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Some Projective Geometry



Projective Geometry

• A very short overview of projective geometry
• The computer graphics perspective

• Formal definition



Homogeneous Coordinates

• Problem
• Linear maps (matrix multiplication in ℝ𝑑) can represent …

• Rotations

• Scaling

• Shearing

• Orthogonal projection

• …but not:
• Translations

• Perspective projections

• This is a problem in computer graphics:
• We would like to represent compound operations in a single closed representation



Translations

• “Quick Hack” #1: Translations
• Linear maps cannot represent translations:

• Every linear map maps the zero vector to zero 𝑀0 = 0

• Thus, non-trivial translations are non-linear

• Solution:
• Add one dimension to each vector

• Fill in a one

• Now we can do translations by adding multiplies of the one:

𝑀𝑥 =
𝑟11 𝑟21 𝑡𝑥
𝑟12 𝑟22 𝑡𝑦
0 0 1

𝑥
𝑦
1

=
𝑟11 𝑟21
𝑟12 𝑟22

𝑥
𝑦 +

𝑡𝑥
𝑡𝑦

1



Normalization

Problem: what if the last entry is not 1?
• It’s not a bug, it’s a feature…

• If the last component is not 1, divide everything by it before using the result

𝒙 →
𝜔𝒙
𝜔

1

𝜔
𝒙 ←

𝒙
𝜔

Cartesian coordinates
(Euclidian space)

Homogenous coordinates
(projective space)



Notation

Notation:
• The extra component is called the homogenous component of the vector.

• It is usually denoted by 𝜔:

◼ 2D case:

𝑥
𝑦 →

𝜔𝑥
𝜔𝑦
𝜔

◼ 3D case:

𝑥
𝑦
𝑧

→

𝜔𝑥
𝜔𝑦
𝜔𝑧
𝜔

◼ Ceneral case:

𝒙 →
𝜔𝒙
𝜔



Perspective Projections

New Feature: Perspective projections
• Very useful for 3D computer graphics

• Perspective projection (central projection)
• involves divisions

• can be packed into homogeneous component



Perspective Projection

Physical camera:

Virtual camera:



Perspective Projection

Perspective projection: 𝑥′ = 𝑑
𝑥

𝑧
, 𝑦′ = 𝑑

𝑦

𝑧



Homogenous Transformation

• Projection as linear transformation in homogenous 
coordinates:
• Trick: Put the denominator into the 𝜔 component

𝑥′ = 𝑑
𝑥

𝑧
,     𝑦′ = 𝑑

𝑦

𝑧

𝑥′

𝑦′

𝑧′

𝜔′

=

𝑑 0 0 0
0 𝑑 0 0
0 0 𝑑 0
0 0 1 0

𝑥
𝑦
𝑧
1



Formal Definition

Projective Space 𝑷𝒅

• Embed Euclidian space 𝐸𝑑

• Into 𝑑 + 1 dimensional Euclidian space at 𝜔 = 1

• Additional dimension usually named 𝜔

• Identify all points on lines through the origin
• Representing the same Euclidian point



Question

Can we represent a circle arc using a Bézier curve?

Approximation of Circle using Cubic Bézier Evaluation of 𝒙𝟐 + 𝒚𝟐 for points on the Bézier curve



Rational Curves

• Motivation
• Bézier and B-spline curves cannot represent 

conic sections (circles, hyperbolas, etc.)

• But we require those for some tasks

• Goal
• Uniform and easily manageable description of 

polynomial curves and conic sections

• Idea
• Control points are equipped with weights…but 

not any weights!

Planetarium of the St. Louis Science Center

Tycho Brahe Planetarium, Copenhagen



Quadrics and Conics



Modeling Wish List

We want to model:
• Circles (surfaces: Spheres)
• Ellipses (surfaces: Ellipsoids)
• And segments of those
• Surfaces: Objects with circular cross section

• Cylinders

• Cones

• Surfaces of revolution (lathing)

These objects cannot be represented exactly by piecewise 
polynomials  (they are only approximated) 



Conical Sections

Classic description of such objects:
• Conical sections (conics)

• Intersections of a cone and a plane

• Resulting Objects:
• Circles

• Ellipses

• Hyperbolas

• Parabolas

• Points

• Lines



Conic Sections

•

Circle,
Ellipse

Hyperbola Parabola Line
(degenerate case)

Point
(degenerate case)



Implicit Form

Implicit quadrics:
• Conic sections can be expressed as zero set of a quadratic function:

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

⇔ 𝒙𝑇
𝑎 ൗ𝑏 2

ൗ𝑏 2 𝑐
𝒙 + 𝑑 𝑒 𝒙 + 𝑓 = 0

• Easy to see why:

Implicit eq. for a cone: 𝐴𝑥2 + 𝑏𝑦2 = 𝑧2

Explicit eq. for a plane: 𝑧 = 𝐷𝑥 + 𝐸𝑦 + 𝐹

Conical Section:            𝐴𝑥2 + 𝐵𝑦2 = 𝐷𝑥 + 𝐸𝑦 + 𝐹 2



Quadrics & Conics

Quadrics:
• Zero sets of quadratic functions (any dimension) are called quadrics:

𝒙 ∈ ℝ𝑑 | 𝒙𝑻𝑴𝒙+ 𝒃𝑻𝒙 + 𝒄 = 𝟎

• Conics are the special case for 𝑑 = 2



Shapes of Quadratic Polynomials

𝜆1 = 1, 𝜆2 = 1 𝜆1 = 1, 𝜆2 = −1 𝜆1 = 1, 𝜆2 = 0



The Iso-Lines: Quadrics

Elliptic

𝜆1 > 0, 𝜆2 > 0

hyperbolic

𝜆1 < 0, 𝜆2 > 0

degenerate case

𝜆1 = 0, 𝜆2 > 0



Characterization

Determining the type of Conic from the implicit form:
• Implicit function: quadratic polynomial

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

⇔ 𝒙𝑇
𝑎 ൗ𝑏 2

ൗ𝑏 2 𝑐
𝒙 + 𝑑 𝑒 𝒙 + 𝑓 = 0

• Eigenvalues of 𝑀

𝜆1,2 =
𝑎 + 𝑐

2
±
1

2
𝑎 − 𝑐 2 + 𝑏2

𝑀



Cases

We obtain the following cases:
• Ellipse: 𝑏2 < 4𝑎𝑐

• Circle: 𝑏 = 0, 𝑎 = 𝑐

• Otherwise: general ellipse

• Parabola: 𝑏2 = 4𝑎𝑐 (border case)

• Hyperbola:  𝑏2 > 4𝑎𝑐

Implicit function:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0



Cases

Explanation:

𝑏2 = 4𝑎𝑐 ⇒ 𝜆1,2 =
𝑎 + 𝑐

2
±
1

2
𝑎 − 𝑐 2 + 4𝑎𝑐

Implicit function:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

=
𝑎 + 𝑐

2
±
1

2
𝑎2 − 2𝑎𝑐 + 𝑐2 + 4𝑎𝑐

=
𝑎 + 𝑐

2
±
1

2
𝑎2 + 2𝑎𝑐 + 𝑐2

=
𝑎 + 𝑐

2
±
1

2
𝑎 + 𝑐 2

=
𝑎 + 𝑐

2
±
𝑎 + 𝑐

2
= 0, 𝑎 + 𝑐



Polynomial Curves & Conics

We want to represent conics with parametric curves:
• How can we represent (pieces) of conics as parametric curves?

• How can we generalize our framework of piecewise polynomial curves to 
include conical sections?

Projections of Parabolas:
• We will look at a certain class of parametric functions – projections of 

parabolas

• This class turns out to be general enough

• And can be expressed easily with the tools we know.



Projections of Parabolas

Definition: Projection of a Parabola
• We start with a quadratic space curve

• Interpret the 𝑧-coordinate as homogenous component 𝜔

• Project the curve on the plane 𝜔 = 1



Projected Parabola

Formal Definition:
• Quadratic polynomial curve in three space
• Project by dividing by the third coordinates

𝒇(ℎ𝑜𝑚) 𝑡 = 𝒑0 + 𝑡𝒑1 + 𝑡2𝒑2 =

𝒑0. 𝑥
𝒑0. 𝑦
𝒑0. 𝜔

+ 𝑡

𝒑1. 𝑥
𝒑1. 𝑦
𝒑1. 𝜔

+ 𝑡2
𝒑2. 𝑥
𝒑2. 𝑦
𝒑2. 𝜔

𝒇(𝑒𝑢𝑐𝑙) 𝑡 =

𝒑0. 𝑥
𝒑0. 𝑦

+ 𝑡
𝒑1. 𝑥
𝒑1. 𝑦

+ 𝑡2
𝒑2. 𝑥
𝒑2. 𝑦

𝒑0. 𝜔 + 𝑡𝒑1. 𝜔 + 𝑡2𝒑2. 𝜔



Parameterizing Conics

Conics can be parameterized using projected parabolas:
• We show that we can represent (piecewise):

• Points and lines (obvious ✓)

• A unit parabola

• A unit circle

• A unit hyperbola

• General cases (ellipses etc.) can be obtained by affine mappings of the 
control points (which leads to affine maps of the curve)



Parameterizing Parabolas

Parabolas as rational parametric curves:

𝒇(𝑒𝑢𝑐𝑙) 𝑡 =

0
0

+ 𝑡
1
0

+ 𝑡2
0
1

1 + 0𝑡 + 0𝑡2
𝑥 𝑡 = 𝑡

𝑦 𝑡 = 𝑡2
✓ (obvious) 



Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑



Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑

cos𝜑 =
1−tan2

𝜑

2

1+tan2
𝜑

2

, sin𝜑 =
2 tan

𝜑

2

1+tan2
𝜑

2

(tangent half-angle formula) 

𝑡 ≔ tan
𝜑

2
⇒ 𝒇 𝑒𝑢𝑐𝑙 𝜑 =

1−𝑡2

1+𝑡2

2𝑡

1+𝑡2



Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑 =

1−𝑡2

1+𝑡2

2𝑡

1+𝑡2

with 𝑡 ≔ tan
𝜑

2

⇒ 𝒇(ℎ𝑜𝑚) 𝑡 =
1 − 𝑡2

2𝑡
1 + 𝑡2

parameterization for 𝜑 ∈ −
𝜋

2
,
𝜋

2

⇒ we need at least three segments 
to parametrize a full circle



Hyperbolas

Unit Circle:    𝑥2 + 𝑦2 = 1

⇒ 𝑥 𝑡 =
1 − 𝑡2

1 + 𝑡2
, 𝑦 𝑡 =

2𝑡

1 + 𝑡2
𝑡 ∈ ℝ

Unit Hyperbola:    𝑥2 − 𝑦2 = 1

⇒ 𝑥 𝑡 =
1 + 𝑡2

1 − 𝑡2
, 𝑦 𝑡 =

2𝑡

1 − 𝑡2
, 𝑡 ∈ 0, 1



Rational Bézier Curves



Rational Bézier Curves

Rational Bézier curves in ℝ𝑛 of degree 𝑑:
• Form a Bézier curve of degree 𝑑 in 𝑛 + 1 dimensional space

• Interpret last coordinates as homogenous component

• Euclidean coordinates are obtained by projection

𝒇 ℎ𝑜𝑚 𝑡 = σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝒑𝑖 , 𝒑𝑖 ∈ ℝ𝑛+1

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡

𝑝𝑖
1

…

𝑝𝑖
𝑛

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝑝𝑖

𝑛+1



More Convenient Notation

The curve can be written in “weighted points” form:

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝑖

𝑝𝑖
1

…

𝑝𝑖
𝑛

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝒊

Interpretation:
• Points are weighted by weights 𝜔𝑖

• Normalized by interpolated weights in the denominator
• Large weights → more influence of that point



Properties

What about affine invariance, convex hull prop.?

𝒇 𝑒𝑢𝑐𝑙 𝑡 =෍

𝑖=0

𝑛

𝒑𝑖
𝐵𝑖

𝑑
𝑡 𝜔𝑖

σ𝑗=0
𝑛 𝐵𝑗

𝑑
𝑡 𝜔𝑖

=෍

𝑖=0

𝑛

𝑞𝑖 𝑡 𝒑𝑖

Consequences:
• Affine invariance still holds

• For strictly positive weights:
• Convex hull property still holds

• This is not a big restriction (potential singularities otherwise)

• Projective invariance (projective maps, hom. coord’s) 

with σ𝑖=0
𝑛 𝑞𝑖 𝑡 = 1



Rational Bézier Curves

Geometric interpretation of rational Bézier curves:
• Rational Bézier curves are obtained by central projection of “normal” 

Bézier curves



Rational Bézier Curves

Examples:
• 𝜔𝑖 = 1 𝑖 = 0,… , 𝑛 : “normal” Bézier curves

• Generally:
• Each conic section can be described as rational Bézier curve of degree two

• Each rational Bézier curve of degree two is a conic section

• Example: Circular arc



Rational de Casteljau Algorithm

Evaluation with de Casteljau Algorithm
• Three variants:

• Compute in 𝑛 + 1 dimensional space, then project

• Compute numerator and denominator separately, then divide

• Divide in each intermediate step (“rational de Casteljau”)

• Non-rational de Casteljau algorithm:

𝒃𝑖
𝑟

𝑡 = 1 − 𝑡 𝒃𝑖
𝑟−1

𝑡 + 𝑡𝒃𝑖+1
𝑟−1

𝑡

• Rational de Casteljau algorithm

𝒃𝑖
𝑟

𝑡 = 1 − 𝑡
𝜔𝑖

𝑟−1
𝑡

𝜔𝑖
𝑟

𝑡
𝒃𝑖

𝑟−1
𝑡 + 𝑡

𝜔𝑖+1
𝑟−1

𝑡

𝜔𝑖
𝑟

𝑡
𝒃𝑖+1

𝑟−1
𝑡

with 𝜔𝑖
𝑟

𝑡 = 1 − 𝑡 𝜔𝑖
𝑟−1

𝑡 +𝑡𝜔𝑖+1
𝑟−1

𝑡



Rational de Casteljau Algorithm

Advantages:
• More intuitive (repeated weighted linear interpolation of points and 

weights)

• Numerically more stable (only convex combinations for the standard case 
of positive weights, 𝑡 ∈ 0,1 )



Influence of the Weights

Influence of the weights on the curve shape:
• Increasing 𝜔𝑖 moves the curve towards the Bézier point 𝑏𝑖
• Examples:



Influence of the Weights

Moving a control point

Not the same!

Increasing the weight of a control point



Quadratic Bézier Curves

• Quadratic curves:
• Necessary and sufficient to represent conics

• Therefore, we will examine them closer …

• Quadratic rational Bézier curve:

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝐵0

2
𝑡 𝜔0𝒑0 + 𝐵1

2
𝑡 𝜔1𝒑1 + 𝐵2

2
𝑡 𝜔2𝒑2

𝐵0
2

𝑡 𝜔0 + 𝐵1
2

𝑡 𝜔1 + 𝐵2
2

𝑡 𝜔2

, 𝒑𝑖 ∈ ℝ𝑛, 𝜔𝑖 ∈ ℝ



Standard Form (or Normal Form)

How many degrees of freedom are in the weights?
• Quadratic rational Bézier curve:

𝑓 𝑒𝑢𝑐𝑙 𝑡 =
𝐵0

2
𝑡 𝜔0𝒑0 + 𝐵1

2
𝑡 𝜔1𝒑1 + 𝐵2

2
𝑡 𝜔2𝒑2

𝐵0
2

𝑡 𝜔0 + 𝐵1
2

𝑡 𝜔1 + 𝐵2
2

𝑡 𝜔2

If one of the weights is ≠ 0 (which must be the case), we can divide 
numerator and denominator by this weight and thus remove one degree 
of freedom. No impact on the curve.

If we are only interested in the shape of the curve, we can remove one 
more degree of freedom by a reparameterization … No impact on shape 
of the curve



Standard Form

How many degrees of freedom are in the weights?
• Concerning the shape of the curve, the parameterization does not matter

• We have

𝑓 𝑒𝑢𝑐𝑙 𝑡 =
1 − 𝑡 2𝜔0𝒑0 + 2𝑡 1 − 𝑡 𝜔1𝒑1 + 𝑡2𝜔2𝒑2

1 − 𝑡 2𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2

• We set: (with 𝛼 to be determined later)

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
,   i.e., 1 − 𝑡 ←

𝛼 1−ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡



Remark: Why this reparameterization?

Reparameterization:

𝑡 ←
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

Properties:
• 0 → 0, 1 → 1,

monotonic in between 

• Shape determined by 
parameter 𝛼



Standard Form

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1− ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0𝒑0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1𝒑1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2𝒑2

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2

=
𝛼2 1 − ǁ𝑡 2𝜔0𝒑0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1𝒑1 + ǁ𝑡2𝜔2𝒑2

𝛼2 1 − ǁ𝑡 2𝜔0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1 + ǁ𝑡2𝜔2

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1− ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0𝒑0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1𝒑1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2𝒑2

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2

=
𝛼2 1 − ǁ𝑡 2𝜔0𝒑0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1𝒑1 + ǁ𝑡2𝜔2𝒑2

𝛼2 1 − ǁ𝑡 2𝜔0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1 + ǁ𝑡2𝜔2

=
𝛼2𝐵0

2 ǁ𝑡 𝜔0𝒑0 + 𝛼𝐵1
2 ǁ𝑡 𝜔1𝒑1 + 𝐵2

2 ǁ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ǁ𝑡 𝜔0 + 𝛼𝐵1

2 ǁ𝑡 𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1− ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝛼2𝐵0

2 ሚ𝑡 𝜔0𝒑0+𝛼𝐵1
2 ሚ𝑡 𝜔1𝒑1+𝐵2

2 ሚ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ሚ𝑡 𝜔0+𝛼𝐵1

2 ሚ𝑡 𝜔1+𝐵2
2 ሚ𝑡 𝜔2

let 𝛼 =
𝜔2

𝜔0
(assume 0 ≤

𝜔2

𝜔0
< ∞) 



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝛼2𝐵0

2 ሚ𝑡 𝜔0𝒑0+𝛼𝐵1
2 ሚ𝑡 𝜔1𝒑1+𝐵2

2 ሚ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ሚ𝑡 𝜔0+𝛼𝐵1

2 ሚ𝑡 𝜔1+𝐵2
2 ሚ𝑡 𝜔2

let 𝛼 =
𝜔2

𝜔0
(assume 0 ≤

𝜔2

𝜔0
< ∞) 

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡

𝜔2
𝜔0

𝟐

𝜔0𝒑0 + 𝐵1
2 ǁ𝑡

𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡

𝜔2
𝜔0

2

𝜔0 + 𝐵1
2 ǁ𝑡

𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

=

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2



Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

with 𝜔 ≔
1

𝜔0𝜔2
𝜔1

=
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡

1
𝜔0𝜔2

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡
1

𝜔0𝜔2
𝜔1 + 𝐵2

2 ǁ𝑡

=
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡 𝜔𝒑1 + 𝐵2

2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡 𝜔 + 𝐵2
2 ǁ𝑡



Standard Form

Consequence:
• It is sufficient to specify the weight of the inner point

• We can w.l.o.g. set 𝜔0 = 𝜔2 = 1, 𝜔1 = 𝜔

• This form of a quadratic Bézier curve is called the standard form or the 
normal form

• Choices:
• 𝜔 < 1: ellipse segment

• 𝜔 = 1: parabola segment (non-rational curve)

• 𝜔 > 1: hyperbola segment



Illustration

• Changing the weight:



Conversion to Implicit Form

Convert parametric to implicit form
• In order to show the shape condition

• For distance computation / inside-outside tests

Express curve in barycentric coordinates
• Curve can be expressed in barycentric coordinates 

(linear transform)

𝒇 𝑡 = 𝜏0 𝑡 𝒑0 + 𝜏1 𝑡 𝒑1 + 𝜏2 𝑡 𝒑2



Conversion to Implicit Form

Compare the coefficients

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡

𝒇 𝑡 = 𝜏0 𝑡 𝒑0 + 𝜏1 𝑡 𝒑1 + 𝜏2 𝑡 𝒑2

𝒇 𝒆𝒖𝒄𝒍 𝑡 =
1 − 𝑡 2𝜔0𝒑0 + 2𝑡 1 − 𝑡 𝜔1𝒑1 + 𝑡2𝜔2𝒑2

1 − 𝑡 2𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2

𝜔 𝑡 = 1 − 𝑡 2 𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2



Conversion to Implicit Form

Solving for 𝒕, 𝟏 − 𝒕

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡
⇒ 1 − 𝑡 =

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡
⇒ 𝑡 =

𝜏2 𝑡 𝜔 𝑡

𝜔2



Conversion to Implicit Form

Solving for 𝒕, 𝟏 − 𝒕

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡
⇒ 1 − 𝑡 =

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡
⇒ 𝑡 =

𝜏2 𝑡 𝜔 𝑡

𝜔2

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡
= 2

𝜔1

𝜔 𝑡

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏2 𝑡 𝜔 𝑡

𝜔2
= 2𝜔1

𝜏0 𝑡 𝜏2 𝑡

𝜔0𝜔2

⇒
𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2



Conversion to Implicit Form

More algebra …

𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2

Using 𝜏2 𝑡 = 1 − 𝜏0 𝑡 − 𝜏1 𝑡 , we get

𝜔0𝜔2 𝜏1
2 𝑡 = 4𝜔1

2𝜏2 𝑡 𝜏0 𝑡 = 4𝜔1
2 1 − 𝜏0 𝑡 − 𝜏1 𝑡 𝜏0 𝑡

= 4𝜔1
2 𝜏0 𝑡 − 𝜏0

2 𝑡 − 𝜏0 𝑡 𝜏1 𝑡

⇒ 𝜔0𝜔2 𝜏1
2 𝑡 + 4𝜔1

2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1
2𝜏0

2 𝑡 − 4𝜔1
2𝜏0 𝑡 = 0



𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 0𝑥 + 𝑒𝑦 + 0 = 0

Conversion to Implicit Form

More algebra …

𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2

Using 𝜏2 𝑡 = 1 − 𝜏0 𝑡 − 𝜏1 𝑡 , we get

𝜔0𝜔2 𝜏1
2 𝑡 = 4𝜔1

2𝜏2 𝑡 𝜏0 𝑡 = 4𝜔1
2 1 − 𝜏0 𝑡 − 𝜏1 𝑡 𝜏0 𝑡

= 4𝜔1
2 𝜏0 𝑡 − 𝜏0

2 𝑡 − 𝜏0 𝑡 𝜏1 𝑡

⇒ 𝜔0𝜔2 𝜏1
2 𝑡 + 4𝜔1

2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1
2𝜏0

2 𝑡 − 4𝜔1
2𝜏0 𝑡 = 0



Classification

Eigenvalue argument led to:
• Parabola requires 𝑏2 = 4𝑎𝑐 in 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

• In our case:
𝜔0𝜔2 𝜏1

2 𝑡 + 4𝜔1
2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1

2𝜏0
2 𝑡 − 4𝜔1

2𝜏0 𝑡 = 0

i.e.

4 𝜔0𝜔2 4𝜔1
2 = 4𝜔1

2 2

⇔ 𝜔0𝜔2 = 𝜔1
2

• Standard form: 𝜔0 = 𝜔2 = 1

⇒ 𝜔1 = 1



Classification

Similarly, it follows that

𝜔1 < 1 → Ellipse

𝜔1 = 1 → Parabola

𝜔1 > 1 → Hyperbola



Towards Dual Conic Sections

Rational quadratic curves – conic sections
• Consider a rational quadratic curve in normal form for 𝑡 ∈ 0,1 :

𝒙 𝑡 =
1 − 𝑡 2 ⋅ 𝒃0 + 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 ⋅ 𝒃1 + 𝑡2 ⋅ 𝒃2

1 − 𝑡 2 + 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2



Dual Conic Sections

Rational quadratic curves – conic sections
• Dual conic section 𝑡 ∈ ℝ ∖ [0,1]

• Choice of reparameterization

𝑠 𝑡 = Ƹ𝑡 =
𝑡

2 ⋅ 𝑡 − 1
⇒ 1 − Ƹ𝑡 =

𝑡 − 1

2 ⋅ 𝑡 − 1

Ƹ𝑡 changes from 0 to −∞ ⇔ 𝑡 changes from 0 to 
1

2

Ƹ𝑡 changes from ∞ to 1 ⇔ 𝑡 changes from 
1

2
to 1



Dual Conic Sections

The following applies:

𝒙 𝑠 𝑡 = 𝒙 Ƹ𝑡

=
1 − Ƹ𝑡 2 ⋅ 𝑏0 + 2 ⋅ Ƹ𝑡 ⋅ 1 − Ƹ𝑡 ⋅ 𝜔 ⋅ 𝑏1 + Ƹ𝑡2 ⋅ 𝑏2

1 − Ƹ𝑡 2 + 2 ⋅ Ƹ𝑡 ⋅ 1 − Ƹ𝑡 ⋅ 𝜔 + Ƹ𝑡2

=
1 − 𝑡 2 ⋅ 𝑏0 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 ⋅ 𝑏1 + 𝑡2 ⋅ 𝑏2

1 − 𝑡 2 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2

• →Dual conic section arises in Normal form by negation of 𝜔



Dual Conic Sections

Examples:



Dual Conic Sections

Classification of conic sections:
• By means of the dual conic section

• Consider singularities of the denominator function

1 − 𝑡 2 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2 in 0,1



Rational Bézier curves

• 𝜔 < 1 → no singularities → ellipse

• 𝜔 = 1 → one singularities → parabola

• 𝜔 > 1 → two singularities → hyperbola



Circle in Bézier Form

• Quadratic rational polynomial:

𝑓 𝑡 =
1

1 + 𝑡2
1 − 𝑡2

2𝑡
, 𝑡 = tan

𝜑

2
, 𝜑 ∈ −

𝜋

2
,
𝜋

2

• Conversion to Bézier basis

𝐵0
2
= 1 − 𝑡 2 = 1 − 2𝑡 + 𝑡2 ≔ 1 −2 1 T

𝐵1
2
= 2𝑡 1 − 𝑡 = 2𝑡 − 2𝑡2 ≔ 0 2 −2 T

𝐵2
2
= 𝑡2 ≔ 0 0 1 T

1 − 𝑡2 ≔ 1 0 −1 T

2𝑡 ≔ 0 2 0 T

1 + 𝑡2 ≔ 1 0 1 T



Circle in Bézier Form

Conversion to Bézier basis: Method 1
𝐵0

2
= 1 − 𝑡 2 = 1 − 2𝑡 + 𝑡2 ≔ 1 −2 1 T

𝐵1
2
= 2𝑡 1 − 𝑡 = 2𝑡 − 2𝑡2 ≔ 0 2 −2 T

𝐵2
2
= 𝑡2 ≔ 0 0 1 T

Comparison yields:

1 − 𝑡2 = 𝐵0
2
+ 𝐵1

2

2𝑡 = 𝐵1
2
+ 2𝐵2

2

1 + 𝑡2 = 𝐵0
2
+ 𝐵1

2
+ 2𝐵2

2

1 − 𝑡2 ≔ 1 0 −1 T

2𝑡 ≔ 0 2 0 T

1 + 𝑡2 ≔ 1 0 1 T

𝒇 ℎ𝑜𝑚 𝑡 =
1
0
1

𝐵0
2
+

1
1
1

𝐵1
2 +

0
2
2

𝐵2
2



Circle in Bézier Form

Conversion to Bézier basis: Method 2

Use polar forms:

And then evaluate at 0,0 , 0,1 , 1,1

1 − 𝑡2 ⇒ 𝑓0 = 1 − 𝑡1𝑡2

2𝑡 ⇒ 𝑓1 = 𝑡1 + 𝑡2

1 + 𝑡2 ⇒ 𝑓2 = 1 + 𝑡1𝑡2



Circle in Bézier Form

• Result:

𝒇 𝑡 =

1
0

𝐵0
2

𝑡 +
1
1

𝐵1
2

𝑡 +
0
2

𝐵2
2

𝑡

𝐵0
2

𝑡 + 𝐵1
2

𝑡 + 2𝐵2
2

𝑡

• Parameters:

𝑡 = tan
𝜑

2
⇒ 𝜑 = 2arctan 𝑡

𝑡 ∈ 0,1 → 𝜑 ∈ 0,
𝜋

2



Circle in Bézier Form

Standard Form:

𝒇 𝑡 =
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡 𝜔𝒑1 + 𝐵2

2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡 𝜔 + 𝐵2
2 ǁ𝑡

with 𝜔 ≔
1

𝜔0𝜔2
𝜔1

𝒇 𝑡 =
𝐵0

2 1
0

+
2
2 𝐵1

2 1
1

+ 𝐵2
2 0

0

𝐵0
2
+

2
2
𝐵1

2
+ 𝐵2

2



Result: Circle in Bézier Form

Final Result:



General Circle Segments

Circlar arcs:
• Let dist 𝒃0, 𝒃1 = dist 𝒃1, 𝒃2

and 𝛼 = angle 𝒃0, 𝒃2, 𝒃1 = angle 𝒃2, 𝒃0, 𝒃1
• Then, 𝒙 𝑡 is the circular arc for 

𝜔 = cos 𝛼

• 𝒙 𝑡 is not arc length parameterized!



Properties, Remarks

Continuity:
• The parameterization is only 𝐶1, but 𝐺∞

• No arc length parameterization possible

• Even stronger: No rational curve other than a straight line can have arc-
length parameterization.

Circles in general degree Bézier splines:
• Simplest solution:

• Form quadratic circle (segments)

• Apply degree elevation to obtain the desired degree



Farin Points

ഥ𝑓𝑖 =
1

2
⋅ ഥ𝑏𝑖 + 𝑏𝑖+1

𝑓𝑖 =
𝜔𝑖 ⋅ 𝑏𝑖 +𝜔𝑖+1 ⋅ 𝑏𝑖+1

𝜔𝑖 + 𝜔𝑖+1



Farin Points

Not the weights themselves determine the curve shape, but the 
relation of the weights among each other!

The ratio 
𝜔𝑖+1

𝜔𝑖
is expressed by point 𝑓𝑖 , at line segment 𝑏𝑖 → 𝑏𝑖+1 of 

the Bézier polygon. The following applies:
𝜔𝑖+1

𝜔𝑖
=

𝑏𝑖 − 𝑓𝑖
𝑏𝑖+1 − 𝑓𝑖



Farin Points

Alternative technique to specify weights:
• Farin points or Weight points
• User interface: More intuitive in interactive design

Farin Points:

𝑞0 =
𝜔0𝑝0+𝜔1𝑝1

𝜔0+𝜔1
, 𝑞1 =

𝜔1𝑝1+𝜔2𝑝2

𝜔1+𝜔2

Standard Form

𝑞0 =
𝑝0+𝜔1𝑝1

1+𝜔1
, 𝑞1 =

𝑝1+𝜔1𝑝2

1+𝜔1



Farin Points

Farin Points and changing of weight:
• The change of the weight 𝜔𝑖 into ෝ𝜔𝑖 under preservation of the other 

weights only changes the Farin points 𝑓𝑖−1, 𝑓𝑖 to መ𝑓𝑖−1, ෡𝑓𝑖



Rational Curves: Rational Bézier Curves

Properties of rational Bézier curves:
• (Let 𝜔𝑖 > 0 for 𝑖 = 0,… , 𝑛)

• End point interpolation

• Tangent direction in the boundary points corresponds with the direction 
of the control polygon

• Variation diminishing property



Rational Curves: Rational Bézier Curves

Convex hull properties:

Tightened convex hull properties: the curve lies in the convex hull 
of 𝑏0, 𝑓0, … , 𝑓𝑛−1, 𝑏𝑛



Derivatives

Computing derivatives of rational Bézier curves:
• Straightforward: Apply quotient rule

• A simpler expression can be derived using an algebraic trick:

𝒇 𝑡 =
σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝑖𝒑𝑖

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝒊

=:
𝒑 𝑡

𝜔 𝑡

𝒇 𝑡 =
𝒑 𝑡

𝜔 𝑡
⇒ 𝒑 𝑡 = 𝒇 𝑡 𝜔 𝑡 ⇒ 𝒑′ 𝑡 = 𝒇′ 𝑡 𝜔 𝑡 + 𝒇 𝑡 𝜔′ 𝑡

⇒ 𝒇′ 𝑡 𝜔 𝑡 = 𝒑′ 𝑡 − 𝒇 𝑡 𝜔′ 𝑡 ⇒ 𝒇′ 𝑡 =
𝒑′ 𝑡 − 𝒇 𝑡 𝜔′ 𝑡

𝜔 𝑡



Derivatives

At the end points:

𝒇′ 𝑡 =
𝒑′ 𝑡 − 𝜔′ 𝑡 𝒇 𝑡

𝜔 𝑡

𝒇′ 0 =
𝒑′ 0 − 𝜔′ 0 𝒇 0

𝜔 0

𝒇′ 1 = 𝑑
𝜔𝑑−1

𝜔𝑑
𝒑𝑑 − 𝒑𝑑−1

=
𝑑 𝜔1𝒑1 −𝜔0𝒑0 − 𝑑 𝜔1 − 𝜔0 𝒑0

𝜔0
=

𝑑

𝜔0
𝜔1𝒑1 −𝜔0𝒑0 −𝜔1𝒑0 + 𝜔0𝒑0

= 𝑑
𝜔1

𝜔0
𝒑1 − 𝒑0



NURBS
Non-Uniform Rational B-Splines



NURBS

NURBS: Rational B-Splines
• Same idea:

• Control points in homogenous coordinates

• Evaluate curve in (𝑑 + 1)-dimensional space

(same as before)

• For display, divide by 𝜔-component

- (we can divide anytime)



NURBS

NURBS: Rational B-Splines

• Formally:(𝑁𝑖
𝑑 :B-spline basis function 𝑖 of degree d)

𝒇 𝑡 =
σ𝑖=1
𝑛 𝑁𝑖

𝑑
𝑡 𝜔𝑖𝒑𝑖

σ𝑖=1
𝑛 𝑁𝑖

𝑑
𝑡 𝜔𝒊

• Knot sequences etc. all remain the same

• de Boor algorithm – similar to rational de Casteljau alg.
• option 1. – apply separately to numerator, denominator

• option 2. – normalize weights in each intermediate result

- the second option is numerically more stable


