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de Casteljau algorithm

f(t) = ZpiBf”)

tE[0.1]

Bernstein form
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* bézier curves and curve design:
* The rough form is specified by the position of the control points
* Results: smooth curve approximating the control points

* Computation / Representation S
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Recap

* Bézier curves and curve design:
* The rough form is specified by the position of the control points
* Results: smooth curve approximating the control points
* Computation / Representation

* de Casteljau algorithm
* Bernstein form

* Problems:
* High polynomial degree
* Moving a control point can change the whole curve
* Interpolation of points
e —Bézier splines



Recap

Approximation E— Interpolation



Towards Bézier Splines

* Interpolation problems:

° given:
ko, ..., k, € R3 control points
to, ., tn ER knot sequence
t; <tjrq,fori=0,..,n—1

* wanted

* Interpolating curve x(i), i.e. x(t;) = k; fori =0, ...,n

* Approach: “Joining” of n Bézier curves with certain intersection conditions



Towards Bézier Splines

* The following issues arise when stitching together Bézier
curves:

* Continuity
* Parameterization

* Degree



Bézier Splines

Parametric and Geometric Continuity



Parametric Continuity

Joining curves — continuity
* Glven: 2 curves
x1(t) over |ty t1]
x,(t) over [ty ts]

* x; and x5 are CT continuous at t, if all their 0 to ™" derivative vectors
coincides at t4



Parametric Continuity

» CY: position varies continuously

* C1: First derivative is continuous across junction
* [n other words: the velocity vector remains the same

* C?: Second derivative is continuous across junction
* The acceleration vector remains the same



Parametric Continuity

T o~

C! continuity C% continuity

" )

C! continuity C2 continuity



Continuity

Parametric Continuity C":
- CY C1, C% - continuity

* Does a particle moving on this
curve have a smooth trajectory
(position, velocity,
acceleration, ---)?

* Depends on parameterization

* Useful for animation (object
movement, camera paths)

Geometric Continuity G":
* |s the curve Itself smooth?

* Independent of
parameterization

* More relevant for modeling
(curve design)



Geometric continuity:

Geometric continuity of curves

* Given: 2 curves
x4 (t) over [t,, t4]
x,(t) over [ty, t;]

* x; and x, are G" continuous in ty, if they can be reparameterized in such
a way that they are C" continuous in t;



Geometric continuity:

« GY = CY: position varies continuously (connected)

- G1: tangent direction varies continuously (same tangent)
* |n other words: the normalized tangent varies continuously
* Equivalently: The curve can be reparameterzed so that it becomes C1
* Also equivalent; A unit speed parameterization would be C*!

e G*: curvature varies continuously (same tangent and curvature)
- Equivalently: The curve can be reparameterized so that it becomes C?

* Also equivalent: A unit speed parameterization would be C* ” y ”
K =||C



Bézier Splines

Parameterization



Bézier spline curves

Local and global parameters:
* Given:
° bo’...,bn
* y(u): Bézier curve in interval [0,1]
« x(t): Bézier curve in interval [t;, tiz1]

t—t;

* Setting u(t) =

Li+1—L;
* Results in x(t) = y(u(t))

The /ocal parameter u runs from 0 to 1,
while the global/ parameter t runs from t; to tj4q



t —t;
Livy1 — L

x(t) = y(u@®)

u(t) =
Bézier spline curves

Derivatives:

X’(t) _ y/(u(t)) . u'(t) _ y’(u(t))

Liv1—ti

y”(U(t))

(ti+1 — ti)2

x"(0) = y"(u®) - (W ®) +y(u®) u') =

vy (u(®)
xlnl (t) = (tiz-t)™




Bézier Curve

f@t) = Xi=o B (V) p;

* Function value at {0,1}:

f(0) = po

f(1) =p,
* First derivative vector at {0,1}

f'(0) =n|p; — pol
(1) =nl[pn — pn-1l
* Second derivative vector at {0,1}
f7(0) =n(n—-1[p; —2p; + pol

f”(l) — TL(Tl — 1) [pn - an—l + Pn—z]

Po

P

P>

P3




Bézier spline curves

Special cases:

x'(ti) — n- (p1—pPo)

ti+1—C;
/ __n (Pn—DPn-1)
X' (tiy1) = P,

I n-(n—1)-(p2—2p1+po)
& (ti) - (ti+12—ti)21 0

n-(n-1)-(pn—2Pn-1+Pn-2)
(ti+1—t;)?

x”(ti+1) —



Bézier Splines

General Case



Bézier spline curves

Joining Bézier curves:

* Given: 2 Bézier curves of degree n through
ki_, = by, by, .., b; =k;

_ ki
bn-2
| +
/ b>
'.
lll'l 'I’ i
] Lo
Ii-1

k] — b+,b+, ,b;!; — kj_|_1

- +
- — hy +
b1 ba= bo Y

\
Ari A \
fl_i Tj+1
g +
kj+l=|)u



Bézier spline curves

* Required: C*-continuity at k;:

* by,_1,k;, by collinear and
b, —by_; bi —bj

t] - tj—l tj_|_1 - t]




Bézier spline curves

* Required: G*-continuity at k;:

* b,,_1, k;j, by collinear

e Less restrictive than C1-continuity



Bézier Splines
Choosing the degree



Choosing the Degree

Candidates: ‘ I
* d = 0 (piecewise constant) : not smooth

* d =1 (piecewise linear) : not smooth enough L\/\/\’

* d = 2 (piecewise quadratic) : constant 2"? derivative,
still too inflexible ’[/\f\/\

* d = 3 (piecewise cubic): degree of choice for

computer graphics applications L.\/\/\




Cubic Splines

Cubic piecewise polynomials:

 We can attain C? continuity without fixing the second derivative
throughout the curve



Cubic Splines

Cubic piecewise polynomials:

 We can attain C? continuity without fixing the second derivative
throughout the curve

* C? continuity is perceptually important

* Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

* We can see second order shading discontinuities
(esp.: reflective objects)



Cubic Splines

Cubic piecewise polynomials

 We can attain C? continuity without fixing the second derivative throughout the
curve
* C? continuity is perceptually important
* We can see second order shading discontinuities
(esp.: reflective objects)
* Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

* One more argument for cubics:

« Among all C# curves that interpolate a set of points (and obey to the same end
condition), a piecewise cubic curve has the least integral acceleration (“smoothest curve
you can get”).



Bézier Splines

Local control: Bézier splines
* Concatenate several curve segments

* Question: Which constraints to place upon the control points in order to
get C™1, €Y Ct, C? continuity?

pY




Bézier Spline Continuity

Rules for Bézier spline continuity:
* € continuity:
* Each spline segment interpolates the first and last control point
* Therefore: Points of neighboring segments have to coincide for C° continuity




Bézier Spline Continuity

Rules for Bézier spline continuity:

- Additional requirement for C! continuity:
* Tangent vectors are proportional to differences p; — Po, Pn — Pn-1
* Therefore: These vectors must be identical for C* continuity




Bézier Spline Continuity

Rules for Bézier spline continuity

- Additional requirement for C? continuity:
 d?/dt? vectors are prop. to p; — 2p1 + Po, Pn — 2Pn-1 + Pn-z
 Tangents must be the same (€% implies C1)




Continuity

G?! continuity C! continuity



Continuity for Bézier Splines

This means

G?! continuity

This Bézier curve is G1: It can be reparameterized to become C?*.
(Just Increase the speed for the second segment by ratio of tangent
vector lengths)



In Practice

* Everyone Is using cubic Bézier curves
* Higher degree are rarely used (some CAD/CAM applications)
* Typically: “points & handles” interface

* Four modes:
* Discontinuous (two curves)
« CY Continuous (points meet)

 G1 continuous: Tangent direction continuous
* Handles point into the same direction, but different length

* C! continuous
* Handle points have symmetric vectors

* C? is more restrictive: control via k;



Bézier spline curves

* Required: C*-continuity at k;

- h— +_pt
1 - : le_ n—1 __ bl_bO
* C* implies =
ti—tj—1 Li+1—C;
S b;,—2b;,_1+b;,_, bi-2bT+b}
* C“ implies =

2 - 2
(tj—tj-1) (tj+1—t))



Bézier spline curves

* Required: C*-continuity at k;:

A

* Introduce d~ =b,,_, + A." (b, —b;,_,)
j-1
and dt=bf —=1(bf-b})
]

* By manipulating equation from the previous slides
* C%-continuity © C!-continuity and d™ = d*




Bézier spline curves

C“-continuity © C!-continuity andd™ = d*




Bézier spline curves

* G%-continuity in general (for all types of curves):

* Given:
« x1(t), x,(t) with
« x1(t;) = x,(8;) = x(t;)
« x1(t) = xy(8;) = x(ty)
* Then the requirement for G*-continuity at t = t;:

X( f:’) X( fi)

xy (6) =2 @) 1 X' (&) 5 Xa(1)

'iz('n)
[ Parallel Xi(1)




Bézier spline curves

* Required: G*-continuity at k;:
* G1-continuity
» Co-planarity for : by,_,, b;,_1, kj, by, b3

(l N b

A area(by_,,by_1.kj) _ a® b, k; b
area(k;,bT,b3 ) b3 o '\

bn -2



Bézier Splines

C* Cubic Bézier Splines



Cubic Bézier Splines

Cubic Bézier spline curves
* Given:
ko, ..., k, € R3 control points
to, .., tn ER knot sequence
t; < tjyq,fori=0,...,nq9

« Wanted: Bézier points by, ..., b3, for an interpolating C?-continuous
plecewise cubic Bézier spline curve



Cubic Bézier Splines

Examples: n = 3:

bo=ko o n



Cubic Bézier Splines

3n + 1 unknown points
bzi = k;fori =0,...,n
n + 1 equations
Clinpointsk;fori=1,..,n—1 " A A,
n — 1 equations ‘ k3=ho
e C%inpointsk;fori=1,..,n—1
n — 1 equations

3n — 1 equations

= 2 additional conditions necessary: end conditions



Bézier Splines

C# Cubic Bézier Splines: End conditions



Bézier spline curves: End conditions

Bessel’s end condition

* The tangential vector in kg Is equivalent to the tangential vector of the
parabola interpolating {ky, k1, k,} at kg

———— Parabola p(7)

b;l Ki




n-(by1—by)

ti+1—ti

x(t;) =

Bézier spline curves: End conditions

Parabola Interpolating {kg, k1, k;}

_ (t, —t)(ty —t) N (t; —t)(t —tp) N (tg —t)(t; — t)
(t; —to)(ty —tg) ° (=t —ty) * (ta—t)(t; —ty) °

p(t)

lts derivative

(t; —to) + (t1 — to) N (t; — to) B (ty — to) e
(t; —to)(ty —tg) °  (ta—t)(t1—te) = (ta—t)(t;—ty) °

p'(ty) = —

Location of by

t1 — Lo
3

b, = b, + p'(to)



x(t) =

Bézier spline curves: End conditions

(tiy1 — ;)2

* Natural end condition:

b, +b
x"(ty) =0 by = 2 > 0
b.,._ -+Db
x”(tn) =0 b3n—1 — i 22 =

///I\I/T/



End conditions: Examples

* Bessel/ end condition

Curve: circle of radius 1 Curvature plot



End conditions: Examples

* NMatural end condition

Curve: circle of radius 1 Curvature plot



Bézier Splines

C* Cubic Bézier Splines: parameterization



Bézier spline curves: Parameterization

Approach so far:
* Given: control points ky, ..., k,, and knot sequence t, < -+ < t,

* Wanted: interpolating curve

* Problem: Normally, the knot sequence Is not given, but it influences the
curve



Bézier spline curves: Parameterization

* Equidistant (uniform) parameterization
* tiyq1 — t; = const
ceg.tij=1
* Geometry of the data points is not considered
* Chordal parameterization
* tiv1 — t; = llkipq — Kyl

* Parameter intervals proportional to the distances of neighbored control
poINnts



Bézier spline curves: Parameterization

* Centripetal parameterization
© tipr —t; =/ llkis1 — Kl

* Foley parameterization

* Involvement of angles in the control polygon
3 aillki—ki_1]l 3 Ait1llkiv1—kill
o t. —t:. = || k. — k. .(1_|__ L + =
t+1 i = llkits il 2 [|ki—ki—1ll+lkir1—Kill ~ 2 llkjr1—Kill+lKit2—Kitq|l

* with &; = min (n — ai,g)
* and «a; = angle(k;_1, k;, ki11)

* Affine Iinvariant parameterization
* Parameterization on the basis of an affine invariant distance measure (e.g. G. Nielson)



Bézier spline curves: Parameterization

* Examples: Chordal parameterization

k=08

A\ A

Curve Curvature plot



Bézier spline curves: Parameterization

* Examples: Centripetal parameterization

<70 B -

Curve Curvature plot




Bézier spline curves: Parameterization

* Examples: Foley parameterization

AP‘“\J -

Curve Curvature plot




Bézier spline curves: Parameterization

* Examples: Uniform parameterization

% = 70,000

Curve Curvature plot



Bézier Splines

C* Cubic Bézier Splines: closed curves



Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
* Given:
ko, ..., k,_1, k, = ky: control points
to < - < t,: knot sequence
* As an “end condition” for the piecewise cubic curve we place:

x'(ty) = x'(t,)
x"(tg) = x"(t,)



Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
« = C?-continuous and closed curve

* Advantage of closed curves: selection of the end condition Is not
necessary!

* Examples (on the next 3 slides): n = 3



Examples




Examples




Examples




