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Differential Geometry of Curves

BRI

h ERME AR A




Parametric Curves

* Parametric Curves:
* Think of a curve ¢ as the path of a moving particle

* Not always enough to know where a particle went — we also want to
know when it got there = c(t)

* Parameter t Is often thought of as time

c(t)




Parametric Curves

* Parametric Curves:

* A parameterization of class C*(k = 1) of a curve in R™ is a smooth map
c:1 =[a,b] € R+~ R", where c is of class C*




Parametric Curves

* Parametric Curves:
* The image set c(I) is called the trace of the curve
 Different parameterizations can have the same trace.

* A point In the trace, which corresponds to more than one parameter
value t, I1s called self-intersection of the curve



Parametric Curves: Examples

* The positive x-axis
* c(t) =(t,0),t € (0,00)
c c(t) =(et,0),teR
* Circle
e c(t) = (cost,sint), t € [0,2m]
* c(t) = (cos 2t,sin2t), t € [0, ]

* ¢(t) = (cost,sint), teR C

NI



The velocity vector

* The derivative ¢’ (t) is called the velocity vector to the curve ¢ at
time t

* ¢'(t) gives the direction of the movement - £'(0)
* |c'(t)| gives the speed B

* Example ;
o a(t) = (COSt,SiH t), t € [0' 27-[] N|

* B(t) = (cos 2t,sin2t), te€[0, m]




Regular parametric curves

* Regular parametrization
* A parameterization is called regul/arif c'(t) # 0 for all t
* A point at which a curve is regular Is called an orainary point
* A point at which a curve Is non-regular is called an singular point



Examples: regularity

* Examples: issues with non-regular parameterization

Regular parametrization Non-regular parametrization

x=1013-15¢1% +61¢
. y=10¢%—15¢% + 61

Same line as on the

Exaggerated view: }
left hand side




Examples: cusps

Singularities can be desired design features




Examples: cusps

vt
1.0} y=—312+3¢ Cusp

Singularities can be desired design features




Change of parameterization

* Given a smooth regular parametrization, an allowable change
of parameter is any real smooth (differentiable) function

f:1; > I suchthat /' # 0 on I;
* |t is orientation preserving when f' > 0

ccf/\




Change of parameterization

* Parameter Transformations:

* We can regard a regular curve as a collection of regular
parameterizations, any two of which are reparameterizations of each
other (equivalence class)

* We are Interested In properties that are invariant under parameter
transformations



Geometric observations

* Tangent vector:

* The tangent line to a regular curve c(t) at py = c(ty) can be defined
as points p which satisfy p — pg Il ¢§, where ¢; = ¢'(ty)

!

* The normalized vector t = ﬁ Is called the tangent vector



Geometric observations

* The normal plane:

* The normal plane can be obtained as points p whose coordinates satisfy
p—PoLcy

= (P—po)-c=0




Geometric observations

——

* Osculating plane: VIR

* Assume the curve c(t) is not a straight line. Any three arbitrary non-
collinear points pq, py, p3 determine a plane

* If p1, P2, P3 tend to the same points py of ¢, then their plane converges to
a plane called the osculating plane T of ¢ at pg

* The osculating plane is well defined if the first two derivatives ¢y and cj
at po are linearly independent and is give as:

(co X cg) (p—po) =0

AN




Geometric observations

Observe the distance between P(t, + At) and a given
plane passing through P(ty) with normal vector a

Unit normal vector /
. P (ty+4t)
| B(t /
a- (P(t0 + At) — P(to)) =aq- (P(tO)At + (2!0) At? + ) 1

4
The distance is minimal when P() /"
aP(to)ZO,aP(to):O ///
That is when the plane is osculating -

a'(P(fo'i”Af)—P(to))

— The osculating plane is the plane that best fits the curve at P(t,)



Geometric observations

* The rectifying plane: M\VJEH

* The plane normal to both, the osculating plane and the normal plane, is
called the rectifying plane R and can be obtained as points p whose
coordinates satisfy

(cdx (chxcf)) (p—py) =0




Geometric observations

Normals: any vector in the normal plane is normal to
the curve, In particular:

* The normal n lying in the osculating plane is called the
principal normal at py.

It has a direction (cy X ¢g') X ¢

* The normal b lying in the rectifying plane is called the
binormal. &% [a]
It has a direction ¢y X ¢g




The Frenet frame

We can define a local coordinates system on the curve by
three vectors

!

lea

* The tangent t =

/ I

* The binormal b = -——=
[coxcy |

* The principal normaln =b X t




The Frenet frame and associated planes

!

o

* the normal plane (p —py) -t =0

* The tangent t =

coXcy
leoxcq|

* the osculating plane (p —pg) - b =0

* The binormal b =

* The principal normaln =b X t
* the rectifying plane (p —pg) - n =0




Curvature

* Common conceptions of curvature
* Measures bending of a curve

* A straight line does not bend — 0 curvature

* A circle has constant bending — constant curvature



Curvature

Euler’s heuristic approach for planar curves

* Variation of the tangent angle: how much does the curve differ from a
straight line

lis+A4s)




Curvature for regular parameterization

The curvature is denoted by k and defined as

lc" () x " (D)l
le"(OII°

K(t) =



Examples:

* Consider the circle c(t) = (rcost,rsint,0)

The curvature is given by

|(=r sint, 7 cost,0)x(-r cost,-rsint,0)]| [(0,0,72)| 1
K(t) — o 3 — —

r3 r

* Consider the helix c(t) = (rcost,rsint, at), the curvature is




e x " @l

- k(t) = —
Special case: planar curves [

» For a regular planar curve c(t) = (x(t), y(t))

|xlyll _ xllyl
K(t) = 3

(xlz +y,2)§
* Sometimes we talk about signed curvature, and then curvature
can be allowed to be signed (negative, zero, or positive)

X’y” . x/ry/
kK(t) = >

(xlz 1 ylz)f




Examples

Curvature of circles

1

* Curvature of a circle Is constant, k = - (r = radius)

: : . 1
* Accordingly: define radius of curvature as -
0




Curvature In practice

Most of commercial package allow inspecting the quality of the
curvature

L ]

4




Curvature In practice

Most commercial package allow checking the quality of the
curvature even meticulously!

— —

max: 0.002
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| max: 0.000
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muin: -0.038 min: -0.035




Curvature and Road Construction
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Torsion for regular parameterization

Definition
* The torsion T measures the variation of the binormal vector
* (deviation of the curve from its projection on the osculating plane, can be
regarded as how far Is the curve Is from being a planar curve) and is

given by
(CI X CII) . CIII




Torsion

Examples:

* Torsion for a planar curve

* Torsion for a quadratic curve



Measuring lengths on curves

The arc length of a curve

* Can be regarded as the limit of the sum of infinitesimal segments along
the curve

c(t)//—\ c(t + At)

/



Measuring lengths on curves

The arc length of a curve
* The arc length of a regular curve C is defined as :

b
length, =j llc'||dt
a

* Independent of the parameterization (to prove this, use integration by
substitution)



Measuring lengths on curves

Curve arc length matters in practice (e.g., cable routing
problems)




Arc-length parametrized curves



Arc length parametrization

* Consider the portion of c(t) spanned from O to t, the length s of this
arc Is a function of t:

$(t) = f le' )l du
0

ds

* Since — = llc’(t)]] > 0 (why?) = s can be introduced as a new

parameterization



Arc length parametrization

* Consider the portion of c(t) spanned from 0 to t, the length s of this
arc Is a function of t:

$(t) = j le’ () lldu
0

* Since % = |lc’(t)|] > 0 (why?) = s can be introduced as a new
parameter|zat|on
dc
* We have c'(s) = — = ds;dt = ||c'(s)][=1
dt

* ¢(s) is called an a/’c—/ength (or unit-speed) parametrized curve, the
parameter s Is called the arc length of ¢ or the natural parameter



Reparameterization by arc length

* Arc-length (or unit-speed) parameterization:
* Any regular curve admits an arc-length parameterization

* This does not mean that the arc-length parameterization can be
computed



s(0) = | llc’@llde
Examples f

cost
* Find an arc-length parameterization for the Helix: (sin t)
t



s() = | llc'@wlldu
Examples f

cost
* Find an arc-length parameterization for the Helix: (sin t)
L

s(t) =f\/(—sinu)2+(cosu)2+12du=t\/§=>t= >
0

V2

S
/cos\/—E
The arc-length parameterized Helix: Sin\/%

\ & /




s() = | llc'@wlldu
Examples f

2 cost
* How about the ellipse a(t) = | sint |?
0



s(0) = | llc’@llde
Examples f

2 cost
* How about the ellipse a(t) = | sint |?
0

t t
s(t) = f \/4(— sinu)? + (cosu)?du = f \/4 — 3 cos?udu
0 0

Does not admit any closed form antiderivative



s(0) = | llc’@llde
Examples f

t
2

* How about a(t) = (%)7
0



t
S(t) = f le'@wllde
0

Examples
t

* How about a(t) = % ?
0

t
s(t) =J\/1+u2du=t\/1+t2+ln(t+\/1+t2)
0

* No straightforward way to write t as a function of s!



Geometric consequences of Arc length
parameterization

* Since |lc’"(W)]| =1




Geometric consequences of Arc length
parameterization

* Since ||c"(w)]| = 1, by noting that ¢’ - ¢’ = 1 and taking the
derivative, we havec' - ¢ =0

* ¢"" is perpendicular to ¢’ (both lives on the osculating plane)

* Therefore c¢” is a direction vector of the principal normal
(provided that ¢’ # 0)

17

C
"]l

=N




_le'@®) x " @l

k(t) = TOTE
Curvature again o

* The curvature of an arc-length parametrized curve (unit speed
curve) c(t) simplifies to

k= |lc" (@



Further mathematical formulations:
Frenet Curves



Frenet Curves

* Frenet curves

* A Frenet curveis an arc-length parametrized curve ¢ in R" such that
c'(s),c"(s),...,c"1(s) are linearly independent



Frenet Curves

* Frenet curves
* A Frenet curveis an arc-length parametrized curve ¢ in R" such that
c'(s),c"(s),...,c"1(s) are linearly independent
* Frenet frame

* Every Frenet curve has a unique Frenet frame e;(s), e;(s), ..., e,(s) that
satisfies
* e1(5),e,(s), ..., e,(s) is orthonormal and positively oriented



Frenet Curves

* Frenet curves
* A Frenet curveis an arc-length parametrized curve ¢ in R" such that
c'(s),c"(s),...,c"1(s) are linearly independent
* Frenet frame

* Every Frenet curve has a unique Frenet frame e;(s), e5(s), ..., e,(s) that
satisfies
* e1(5),e,(s), ..., e,(s) is orthonormal and positively oriented

* Apply the Gram-Schmidt process to {c¢',c", ..., c"}



Gram-Schmidt Process:
Construction of Orthonormal Bases

* Input: Linear independent set {vq, vy, ..., U, }

* Qutput: Orthogonal set {b4, by, ..., b, } 1. step vy
([ J f— vl
Sethy =
b

cFork=2,..,n 1
* EI; =V — Z{'(=_11(Vk» b;) b;

. — Dk
Pk = T




_le’@®) x " (@)l

k(t) = TOTE
Planar Curves o

The Frenet Frame of an arc-length parametrized planar curve

[ Tangent vector J u\lﬂnal vector J

e;(s) =c'(s) ey(s) = R90091(S)
Frame equation

(e1<s>>’ _ ( 0 x(s)) (e1<s>>
e, (s) —k(s) 0 J\ey(s)

Signed Curvature

k(s) = (e;(s),e,(s)) is called the signed curvature of the curve



Osculating circle \@,

Osculating circle
* Radius: Y/

* Center:  c¢(s) + %ez (s)



Properties

* Rigid motions
* Rigid motion: x = Ax + b with orthogonal 4 (in other words: affine maps that
preserve distances)
* Orientation preserving (no mirroring) if |A| = +1
* Mirroring leads to |[A| = —1

* Invariance under rigid motions for planar curves

* Curvature is Invariant under rigid motion
* Absolute value is invariant
* Signed value Is invariant for orientation preserving rigid motion

* Rigidity of planar curves

* Two Frenet curves with identical signed curvature function differ only by an
orientation preserving rigid motion



Fundamental Theorem

Fundamental theorem for planar curves

* Let k: (a,b) » R be a smooth function. For some sy € (a, b), suppose we
are given a point pg and two orthonormal vectors ty and ng. Then there
exists a unigue Frenet curve c: (a,b) » R? such that

* ¢(s0) = po

* e1(S0) =t

* ey(s0) = ng

* The curvature of ¢ equals the given function k

* [n other words: for every smooth function there is a unigue (up to rigid
motion) curve that has this function as Its curvature




Arc-length Derivative

* Arc-length parameterization

* Finding an arc-length parameterization for a parameterized curve Is
usually difficult

* Still one can compute the Frenet frame and its derivatives. For this we
define the so called arc-length derivative
* Arc-length derivative

* For a parameterized curve c: [a, b] » R", we define the arc-/ength
derivative of any differentiable function f:[a, b] —» R as

1
R FIGTEA




Compute the signed curvature

* Computing the Frenet frame

* For c:[a, b] » R?, the Frenet frame at c¢(t) can be computed as (using arc
length derivative)
c'(t)

) =) = oo
e,(t) = R e (1)

* Computing the signed curvature
* The signed curvature Is given by

k(t) = (e1(t),ex(t)) =

(C”(t), R9O°C1(t)>
lc"(OII°




Space Curves

* Frenet frame of arc-length parametrized space curves

* Frenet frame of a Frenet curve in R3
* Tangent vector

e;1(s) = c'(s)

* Normal vector

1
A EIOTR

* Binormal vector
e3(s) = e1(s) X ey (s)



Frenet Frame of Space Curves

* Frenet-Serret equations

e (s)\ 0 K(s) 0 e1(s)
e;(s) | =1 —k(s) 0 () || e2(s)
e3(s) 0 —2(s) 0 /\es(s)

* The signed curvature still is k(s) = (e;(s), e, (s))



Frenet Frame of Space Curves

* Frenet-Serret equations

e (s)\ 0 K(s) 0 e1(s)
e;(s) | =1 —k(s) 0 () || e2(s)
e3(s) 0 —2(s) 0 /\es(s)

* The torsion 7(s) = (e, (s), e3(s)) measures how the
curve bends out of the plane spanned by e; and e,




Frenet Frame of Space Curves

* Frenet equations for curves in R™

e;(s)
e, (s)
n(s)

)'

0
/“K1(5)
0

\ o

K1 ()
0

—K5(S)

0

Ko (S)
0

—Kpn—1(S)

0
0

Kn—1(S)
0

* The function k;(s) are called the it"* Frenet curvatures

\
/

g

e;(s)
e, (s)

en(s)

)



Summary of relations

* For regular curves:

C’

lle"II’

* The tangent t = the normal plane (p —py) -t =0

C’X 17

lc"xc""||’

* The binormal b = the osculating plane (p —pg) - b =0

* The principal normal n = b X t, the rectifying plane (p —py) -n =0
c'xc'
|3
(C’XC”)-C’”

llc’xc'"||?

* The curvature k(t) =

* The torsion 7(t) =




Summary of relations

For an arc-length parameterized (unit speed) curves c(s):

* The tangent t = ¢’

* The binormal b =t Xn

tl CII

e el

* The principal normal n =

* The curvature k(t) = ||t"|| = [|c"||
* The signed curvature k(s) =t' =c¢"

* The torsion 7(t) = =b' - n




Special case: planar curves

* For a regular planar curve c(t) = (x(t),y(t)), it is defined as

|xl ey
K(t) = y y§
(xlz _I_yIZ)Z

* Sometimes we talk about signed curvature, and then curvature
can be allowed to be signed (negative, zero, or positive)

xlyll _ xllyl
K(t) = >

(xlz 4+ ylz)i




