𝑐′′′

𝑐′ × 𝑐′′ 2



Frenet Frame of Space Curves

• Frenet equations for curves in ℝ𝑛

𝑒1 𝑠

𝑒2 𝑠
…

𝑒𝑛 𝑠

′

=

0 𝜅1 𝑠 0 … 0

−𝜅1 𝑠 0 𝜅2 𝑠 … 0

0 −𝜅2 𝑠 0 …

… 𝜅𝑛−1 𝑠

0 … −𝜅𝑛−1 𝑠 0

𝑒1 𝑠

𝑒2 𝑠
…

𝑒𝑛 𝑠

• The function 𝜅𝑖 𝑠 are called the 𝑖𝑡ℎ Frenet curvatures



Summary of relations

• For regular curves:

• The tangent 𝑡 =
𝑐′

𝑐′
, the normal plane 𝑝 − 𝑝0 ⋅ 𝑡 = 0

• The binormal 𝑏 =
𝑐′×𝑐′′

𝑐′×𝑐′′
, the osculating plane 𝑝 − 𝑝0 ⋅ 𝑏 = 0

• The principal normal 𝑛 = 𝑏 × 𝑡, the rectifying plane 𝑝 − 𝑝0 ⋅ 𝑛 = 0

• The curvature 𝜅 𝑡 =
𝑐′×𝑐′′

𝑐′ 3

• The torsion 𝜏 𝑡 =
𝑐′×𝑐′′ ⋅𝑐′′′

𝑐′×𝑐′′ 2



Summary of relations

For an arc-length parameterized (unit speed) curves 𝑐 𝑠 :

• The tangent 𝑡 = 𝑐′

• The binormal 𝑏 = 𝑡 × 𝑛

• The principal normal 𝑛 =
𝑡′

𝑡′
=

𝑐′′

𝑐′′

• The curvature 𝜅 𝑡 = 𝑡′ = 𝑐′′

• The signed curvature 𝜅 𝑠 = 𝑡′ = 𝑐′′

• The torsion 𝜏 𝑡 = −𝑏′ ⋅ 𝑛



Special case: planar curves

• For a regular planar curve 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , it is defined as

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

• Sometimes we talk about signed curvature, and then curvature 
can be allowed to be signed (negative, zero, or positive)

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2


