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Recap

• Bézier curves and curve design:
• The rough form is specified by the position of the control points

• Results: smooth curve approximating the control points

• Computation / Representation
• de Casteljau algorithm

• Bernstein form

• Problems:
• High polynomial degree

• Moving a control point can change the whole curve

• Interpolation of points

• →Bézier splines
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Towards Bézier Splines

• Interpolation problems:
• given:

𝒌0, … , 𝒌𝑛 ∈ ℝ3 control points

𝑡0, … , 𝑡𝑛 ∈ ℝ knot sequence

𝑡𝑖 < 𝑡𝑖+1, for 𝑖 = 0,… , 𝑛 − 1

• wanted
• Interpolating curve 𝒙 𝑖 , i.e. 𝒙 𝑡𝑖 = 𝒌𝑖 for 𝑖 = 0, … , 𝑛

• Approach: “Joining” of 𝑛 Bézier curves with certain intersection conditions



Towards Bézier Splines

• The following issues arise when stitching together Bézier
curves:

• Continuity

• Parameterization

• Degree



Bézier Splines
Parametric and Geometric Continuity



Parametric Continuity

Joining curves – continuity
• Given: 2 curves

𝒙1 𝑡 over 𝑡0, 𝑡1
𝒙2 𝑡 over 𝑡1, 𝑡2

• 𝒙1 and 𝒙2 are 𝐶𝑟 continuous at 𝑡1, if all their 0th to 𝑟th derivative vectors 
coincides at 𝑡1



Parametric Continuity

• 𝐶0: position varies continuously

• 𝐶1: First derivative is continuous across junction
• In other words: the velocity vector remains the same

• 𝐶2: Second derivative is continuous across junction
• The acceleration vector remains the same



Parametric Continuity



Continuity

Parametric Continuity 𝑪𝒓:

• 𝐶0, 𝐶1, 𝐶2 … continuity

• Does a particle moving on this 
curve have a smooth trajectory 
(position, velocity, 
acceleration, …)?

• Depends on parameterization

• Useful for animation (object 
movement, camera paths)

Geometric Continuity 𝑮𝒓:

• Is the curve itself smooth?

• Independent of 
parameterization

• More relevant for modeling 
(curve design)



Geometric continuity:

Geometric continuity of curves
• Given: 2 curves

𝒙1 𝑡 over 𝑡0, 𝑡1
𝒙2 𝑡 over 𝑡1, 𝑡2

• 𝒙1 and 𝒙2 are 𝐺𝑟 continuous in 𝑡1, if they can be reparameterized in such 
a way that they are 𝐶𝑟 continuous in 𝑡1



Geometric continuity:

• 𝐺0 = 𝐶0: position varies continuously (connected)

• 𝐺1: tangent direction varies continuously (same tangent)
• In other words: the normalized tangent varies continuously

• Equivalently: The curve can be reparameterzed so that it becomes 𝐶1

• Also equivalent: A unit speed parameterization would be 𝐶1

• 𝐺2: curvature varies continuously (same tangent and curvature)
• Equivalently: The curve can be reparameterized so that it becomes 𝐶2

• Also equivalent: A unit speed parameterization would be 𝐶2

𝜅 = 𝑐′′



Bézier Splines
Parameterization



Bézier spline curves

Local and global parameters:
• Given:

• 𝑏0,…,𝑏𝑛
• 𝑦 𝑢 : Bézier curve in interval 0,1
• 𝑥 𝑡 : Bézier curve in interval 𝑡𝑖 , 𝑡𝑖+1

• Setting 𝑢 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖

• Results in 𝑥 𝑡 = 𝑦 𝑢 𝑡

The local parameter 𝑢 runs from 0 to 1,
while the global parameter 𝑡 runs from 𝑡𝑖 to 𝑡𝑖+1



Bézier spline curves

Derivatives:

𝑥′ 𝑡 =

𝑥′′ 𝑡 =

…

𝑥 𝑛 𝑡 =

𝑢 𝑡 =
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖

𝑥 𝑡 = 𝑦 𝑢 𝑡

𝑦′ 𝑢 𝑡 ⋅ 𝑢′ 𝑡 =
𝑦′ 𝑢 𝑡

𝑡𝑖+1−𝑡𝑖

𝑦′′ 𝑢 𝑡 ⋅ 𝑢′ 𝑡
2
+ 𝑦′ 𝑢 𝑡 ⋅ 𝑢′′ 𝑡 =

𝑦′′ 𝑢 𝑡

𝑡𝑖+1 − 𝑡𝑖
2

𝑦 𝑛 𝑢 𝑡

𝑡𝑖+1−𝑡𝑖
𝑛



Bézier Curve

𝒇 𝑡 = σ𝑖=0
𝑛 𝐵𝑖

𝑛 𝑡 𝒑𝑖

• Function value at 0,1 :
𝒇 0 = 𝒑0
𝒇 1 = 𝒑1

• First derivative vector at 0,1
𝒇′ 0 = 𝑛 𝒑1 − 𝒑0
𝒇′ 1 = 𝑛 𝒑𝑛 − 𝒑𝑛−1

• Second derivative vector at 0,1
𝒇′′ 0 = 𝑛 𝑛 − 1 𝒑2 − 𝟐𝒑1 + 𝒑0

𝒇′′ 1 = 𝑛 𝑛 − 1 𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2



Bézier spline curves

Special cases:

𝒙′ 𝑡𝑖 =
𝑛⋅ 𝒑1−𝒑0

𝑡𝑖+1−𝑡𝑖

𝒙′ 𝑡𝑖+1 =
𝑛⋅ 𝒑𝑛−𝒑𝑛−1

𝑡𝑖+1−𝑡𝑖

𝒙′′ 𝑡𝑖 =
𝑛⋅ 𝑛−1 ⋅ 𝒑2−2𝒑1+𝒑0

𝑡𝑖+1−𝑡𝑖
2

𝒙′′ 𝑡𝑖+1 =
𝑛⋅ 𝑛−1 ⋅ 𝒑𝑛−2𝒑𝑛−1+𝒑𝑛−2

𝑡𝑖+1−𝑡𝑖
2



Bézier Splines
General Case



Bézier spline curves

Joining Bézier curves:
• Given: 2 Bézier curves of degree 𝑛 through

𝒌𝑗−1 = 𝒃0
−, 𝒃1

−, … , 𝒃𝑛
− = 𝒌𝑗

𝒌𝑗 = 𝒃0
+, 𝒃1

+, … , 𝒃𝑛
+ = 𝒌𝑗+1



Bézier spline curves

• Required: 𝐶1-continuity at 𝒌𝑗:

• 𝒃𝑛−1
− , 𝒌𝑗 , 𝒃1

+ collinear and

𝒃𝑛
− − 𝒃𝑛−1

−

𝑡𝑗 − 𝑡𝑗−1
=
𝒃1
+ − 𝒃0

+

𝑡𝑗+1 − 𝑡𝑗

Δ𝑗−1 Δ𝑗

𝒃𝑛
− = 𝒃0

+
𝒃𝑛−1
− 𝒃1

+

𝒙′ 𝑡𝑖 =
𝑛 ⋅ 𝒃1 − 𝒃0
𝑡𝑖+1 − 𝑡𝑖



Bézier spline curves

• Required: 𝐺1-continuity at 𝒌𝑗:

• 𝒃𝑛−1
− , 𝒌𝑗 , 𝒃1

+ collinear

• Less restrictive than 𝐶1-continuity



Bézier Splines
Choosing the degree



Choosing the Degree

Candidates:
• 𝑑 = 0 (piecewise constant) : not smooth

• 𝑑 = 1 (piecewise linear) : not smooth enough

• 𝑑 = 2 (piecewise quadratic) : constant 2nd derivative, 
still too inflexible

• 𝑑 = 3 (piecewise cubic): degree of choice for 
computer graphics applications



Cubic Splines

Cubic piecewise polynomials:
• We can attain 𝐶2 continuity without fixing the second derivative 

throughout the curve



Cubic Splines

Cubic piecewise polynomials:
• We can attain 𝐶2 continuity without fixing the second derivative 

throughout the curve

• 𝐶2 continuity is perceptually important

• Motion: continuous position, velocity & acceleration

Discontinuous acceleration noticeable (object/camera motion)

• We can see second order shading discontinuities

(esp.: reflective objects)



Cubic Splines

Cubic piecewise polynomials
• We can attain 𝐶2 continuity without fixing the second derivative throughout the 

curve

• 𝐶2 continuity is perceptually important
• We can see second order shading discontinuities

(esp.: reflective objects)

• Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

• One more argument for cubics:
• Among all 𝐶2 curves that interpolate a set of points (and obey to the same end 

condition), a piecewise cubic curve has the least integral acceleration (“smoothest curve 
you can get”).



Bézier Splines

Local control: Bézier splines
• Concatenate several curve segments

• Question: Which constraints to place upon the control points in order to 
get 𝐶−1, 𝐶0, 𝐶1, 𝐶2 continuity?



Bézier Spline Continuity

Rules for Bézier spline continuity:
• 𝐶0 continuity:

• Each spline segment interpolates the first and last control point

• Therefore: Points of neighboring segments have to coincide for 𝐶0 continuity



Bézier Spline Continuity

Rules for Bézier spline continuity:
• Additional requirement for 𝐶1 continuity:

• Tangent vectors are proportional to differences 𝒑1 − 𝒑0, 𝒑𝑛 − 𝒑𝑛−1

• Therefore: These vectors must be identical for 𝐶1 continuity



Bézier Spline Continuity

Rules for Bézier spline continuity
• Additional requirement for 𝐶2 continuity:

• Τ𝑑2 𝑑𝑡2 vectors are prop. to 𝒑2 − 2𝒑1 + 𝒑0, 𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2
• Tangents must be the same (𝐶2 implies 𝐶1)



Continuity



Continuity for Bézier Splines

This means

This Bézier curve is 𝐺1: It can be reparameterized to become 𝐶1. 
(Just increase the speed for the second segment by ratio of tangent 
vector lengths)



In Practice

• Everyone is using cubic Bézier curves

• Higher degree are rarely used (some CAD/CAM applications)

• Typically: “points & handles” interface

• Four modes:
• Discontinuous (two curves)
• 𝐶0 Continuous (points meet)
• 𝐺1 continuous: Tangent direction continuous

• Handles point into the same direction, but different length

• 𝐶1 continuous
• Handle points have symmetric vectors

• 𝐶2 is more restrictive: control via 𝑘𝑖



Bézier spline curves

• Required: 𝐶2-continuity at 𝒌𝑗

• 𝐶1 implies            
𝒃𝑛
−−𝒃𝑛−1

−

𝑡𝑗−𝑡𝑗−1
=

𝒃1
+−𝒃0

+

𝑡𝑗+1−𝑡𝑗

• 𝐶2 implies            
𝒃𝑛
−−2𝒃𝑛−1

− +𝒃𝑛−2
−

𝑡𝑗−𝑡𝑗−1
2 =

𝒃2
+−2𝒃1

++𝒃0
+

𝑡𝑗+1−𝑡𝑗
2



Bézier spline curves

• Required: 𝐶2-continuity at 𝒌𝑗:

• Introduce 𝒅− = 𝒃𝑛−1
− +

Δ𝑗

Δ𝑗−1
𝒃𝑛−1
− − 𝒃𝑛−2

−

and 𝒅+ = 𝒃1
+ −

Δ𝑗−1

Δ𝑗
𝒃2
+ − 𝒃1

+

• By manipulating equation from the previous slides

• 𝐶2-continuity ⇔ 𝐶1-continuity and 𝒅− = 𝒅+

𝑡𝑗+1 − 𝑡𝑗
𝑡𝑗 − 𝑡𝑗−1

=
Δ𝑗
Δ𝑗−1



Bézier spline curves

𝐶2-continuity ⇔ 𝐶1-continuity and 𝒅− = 𝒅+



Bézier spline curves

• 𝐺2-continuity in general (for all types of curves):

• Given:
• 𝒙1 𝑡 , 𝒙2 𝑡 with

• 𝒙1 𝑡𝑖 = 𝒙2 𝑡𝑖 = 𝒙 𝑡𝑖
• 𝒙1

′ 𝑡𝑖 = 𝒙2
′ 𝑡𝑖 = 𝒙 𝑡𝑖

• Then the requirement for 𝐺2-continuity at 𝑡 = 𝑡𝑖:

𝒙2
′′ 𝑡𝑖 − 𝒙1

′′ 𝑡𝑖 ∥ 𝒙′ 𝑡𝑖

Parallel



Bézier spline curves

• Required: 𝐺2-continuity at 𝑘𝑗:

• 𝐺1-continuity

• Co-planarity for : 𝒃𝑛−2
− , 𝒃𝑛−1

− , 𝒌𝑗, 𝒃1
+, 𝒃2

+

• And:
area 𝒃𝑛−2

− ,𝒃𝑛−1
− ,𝒌𝑗

area 𝒌𝑗,𝒃1
+,𝒃2

+ =
𝑎3

𝑏3



Bézier Splines
𝐶2 Cubic Bézier Splines



Cubic Bézier Splines

Cubic Bézier spline curves
• Given:

𝒌0, … , 𝒌𝑛 ∈ ℝ3 control points

𝑡0, … , 𝑡𝑛 ∈ ℝ knot sequence

𝑡𝑖 < 𝑡𝑖+1, for 𝑖 = 0,… . , 𝑛1

• Wanted: Bézier points 𝒃0, … , 𝒃3𝑛 for an interpolating 𝐶2-continuous 
piecewise cubic Bézier spline curve



Cubic Bézier Splines

Examples: 𝑛 = 3:



Cubic Bézier Splines

• 3𝑛 + 1 unknown points

• 𝑏3𝑖 = 𝑘𝑖 for 𝑖 = 0,… , 𝑛

𝑛 + 1 equations

• 𝐶1 in points 𝑘𝑖 for 𝑖 = 1, … , 𝑛 − 1

𝑛 − 1 equations

• 𝐶2 in points 𝑘𝑖 for 𝑖 = 1,… , 𝑛 − 1

𝑛 − 1 equations

3𝑛 − 1 equations

⇒ 2 additional conditions necessary: end conditions



Bézier Splines
𝐶2 Cubic Bézier Splines: End conditions



Bézier spline curves: End conditions

Bessel’s end condition
• The tangential vector in 𝒌0 is equivalent to the tangential vector of the 

parabola interpolating 𝒌0, 𝒌1, 𝒌2 at 𝒌0:



Bézier spline curves: End conditions

Parabola Interpolating {𝒌0, 𝒌1, 𝒌2}

𝒑 𝑡 =
𝑡2 − 𝑡 𝑡1 − 𝑡

𝑡2 − 𝑡0 𝑡1 − 𝑡0
𝒌0 +

𝑡2 − 𝑡 𝑡 − 𝑡0
𝑡2 − 𝑡1 𝑡1 − 𝑡0

𝒌1 +
𝑡0 − 𝑡 𝑡1 − 𝑡

𝑡2 − 𝑡1 𝑡2 − 𝑡0
𝒌2

Its derivative

𝒑′ 𝑡0 = −
𝑡2 − 𝑡0 + 𝑡1 − 𝑡0
𝑡2 − 𝑡0 𝑡1 − 𝑡0

𝒌0 +
𝑡2 − 𝑡0

𝑡2 − 𝑡1 𝑡1 − 𝑡0
𝒌1 −

𝑡1 − 𝑡0
𝑡2 − 𝑡1 𝑡2 − 𝑡0

𝒌2

Location of 𝒃1

𝒃1 = 𝒃0 +
𝑡1 − 𝑡0

3
𝒑′ 𝑡0

ሶ𝒙 𝑡𝑖 =
𝑛⋅ 𝒃1−𝒃0

𝑡𝑖+1−𝑡𝑖



Bézier spline curves: End conditions

• Natural end condition:

𝒙′′ 𝑡0 = 0 ⇔ 𝒃1 =
𝒃2 + 𝒃0

2

𝒙′′ 𝑡𝑛 = 0 ⇔ 𝒃3𝑛−1 =
𝒃3𝑛−2 + 𝒃3𝑛

2

ሷ𝒙 𝑡𝑖 =
𝑛 ⋅ 𝑛 − 1 ⋅ 𝒃2 − 2𝒃1 + 𝒃0

𝑡𝑖+1 − 𝑡𝑖
2



End conditions: Examples

• Bessel end condition

Curve: circle of radius 1 Curvature plot



End conditions: Examples

• Natural end condition

Curve: circle of radius 1 Curvature plot



Bézier Splines
𝐶2 Cubic Bézier Splines: parameterization



Bézier spline curves: Parameterization

Approach so far:
• Given: control points 𝒌0, … , 𝒌𝑛 and knot sequence 𝑡0 < ⋯ < 𝑡𝑛

• Wanted: interpolating curve

• Problem: Normally, the knot sequence is not given, but it influences the 
curve



Bézier spline curves: Parameterization

• Equidistant (uniform) parameterization
• 𝑡𝑖+1 − 𝑡𝑖 = const

• e.g. 𝑡𝑖 = 𝑖

• Geometry of the data points is not considered

• Chordal parameterization
• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖
• Parameter intervals proportional to the distances of neighbored control 

points



Bézier spline curves: Parameterization

• Centripetal parameterization

• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖

• Foley parameterization
• Involvement of angles in the control polygon

• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖 ⋅ 1 +
3

2

ෝ𝛼𝑖 𝒌𝑖−𝒌𝑖−1

𝒌𝑖−𝒌𝑖−1 + 𝒌𝑖+1−𝒌𝑖
+

3

2

ෝ𝛼𝑖+1 𝒌𝑖+1−𝒌𝑖

𝒌𝑖+1−𝒌𝑖 + 𝒌𝑖+2−𝒌𝑖+1

• with ො𝛼𝑖 = min 𝜋 − 𝛼𝑖 ,
𝜋

2

• and 𝛼𝑖 = angle 𝒌𝑖−1, 𝒌𝑖 , 𝒌𝑖+1

• Affine invariant parameterization
• Parameterization on the basis of an affine invariant distance measure (e.g. G. Nielson) 



Bézier spline curves: Parameterization

• Examples: Chordal parameterization

Curve                            Curvature plot



Bézier spline curves: Parameterization

• Examples: Centripetal parameterization

Curve                                 Curvature plot



Bézier spline curves: Parameterization

• Examples: Foley parameterization

Curve                                 Curvature plot



Bézier spline curves: Parameterization

• Examples: Uniform parameterization

Curve                                 Curvature plot



Bézier Splines
𝐶2 Cubic Bézier Splines: closed curves



Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
• Given:

𝒌0, … , 𝒌𝑛−1, 𝒌𝑛 = 𝒌0: control points

𝑡0 < ⋯ < 𝑡𝑛: knot sequence

• As an “end condition” for the piecewise cubic curve we place:

𝒙′ 𝑡0 = 𝒙′ 𝑡𝑛

𝒙′′ 𝑡0 = 𝒙′′ 𝑡𝑛



Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
• → 𝐶2-continuous and closed curve

• Advantage of closed curves: selection of the end condition is not 
necessary!

• Examples (on the next 3 slides): 𝑛 = 3



Examples



Examples



Examples


