计算机辅助几何设计 2023秋学期

Bézier Splines

陈仁杰
中国科学技术大学

Recap

de Casteljau algorithm

Bernstein form

Recap

- bézier curves and curve design:
- The rough form is specified by the position of the control points
- Results: smooth curve approximating the control points
- Computation / Representation
- de Casteljau algorithm
- Bernstein form

Recap

- Bézier curves and curve design:

- The rough form is specified by the position of the control points
- Results: smooth curve approximating the control points
- Computation / Representation
- de Casteljau algorithm
- Bernstein form
- Problems:
- High polynomial degree
- Moving a control point can change the whole curve
- Interpolation of points
- \rightarrow Bézier splines

Recap

Approximation
\longrightarrow
Interpolation

Towards Bézier Splines

- Interpolation problems:
- given:

$$
\begin{aligned}
& \boldsymbol{k}_{0}, \ldots, \boldsymbol{k}_{n} \in \mathbb{R}^{3} \quad \text { control points } \\
& t_{0}, \ldots, t_{n} \in \mathbb{R} \quad \text { knot sequence } \\
& t_{i}<t_{i+1}, \text { for } i=0, \ldots, n-1
\end{aligned}
$$

- wanted
- Interpolating curve $\boldsymbol{x}(i)$, i.e. $\boldsymbol{x}\left(t_{i}\right)=\boldsymbol{k}_{i}$ for $i=0, \ldots, n$
- Approach: "Joining" of n Bézier curves with certain intersection conditions

Towards Bézier Splines

- The following issues arise when stitching together Bézier curves:
- Continuity
- Parameterization
- Degree

Bézier Splines

Parametric and Geometric Continuity

Parametric Continuity

Joining curves - continuity

- Given: 2 curves

$$
\begin{aligned}
& \boldsymbol{x}_{1}(t) \text { over }\left[t_{0}, t_{1}\right] \\
& \boldsymbol{x}_{2}(t) \text { over }\left[t_{1}, t_{2}\right]
\end{aligned}
$$

- \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are C^{r} continuous at t_{1}, if all their $0^{\text {th }}$ to $r^{\text {th }}$ derivative vectors coincides at t_{1}

Parametric Continuity

- C^{0} : position varies continuously
- C^{1} : First derivative is continuous across junction
- In other words: the velocity vector remains the same
- C^{2} : Second derivative is continuous across junction
- The acceleration vector remains the same

Parametric Continuity

Continuity

Parametric Continuity $\boldsymbol{C}^{\boldsymbol{r}}$:

- $C^{0}, C^{1}, C^{2} \cdots$ continuity
- Does a particle moving on this curve have a smooth trajectory (position, velocity, acceleration, \cdots)?
- Depends on parameterization
- Useful for animation (object movement, camera paths)

Geometric Continuity \boldsymbol{G}^{r} :

- Is the curve itself smooth?
- Independent of parameterization
- More relevant for modeling (curve design)

Geometric continuity:

Geometric continuity of curves

- Given: 2 curves

$$
\begin{aligned}
& \boldsymbol{x}_{1}(t) \text { over }\left[t_{0}, t_{1}\right] \\
& \boldsymbol{x}_{2}(t) \text { over }\left[t_{1}, t_{2}\right]
\end{aligned}
$$

- \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are G^{r} continuous in t_{1}, if they can be reparameterized in such a way that they are C^{r} continuous in t_{1}

Geometric continuity:

- $G^{0}=C^{0}$: position varies continuously (connected)
- G^{1} : tangent direction varies continuously (same tangent)
- In other words: the normalized tangent varies continuously
- Equivalently: The curve can be reparameterzed so that it becomes C^{1}
- Also equivalent: A unit speed parameterization would be C^{1}
- G^{2} : curvature varies continuously (same tangent and curvature)
- Equivalently: The curve can be reparameterized so that it becomes C^{2}
- Also equivalent: A unit speed parameterization would be C^{2}

$$
\kappa=\left\|c^{\prime \prime}\right\|
$$

Bézier Splines

Parameterization

Bézier spline curves

Local and global parameters:

- Given:
- b_{0}, \cdots, b_{n}
- $y(u)$: Bézier curve in interval $[0,1]$
- $x(t)$: Bézier curve in interval $\left[t_{i}, t_{i+1}\right]$
- Setting $u(t)=\frac{t-t_{i}}{t_{i+1}-t_{i}}$
- Results in $x(t)=y(u(t))$

The local parameter u runs from 0 to 1 , while the global parameter t runs from t_{i} to t_{i+1}

Bézier spline curves

$$
\begin{aligned}
& u(t)=\frac{t-t_{i}}{t_{i+1}-t_{i}} \\
& x(t)=y(u(t))
\end{aligned}
$$

Derivatives:

$$
\begin{aligned}
& x^{\prime}(t)=y^{\prime}(u(t)) \cdot u^{\prime}(t)=\frac{y^{\prime}(u(t))}{t_{i+1}-t_{i}} \\
& x^{\prime \prime}(t)=y^{\prime \prime}(u(t)) \cdot\left(u^{\prime}(t)\right)^{2}+y^{\prime}(u(t)) \cdot u^{\prime \prime}(t)=\frac{y^{\prime \prime}(u(t))}{\left(t_{i+1}-t_{i}\right)^{2}} \\
& \ldots \\
& x^{[n]}(t)=\frac{y^{[n]}(u(t))}{\left(t_{i+1}-t_{i}\right)^{n}}
\end{aligned}
$$

Bézier Curve

$\boldsymbol{f}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \boldsymbol{p}_{i}$

- Function value at $\{0,1\}$:

$$
\begin{aligned}
& \boldsymbol{f}(0)=\boldsymbol{p}_{0} \\
& \boldsymbol{f}(1)=\boldsymbol{p}_{1}
\end{aligned}
$$

- First derivative vector at $\{0,1\}$

$$
\begin{gathered}
\boldsymbol{f}^{\prime}(0)=n\left[\boldsymbol{p}_{1}-\boldsymbol{p}_{0}\right] \\
\boldsymbol{f}^{\prime}(1)=n\left[\boldsymbol{p}_{n}-\boldsymbol{p}_{n-1}\right]
\end{gathered}
$$

- Second derivative vector at $\{0,1\}$

$$
\begin{gathered}
\boldsymbol{f}^{\prime \prime}(0)=n(n-1)\left[\boldsymbol{p}_{2}-2 \boldsymbol{p}_{1}+\boldsymbol{p}_{0}\right] \\
\boldsymbol{f}^{\prime \prime}(1)=n(n-1)\left[\boldsymbol{p}_{n}-2 \boldsymbol{p}_{n-1}+\boldsymbol{p}_{n-2}\right]
\end{gathered}
$$

Bézier spline curves

Special cases:

$$
\begin{aligned}
& \boldsymbol{x}^{\prime}\left(t_{i}\right)=\frac{n \cdot\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{0}\right)}{t_{i+1}-t_{i}} \\
& \boldsymbol{x}^{\prime}\left(t_{i+1}\right)=\frac{n \cdot\left(\boldsymbol{p}_{n}-\boldsymbol{p}_{n-1}\right)}{t_{i+1}-t_{i}} \\
& \boldsymbol{x}^{\prime \prime}\left(t_{i}\right)=\frac{n \cdot(n-1) \cdot\left(\boldsymbol{p}_{2}-2 \boldsymbol{p}_{1}+\boldsymbol{p}_{0}\right)}{\left(t_{i+1}-t_{i}\right)^{2}} \\
& \boldsymbol{x}^{\prime \prime}\left(t_{i+1}\right)=\frac{n \cdot(n-1) \cdot\left(\boldsymbol{p}_{n}-2 \boldsymbol{p}_{n-1}+\boldsymbol{p}_{n-2}\right)}{\left(t_{i+1}-t_{i}\right)^{2}}
\end{aligned}
$$

Bézier Splines
General Case

Bézier spline curves

Joining Bézier curves:

- Given: 2 Bézier curves of degree n through

$$
\begin{aligned}
\boldsymbol{k}_{j-1}=\boldsymbol{b}_{0}^{-}, \boldsymbol{b}_{1}^{-}, \ldots, \boldsymbol{b}_{n}^{-}= & \boldsymbol{k}_{j} \\
& \boldsymbol{k}_{j}=\boldsymbol{b}_{0}^{+}, \boldsymbol{b}_{1}^{+}, \ldots, \boldsymbol{b}_{n}^{+}=\boldsymbol{k}_{j+1}
\end{aligned}
$$

Bézier spline curves

$$
\boldsymbol{x}^{\prime}\left(t_{i}\right)=\frac{n \cdot\left(\boldsymbol{b}_{1}-\boldsymbol{b}_{0}\right)}{t_{i+1}-t_{i}}
$$

- Required: C^{1}-continuity at \boldsymbol{k}_{j} :
- $\boldsymbol{b}_{n-1}^{-}, \boldsymbol{k}_{j}, \boldsymbol{b}_{1}^{+}$collinear and

$$
\frac{\boldsymbol{b}_{n}^{-}-\boldsymbol{b}_{n-1}^{-}}{t_{j}-t_{j-1}}=\frac{\boldsymbol{b}_{1}^{+}-\boldsymbol{b}_{0}^{+}}{t_{j+1}-t_{j}}
$$

Bézier spline curves

- Required: G^{1}-continuity at \boldsymbol{k}_{j} :
- $\boldsymbol{b}_{n-1}^{-}, \boldsymbol{k}_{j}, \boldsymbol{b}_{1}^{+}$collinear
- Less restrictive than C^{1}-continuity

Bézier Splines
Choosing the degree

Choosing the Degree

Candidates:

- $d=0$ (piecewise constant) : not smooth

- $d=1$ (piecewise linear) : not smooth enough

- $d=2$ (piecewise quadratic) : constant $2^{\text {nd }}$ derivative, still too inflexible

- $d=3$ (piecewise cubic): degree of choice for computer graphics applications

Cubic Splines

Cubic piecewise polynomials:

- We can attain C^{2} continuity without fixing the second derivative throughout the curve

Cubic Splines

Cubic piecewise polynomials:

- We can attain C^{2} continuity without fixing the second derivative throughout the curve
- C^{2} continuity is perceptually important
- Motion: continuous position, velocity \& acceleration Discontinuous acceleration noticeable (object/camera motion)
- We can see second order shading discontinuities (esp.: reflective objects)

Cubic Splines

Cubic piecewise polynomials

- We can attain C^{2} continuity without fixing the second derivative throughout the curve
- C^{2} continuity is perceptually important
- We can see second order shading discontinuities (esp.: reflective objects)
- Motion: continuous position, velocity \& acceleration

Discontinuous acceleration noticeable (object/camera motion)

- One more argument for cubics:
- Among all C^{2} curves that interpolate a set of points (and obey to the same end condition), a piecewise cubic curve has the least integral acceleration ("smoothest curve you can get").

Bézier Splines

Local control: Bézier splines

- Concatenate several curve segments
- Question: Which constraints to place upon the control points in order to get $C^{-1}, C^{0}, C^{1}, C^{2}$ continuity?

Bézier Spline Continuity

Rules for Bézier spline continuity:

- C^{0} continuity:
- Each spline segment interpolates the first and last control point
- Therefore: Points of neighboring segments have to coincide for C^{0} continuity

Bézier Spline Continuity

Rules for Bézier spline continuity:

- Additional requirement for C^{1} continuity:
- Tangent vectors are proportional to differences $\boldsymbol{p}_{1}-\boldsymbol{p}_{0}, \boldsymbol{p}_{n}-\boldsymbol{p}_{n-1}$
- Therefore: These vectors must be identical for C^{1} continuity

Bézier Spline Continuity

Rules for Bézier spline continuity

- Additional requirement for C^{2} continuity:
- $d^{2} / d t^{2}$ vectors are prop. to $p_{2}-2 p_{1}+p_{0}, p_{n}-2 p_{n-1}+p_{n-2}$
- Tangents must be the same (C^{2} implies C^{1})

Continuity

Continuity for Bézier Splines

This means

$\mathbf{G}^{\mathbf{1}}$ continuity
This Bézier curve is G^{1} : It can be reparameterized to become C^{1}. (Just increase the speed for the second segment by ratio of tangent vector lengths)

In Practice

- Everyone is using cubic Bézier curves
- Higher degree are rarely used (some CAD/CAM applications)
- Typically: "points \& handles" interface
- Four modes:
- Discontinuous (two curves)
- C^{0} Continuous (points meet)
- G^{1} continuous: Tangent direction continuous
- Handles point into the same direction, but different length
- C^{1} continuous
- Handle points have symmetric vectors
- C^{2} is more restrictive: control via k_{i}

Bézier spline curves

- Required: C^{2}-continuity at \boldsymbol{k}_{j}
- C^{1} implies

$$
\frac{b_{n}^{-}-b_{n-1}^{-}}{t_{j}-t_{j-1}}=\frac{b_{1}^{+}-b_{0}^{+}}{t_{j+1}-t_{j}}
$$

- C^{2} implies

$$
\frac{\boldsymbol{b}_{n}^{-}-2 \boldsymbol{b}_{n-1}^{-}+\boldsymbol{b}_{n-2}^{-}}{\left(t_{j}-t_{j-1}\right)^{2}}=\frac{\boldsymbol{b}_{2}^{+}-2 \boldsymbol{b}_{1}^{+}+\boldsymbol{b}_{0}^{+}}{\left(t_{j+1}-t_{j}\right)^{2}}
$$

Bézier spline curves

$$
\frac{t_{j+1}-t_{j}}{t_{j}-t_{j-1}}=\frac{\Delta_{j}}{\Delta_{j-1}}
$$

- Required: C^{2}-continuity at \boldsymbol{k}_{j} :
- Introduce $\quad \boldsymbol{d}^{-}=\boldsymbol{b}_{n-1}^{-}+\frac{\Delta_{j}}{\Delta_{j-1}}\left(\boldsymbol{b}_{n-1}^{-}-\boldsymbol{b}_{n-2}^{-}\right)$ and

$$
\boldsymbol{d}^{+}=\boldsymbol{b}_{1}^{+} \quad-\frac{\Delta_{j-1}}{\Delta_{j}}\left(\boldsymbol{b}_{2}^{+}-\boldsymbol{b}_{1}^{+}\right)
$$

- By manipulating equation from the previous slides
- C^{2}-continuity $\Leftrightarrow C^{1}$ - continuity and $\boldsymbol{d}^{-}=\boldsymbol{d}^{+}$

Bézier spline curves

C^{2}-continuity $\Leftrightarrow C^{1}$-continuity and $\boldsymbol{d}^{-}=\boldsymbol{d}^{+}$

Bézier spline curves

- G^{2}-continuity in general (for all types of curves):
- Given:
- $\boldsymbol{x}_{1}(t), \boldsymbol{x}_{2}(t)$ with
- $\boldsymbol{x}_{1}\left(t_{i}\right)=\boldsymbol{x}_{2}\left(t_{i}\right)=\boldsymbol{x}\left(t_{i}\right)$
- $\boldsymbol{x}_{1}^{\prime}\left(t_{i}\right)=\boldsymbol{x}_{2}^{\prime}\left(t_{i}\right)=\boldsymbol{x}\left(t_{i}\right)$
- Then the requirement for G^{2}-continuity at $t=t_{i}$:

$$
\overbrace{\text { Parallel }}^{\boldsymbol{x}_{2}^{\prime \prime}\left(t_{i}\right)-\boldsymbol{x}_{1}^{\prime \prime}\left(t_{i}\right) \| \boldsymbol{x}^{\prime}\left(t_{i}\right)}
$$

Bézier spline curves

- Required: G^{2}-continuity at k_{j} :
- G^{1}-continuity
- Co-planarity for : $\boldsymbol{b}_{n-2}^{-}, \boldsymbol{b}_{n-1}^{-}, \boldsymbol{k}_{j}, \boldsymbol{b}_{1}^{+}, \boldsymbol{b}_{2}^{+}$
- And: $\frac{\operatorname{area}\left(\boldsymbol{b}_{n-2}^{-}, \boldsymbol{b}_{n-1}^{-}, \boldsymbol{k}_{j}\right)}{\operatorname{area}\left(\boldsymbol{k}_{j}, \boldsymbol{b}_{1}^{+}, \boldsymbol{b}_{2}^{+}\right)}=\frac{a^{3}}{b^{3}}$
\mathbf{b}_{n-2}^{-}

Bézier Splines
C^{2} Cubic Bézier Splines

Cubic Bézier Splines

Cubic Bézier spline curves

- Given:

$$
\begin{gathered}
\boldsymbol{k}_{0}, \ldots, \boldsymbol{k}_{n} \in \mathbb{R}^{3} \quad \text { control points } \\
t_{0}, \ldots, t_{n} \in \mathbb{R} \quad \text { knot sequence } \\
t_{i}<t_{i+1}, \text { for } i=0, \ldots, n_{1}
\end{gathered}
$$

- Wanted: Bézier points $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{3 n}$ for an interpolating C^{2}-continuous piecewise cubic Bézier spline curve

Cubic Bézier Splines

Examples: $n=3$:

Cubic Bézier Splines

- $3 n+1$ unknown points
- $b_{3 i}=k_{i}$ for $i=0, \ldots, n$
$n+1$ equations
- C^{1} in points k_{i} for $i=1, \ldots, n-1$

$$
n-1 \text { equations }
$$

- C^{2} in points k_{i} for $i=1, \ldots, n-1$

$$
n-1 \text { equations }
$$

$3 n-1$ equations
$\Rightarrow 2$ additional conditions necessary: end conditions

Bézier Splines
C^{2} Cubic Bézier Splines: End conditions

Bézier spline curves: End conditions

Bessel's end condition

- The tangential vector in \boldsymbol{k}_{0} is equivalent to the tangential vector of the parabola interpolating $\left\{\boldsymbol{k}_{0}, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right\}$ at \boldsymbol{k}_{0} :

Bézier spline curves: End conditions
 $$
\dot{\boldsymbol{x}}\left(t_{i}\right)=\frac{n \cdot\left(\boldsymbol{b}_{1}-\boldsymbol{b}_{0}\right)}{t_{i+1}-t_{i}}
$$

Parabola Interpolating $\left\{\boldsymbol{k}_{0}, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right\}$

$$
\boldsymbol{p}(t)=\frac{\left(t_{2}-t\right)\left(t_{1}-t\right)}{\left(t_{2}-t_{0}\right)\left(t_{1}-t_{0}\right)} \boldsymbol{k}_{0}+\frac{\left(t_{2}-t\right)\left(t-t_{0}\right)}{\left(t_{2}-t_{1}\right)\left(t_{1}-t_{0}\right)} \boldsymbol{k}_{1}+\frac{\left(t_{0}-t\right)\left(t_{1}-t\right)}{\left(t_{2}-t_{1}\right)\left(t_{2}-t_{0}\right)} \boldsymbol{k}_{2}
$$

Its derivative

$$
\boldsymbol{p}^{\prime}\left(t_{0}\right)=-\frac{\left(t_{2}-t_{0}\right)+\left(t_{1}-t_{0}\right)}{\left(t_{2}-t_{0}\right)\left(t_{1}-t_{0}\right)} \boldsymbol{k}_{0}+\frac{\left(t_{2}-t_{0}\right)}{\left(t_{2}-t_{1}\right)\left(t_{1}-t_{0}\right)} \boldsymbol{k}_{1}-\frac{\left(t_{1}-t_{0}\right)}{\left(t_{2}-t_{1}\right)\left(t_{2}-t_{0}\right)} \boldsymbol{k}_{2}
$$

Location of \boldsymbol{b}_{1}

$$
\boldsymbol{b}_{1}=\boldsymbol{b}_{0}+\frac{t_{1}-t_{0}}{3} \boldsymbol{p}^{\prime}\left(t_{0}\right)
$$

$$
\ddot{\boldsymbol{x}}\left(t_{i}\right)=\frac{n \cdot(n-1) \cdot\left(\boldsymbol{b}_{2}-2 \boldsymbol{b}_{1}+\boldsymbol{b}_{0}\right)}{\left(t_{i+1}-t_{i}\right)^{2}}
$$

Bézier spline curves: End conditions

- Natural end condition:

$$
\begin{aligned}
& \boldsymbol{x}^{\prime \prime}\left(t_{0}\right)=0 \Leftrightarrow \boldsymbol{b}_{1}=\frac{\boldsymbol{b}_{2}+\boldsymbol{b}_{0}}{2} \\
& \boldsymbol{x}^{\prime \prime}\left(t_{n}\right)=0 \Leftrightarrow \boldsymbol{b}_{3 n-1}=\frac{\boldsymbol{b}_{3 n-2}+\boldsymbol{b}_{3 n}}{2}
\end{aligned}
$$

End conditions: Examples

- Besse/ end condition

Curve: circle of radius 1
Curvature plot

End conditions: Examples

- Natural end condition

Curve: circle of radius 1
Curvature plot

Bézier Splines
C^{2} Cubic Bézier Splines: parameterization

Bézier spline curves: Parameterization

Approach so far:

- Given: control points $\boldsymbol{k}_{0}, \ldots, \boldsymbol{k}_{n}$ and knot sequence $t_{0}<\cdots<t_{n}$
- Wanted: interpolating curve
- Problem: Normally, the knot sequence is not given, but it influences the curve

Bézier spline curves: Parameterization

- Equidistant (uniform) parameterization
- $t_{i+1}-t_{i}=$ const
- e.g. $t_{i}=i$
- Geometry of the data points is not considered
- Chordal parameterization
- $t_{i+1}-t_{i}=\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\|$
- Parameter intervals proportional to the distances of neighbored control points

Bézier spline curves: Parameterization

- Centripetal parameterization
- $t_{i+1}-t_{i}=\sqrt{\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\|}$
- Foley parameterization
- Involvement of angles in the control polygon
$\cdot t_{i+1}-t_{i}=\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\| \cdot\left(1+\frac{3}{2} \frac{\widehat{\alpha}_{i}\left\|\boldsymbol{k}_{i}-\boldsymbol{k}_{i-1}\right\|}{\left\|\boldsymbol{k}_{i}-\boldsymbol{k}_{i-1}\right\|+\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\|}+\frac{3}{2} \frac{\widehat{\alpha}_{i+1}\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\|}{\left\|\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}\right\|+\left\|\boldsymbol{k}_{i+2}-\boldsymbol{k}_{i+1}\right\|}\right)$
- with $\hat{\alpha}_{i}=\min \left(\pi-\alpha_{i}, \frac{\pi}{2}\right)$
- and $\alpha_{i}=\operatorname{angle}\left(\boldsymbol{k}_{i-1}, \boldsymbol{k}_{i}, \boldsymbol{k}_{i+1}\right)$
- Affine invariant parameterization
- Parameterization on the basis of an affine invariant distance measure (e.g. G. Nielson)

Bézier spline curves: Parameterization

- Examples: Chordal parameterization

Curve

Curvature plot

Bézier spline curves: Parameterization

- Examples: Centripetal parameterization

Bézier spline curves: Parameterization

- Examples: Foley parameterization

Curve

Bézier spline curves: Parameterization

- Examples: Uniform parameterization

Curve

Curvature plot

Bézier Splines
C^{2} Cubic Bézier Splines: closed curves

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves

- Given:

$$
\begin{aligned}
& \boldsymbol{k}_{0}, \ldots, \boldsymbol{k}_{n-1}, \boldsymbol{k}_{n}=\boldsymbol{k}_{0} \text { : control points } \\
& t_{0}<\cdots<t_{n} \text { : knot sequence }
\end{aligned}
$$

- As an "end condition" for the piecewise cubic curve we place:

$$
\begin{aligned}
\boldsymbol{x}^{\prime}\left(t_{0}\right) & =\boldsymbol{x}^{\prime}\left(t_{n}\right) \\
\boldsymbol{x}^{\prime \prime}\left(t_{0}\right) & =\boldsymbol{x}^{\prime \prime}\left(t_{n}\right)
\end{aligned}
$$

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves

- $\rightarrow C^{2}$-continuous and closed curve
- Advantage of closed curves: selection of the end condition is not necessary!
- Examples (on the next 3 slides): $n=3$

Examples

Examples

Examples

