

Bézier Splines

陈仁杰

中国科学技术大学

Recap

de Casteljau algorithm

Bernstein form

• bézier curves and curve design:

- The rough form is specified by the position of the control points
- Results: smooth curve approximating the control points
- Computation / Representation
 - de Casteljau algorithm
 - Bernstein form

• Bézier curves and curve design:

- The rough form is specified by the position of the control points
- Results: smooth curve approximating the control points
- Computation / Representation
 - de Casteljau algorithm
 - Bernstein form
- Problems:
 - High polynomial degree
 - Moving a control point can change the whole curve
 - Interpolation of points
 - →Bézier splines

Approximation

Interpolation

Towards Bézier Splines

Interpolation problems:

• given:

 $k_0, \dots, k_n \in \mathbb{R}^3$ control points $t_0, \dots, t_n \in \mathbb{R}$ knot sequence $t_i < t_{i+1}$, for $i = 0, \dots, n-1$

- wanted
 - Interpolating curve $\boldsymbol{x}(i)$, i.e. $\boldsymbol{x}(t_i) = \boldsymbol{k}_i$ for i = 0, ..., n
- Approach: "Joining" of n Bézier curves with certain intersection conditions

Towards Bézier Splines

- The following issues arise when stitching together Bézier curves:
 - Continuity
 - Parameterization
 - Degree

Bézier Splines

Parametric and Geometric Continuity

Parametric Continuity

Joining curves – continuity

- Given: 2 curves $x_1(t)$ over $[t_0, t_1]$ $x_2(t)$ over $[t_1, t_2]$
- x_1 and x_2 are C^r continuous at t_1 , if all their 0th to r^{th} derivative vectors coincides at t_1

Parametric Continuity

- C⁰: position varies continuously
- C¹: First derivative is continuous across junction
 - In other words: the velocity vector remains the same

• C²: Second derivative is continuous across junction

• The acceleration vector remains the same

Continuity

Parametric Continuity C^r:

- C^0 , C^1 , C^2 ... continuity
- Does a particle moving on this curve have a smooth trajectory (position, velocity, acceleration, …)?
- Depends on parameterization
- Useful for animation (object movement, camera paths)

Geometric Continuity *G*^{*r*}:

- Is the curve itself smooth?
- Independent of parameterization
- More relevant for modeling (curve design)

Geometric continuity:

Geometric continuity of curves

- Given: 2 curves $x_1(t)$ over $[t_0, t_1]$ $x_2(t)$ over $[t_1, t_2]$
- x_1 and x_2 are G^r continuous in t_1 , if they can be reparameterized in such a way that they are C^r continuous in t_1

Geometric continuity:

- $G^0 = C^0$: position varies continuously (connected)
- *G*¹: tangent direction varies continuously (same tangent)
 - In other words: the **normalized** tangent varies continuously
 - Equivalently: The curve can be reparameterzed so that it becomes \mathcal{C}^1
 - Also equivalent: A unit speed parameterization would be C^1
- *G*²: curvature varies continuously (same tangent and curvature)

 $\kappa = \|c''\|$

- Equivalently: The curve can be reparameterized so that it becomes C^2
- Also equivalent: A unit speed parameterization would be C^2

Bézier Splines

Parameterization

Local and global parameters:

- Given:
 - b_0, \cdots, b_n
 - y(u): Bézier curve in interval [0,1]
 - x(t): Bézier curve in interval $[t_i, t_{i+1}]$
- Setting $u(t) = \frac{t-t_i}{t_{i+1}-t_i}$
- Results in x(t) = y(u(t))

The *local* parameter u runs from 0 to 1, while the *global* parameter t runs from t_i to t_{i+1}

$$u(t) = \frac{t - t_i}{t_{i+1} - t_i}$$

 $x(t) = y\big(u(t)\big)$

Derivatives:

$$\begin{aligned} x'(t) &= y'(u(t)) \cdot u'(t) = \frac{y'(u(t))}{t_{i+1} - t_i} \\ x''(t) &= y''(u(t)) \cdot (u'(t))^2 + y'(u(t)) \cdot u''(t) = \frac{y''(u(t))}{(t_{i+1} - t_i)^2} \end{aligned}$$

...

$$x^{[n]}(t) = \frac{y^{[n]}(u(t))}{(t_{i+1} - t_i)^n}$$

Bézier Curve

- $\boldsymbol{f}(t) = \sum_{i=0}^{n} B_i^n(t) \, \boldsymbol{p}_i$
 - Function value at $\{0,1\}$: $f(0) = p_0$ $f(1) = p_1$
 - First derivative vector at $\{0,1\}$ $f'(0) = n[p_1 - p_0]$ $f'(1) = n[p_n - p_{n-1}]$
 - Second derivative vector at $\{0,1\}$ $f''(0) = n(n-1)[p_2 - 2p_1 + p_0]$ $f''(1) = n(n-1)[p_n - 2p_{n-1} + p_{n-2}]$

Special cases:

$$\begin{aligned} \mathbf{x}'(t_i) &= \frac{n \cdot (p_1 - p_0)}{t_{i+1} - t_i} \\ \mathbf{x}'(t_{i+1}) &= \frac{n \cdot (p_n - p_{n-1})}{t_{i+1} - t_i} \\ \mathbf{x}''(t_i) &= \frac{n \cdot (n-1) \cdot (p_2 - 2p_1 + p_0)}{(t_{i+1} - t_i)^2} \\ \mathbf{x}''(t_{i+1}) &= \frac{n \cdot (n-1) \cdot (p_n - 2p_{n-1} + p_{n-2})}{(t_{i+1} - t_i)^2} \end{aligned}$$

Bézier Splines General Case

Joining Bézier curves:

• Given: 2 Bézier curves of degree *n* through

$$k_{j-1} = b_0^-, b_1^-, \dots, b_n^- = k_j$$

$$k_j = b_0^+, b_1^+, \dots, b_n^+ = k_{j+1}$$

$$b_{n-2}^- b_{n-2}^- b_{n-2}^- b_{n-2}^+ b_{n-2}^- b_{n-2}^+ b_{n-2}^- b_$$

$$\boldsymbol{x}'(t_i) = \frac{n \cdot (\boldsymbol{b}_1 - \boldsymbol{b}_0)}{t_{i+1} - t_i}$$

- Required: C^1 -continuity at k_j :
- $\boldsymbol{b}_{n-1}^-, \boldsymbol{k}_j, \boldsymbol{b}_1^+$ collinear and

$$\frac{\boldsymbol{b}_n^- - \boldsymbol{b}_{n-1}^-}{t_j - t_{j-1}} = \frac{\boldsymbol{b}_1^+ - \boldsymbol{b}_0^+}{t_{j+1} - t_j}$$

$$b_{n-1}^{-1} \qquad b_n^{-1} = b_0^{+} \qquad b_1^{+}$$

- Required: G^1 -continuity at k_j :
 - \boldsymbol{b}_{n-1}^- , \boldsymbol{k}_j , \boldsymbol{b}_1^+ collinear
- Less restrictive than C^1 -continuity

Bézier Splines Choosing the degree

Choosing the Degree

Candidates:

- d = 0 (piecewise constant) : not smooth
- d = 1 (piecewise linear) : not smooth enough
- d = 2 (piecewise quadratic) : constant 2nd derivative, still too inflexible
- d = 3 (piecewise cubic): degree of choice for computer graphics applications

Cubic piecewise polynomials:

 We can attain C² continuity without fixing the second derivative throughout the curve

Cubic Splines

Cubic piecewise polynomials:

- We can attain C² continuity without fixing the second derivative throughout the curve
- C^2 continuity is perceptually important
 - Motion: continuous position, velocity & acceleration
 Discontinuous acceleration noticeable (object/camera motion)
 - We can see second order shading discontinuities (esp.: reflective objects)

Cubic Splines

Cubic piecewise polynomials

- We can attain C^2 continuity without fixing the second derivative throughout the curve
- C^2 continuity is perceptually important
 - We can see second order shading discontinuities (esp.: reflective objects)
 - Motion: continuous *position, velocity* & *acceleration* Discontinuous acceleration noticeable (object/camera motion)
- One more argument for cubics:
 - Among all C² curves that interpolate a set of points (and obey to the same end condition), a piecewise cubic curve has the least integral acceleration ("smoothest curve you can get").

Bézier Splines

Local control: Bézier splines

- Concatenate several curve segments
- Question: Which constraints to place upon the control points in order to get C⁻¹, C⁰, C¹, C² continuity?

Bézier Spline Continuity

Rules for Bézier spline continuity:

- C⁰ continuity:
 - Each spline segment interpolates the first and last control point
 - Therefore: Points of neighboring segments have to coincide for C^0 continuity

Bézier Spline Continuity

Rules for Bézier spline continuity:

- Additional requirement for C^1 continuity:
 - Tangent vectors are proportional to differences $p_1 p_0$, $p_n p_{n-1}$
 - Therefore: These vectors must be identical for C^1 continuity

Bézier Spline Continuity

Rules for Bézier spline continuity

- Additional requirement for C^2 continuity:
 - d^2/dt^2 vectors are prop. to $p_2 2p_1 + p_0$, $p_n 2p_{n-1} + p_{n-2}$
 - Tangents must be the same $(C^2 \text{ implies } C^1)$

Continuity

Continuity for Bézier Splines

This means

This Bézier curve is G^1 : It can be reparameterized to become C^1 . (Just increase the speed for the second segment by ratio of tangent vector lengths)

In Practice

- Everyone is using cubic Bézier curves
- Higher degree are rarely used (some CAD/CAM applications)
- Typically: "points & handles" interface
- Four modes:
 - Discontinuous (two curves)
 - C⁰ Continuous (points meet)
 - *G*¹ continuous: Tangent direction continuous
 - Handles point into the same direction, but different length
 - C¹ continuous
 - Handle points have symmetric vectors
- C^2 is more restrictive: control via k_i

• Required: C^2 -continuity at k_j

•
$$C^1$$
 implies $\frac{b_n^- - b_{n-1}^-}{t_j - t_{j-1}} = \frac{b_1^+ - b_0^+}{t_{j+1} - t_j}$

•
$$C^2$$
 implies
$$\frac{b_n^- - 2b_{n-1}^- + b_{n-2}^-}{(t_j - t_{j-1})^2} = \frac{b_2^+ - 2b_1^+ + b_0^+}{(t_{j+1} - t_j)^2}$$

• Required:
$$C^2$$
-continuity at k_j :

• Introduce
$$d^- = b_{n-1}^- + \frac{\Delta_j}{\Delta_{j-1}} (b_{n-1}^- - b_{n-2}^-)$$

and $d^+ = b_1^+ - \frac{\Delta_{j-1}}{\Delta_j} (b_2^+ - b_1^+)$

- By manipulating equation from the previous slides
- C^2 -continuity $\Leftrightarrow C^1$ -continuity and $d^- = d^+$

$$\frac{t_{j+1}-t_j}{t_j-t_{j-1}} = \frac{\Delta_j}{\Delta_{j-1}}$$

 C^2 -continuity $\Leftrightarrow C^1$ -continuity and $d^- = d^+$

- G^2 -continuity in general (for all types of curves):
- Given:
 - $\pmb{x}_1(t)$, $\pmb{x}_2(t)$ with
 - $\boldsymbol{x}_1(t_i) = \boldsymbol{x}_2(t_i) = \boldsymbol{x}(t_i)$
 - $x'_1(t_i) = x'_2(t_i) = x(t_i)$
- Then the requirement for G^2 -continuity at $t = t_i$:

- Required: G^2 -continuity at k_j :
- G¹-continuity
- Co-planarity for : $b_{n-2}^-, b_{n-1}^-, k_j, b_1^+, b_2^+$

Bézier Splines *C*² **Cubic Bézier Splines**

Cubic Bézier Splines

Cubic Bézier spline curves

• Given:

 $\begin{array}{ll} \pmb{k}_{0}, \ldots, \pmb{k}_{n} \in \mathbb{R}^{3} & \text{control points} \\ t_{0}, \ldots, t_{n} \in \mathbb{R} & \text{knot sequence} \\ t_{i} < t_{i+1}, \, \text{for } i = 0, \ldots, n_{1} \end{array}$

• Wanted: Bézier points $b_0, ..., b_{3n}$ for an interpolating C^2 -continuous piecewise cubic Bézier spline curve

Cubic Bézier Splines

Examples: n = 3:

Cubic Bézier Splines

- 3n + 1 unknown points
- $b_{3i} = k_i$ for i = 0, ..., nn + 1 equations
- C^1 in points k_i for i = 1, ..., n 1n - 1 equations
- C^2 in points k_i for i = 1, ..., n 1n - 1 equations

b4 **b**5 **D**3 **b**6 \mathbf{b}_2 \mathbf{k}_1 **K**2 **b**7 \mathbf{b}_1 b8 t1 t_2 t3 t0 $b_0 = k_0$ $k_3 = b_9$

3n-1 equations

⇒ 2 additional conditions necessary: end conditions

Bézier Splines *C*² **Cubic Bézier Splines: End conditions**

Bézier spline curves: End conditions

Bessel's end condition

• The tangential vector in k_0 is equivalent to the tangential vector of the parabola interpolating $\{k_0, k_1, k_2\}$ at k_0 :

Bézier spline curves: End conditions

Parabola Interpolating $\{k_0, k_1, k_2\}$

$$\boldsymbol{p}(t) = \frac{(t_2 - t)(t_1 - t)}{(t_2 - t_0)(t_1 - t_0)} \boldsymbol{k}_0 + \frac{(t_2 - t)(t - t_0)}{(t_2 - t_1)(t_1 - t_0)} \boldsymbol{k}_1 + \frac{(t_0 - t)(t_1 - t)}{(t_2 - t_1)(t_2 - t_0)} \boldsymbol{k}_2$$

 $\dot{\boldsymbol{x}}(t_i) = \frac{n \cdot (\boldsymbol{b}_1 - \boldsymbol{b}_0)}{t_{i+1} - t_i}$

Its derivative

$$\boldsymbol{p}'(t_0) = -\frac{(t_2 - t_0) + (t_1 - t_0)}{(t_2 - t_0)(t_1 - t_0)} \boldsymbol{k}_0 + \frac{(t_2 - t_0)}{(t_2 - t_1)(t_1 - t_0)} \boldsymbol{k}_1 - \frac{(t_1 - t_0)}{(t_2 - t_1)(t_2 - t_0)} \boldsymbol{k}_2$$

Location of \boldsymbol{b}_1

$$\boldsymbol{b}_1 = \boldsymbol{b}_0 + \frac{t_1 - t_0}{3} \boldsymbol{p}'(t_0)$$

Bézier spline curves: End conditions

• Natural end condition:

$$\boldsymbol{x}^{\prime\prime}(t_0) = 0 \Leftrightarrow \boldsymbol{b}_1 = \frac{\boldsymbol{b}_2 + \boldsymbol{b}_0}{2}$$
$$\boldsymbol{x}^{\prime\prime}(t_n) = 0 \Leftrightarrow \boldsymbol{b}_{3n-1} = \frac{\boldsymbol{b}_2 + \boldsymbol{b}_0}{2}$$

 $\ddot{\mathbf{x}}(t_i) = \frac{n \cdot (n-1) \cdot (\mathbf{b}_2 - 2\mathbf{b}_1 + \mathbf{b}_0)}{(t_{i+1} - t_i)^2}$

End conditions: Examples

• Bessel end condition

Curve: circle of radius 1

Curvature plot

End conditions: Examples

• Natural end condition

Curve: circle of radius 1

Curvature plot

Bézier Splines

C² Cubic Bézier Splines: parameterization

Approach so far:

- Given: control points k_0, \dots, k_n and knot sequence $t_0 < \dots < t_n$
- Wanted: interpolating curve
- Problem: Normally, the knot sequence is not given, but it influences the curve

- Equidistant (uniform) parameterization
 - $t_{i+1} t_i = \text{const}$
 - e.g. $t_i = i$
 - Geometry of the data points is not considered
- Chordal parameterization
 - $t_{i+1} t_i = \| \mathbf{k}_{i+1} \mathbf{k}_i \|$
 - Parameter intervals proportional to the distances of neighbored control points

- Centripetal parameterization
 - $t_{i+1} t_i = \sqrt{\|k_{i+1} k_i\|}$
- Foley parameterization
 - Involvement of angles in the control polygon

•
$$t_{i+1} - t_i = \|\mathbf{k}_{i+1} - \mathbf{k}_i\| \cdot \left(1 + \frac{3}{2} \frac{\widehat{\alpha}_i \|\mathbf{k}_i - \mathbf{k}_{i-1}\|}{\|\mathbf{k}_i - \mathbf{k}_{i-1}\|} + \frac{3}{2} \frac{\widehat{\alpha}_{i+1} \|\mathbf{k}_{i+1} - \mathbf{k}_i\|}{\|\mathbf{k}_{i+1} - \mathbf{k}_i\| + \|\mathbf{k}_{i+2} - \mathbf{k}_{i+1}\|}\right)$$

- with $\hat{\alpha}_i = \min\left(\pi \alpha_i, \frac{\pi}{2}\right)$
- and $\alpha_i = \text{angle}(\mathbf{k}_{i-1}, \mathbf{k}_i, \mathbf{k}_{i+1})$
- Affine invariant parameterization
 - Parameterization on the basis of an affine invariant distance measure (e.g. G. Nielson)

• Examples: Chordal parameterization

• Examples: Centripetal parameterization

• Examples: Foley parameterization

• Examples: Uniform parameterization

Bézier Splines *C*² **Cubic Bézier Splines: closed curves**

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves

• Given:

 $k_0, \dots, k_{n-1}, k_n = k_0$: control points $t_0 < \dots < t_n$: knot sequence

• As an "end condition" for the piecewise cubic curve we place:

 $\boldsymbol{x}'(t_0) = \boldsymbol{x}'(t_n)$ $\boldsymbol{x}''(t_0) = \boldsymbol{x}''(t_n)$

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves

- $\rightarrow C^2$ -continuous and closed curve
- Advantage of closed curves: selection of the end condition is not necessary!
- Examples (on the next 3 slides): n = 3

Examples

Examples

Examples

TERM AND A TABLE AND A AND A