TTEAL B LT
2023Fk=5H

Spline Surfaces

Tensor Product Surfaces - Total Degree Surfaces

BRI
FERZERARAKE

OQutput: 1D

Qutput: 2D

Qutput: 3D

B ftu T A A
gl Y4
cc__-" _ u ol X X

Function graph Plane curve Space curve
(Ql nu y“
o -
= v
o ' .
L= X
Plane warp Surface
D A
™ y
5 4 Z
Q‘ P
<

Space warp

Spline Surfaces

Parametric spline surfaces:

* Two parameter coordinates (u, v) /
* Plecewise bivariate polynomials
(rational surfaces - homogeneous coords)

* Assemble multiple pieces to form a surface with
continuity

* Each piece is called spline patch

Spline Surfaces

Two different approaches

* Tensor product surfaces
* Simple construction
* Everything carries over from curve case
* Quad patches
* Degree anisotropy

* Total degree surfaces
* Not as straightforward
(blossoming will help)
* |sotropic degree
* Triangle patches
* “natural” generalization of curves

Tensor Product Surfaces

Tensor Product Surfaces

Simple Idea
* Glven a basis for a one dimensional function space on the interval
t € [ty t1] » R
B(V) = {b;(t), ..., bn ()}
* Build a new basis with two parameters by taking all possible
products:

BGur) = {b1 ()b (v), by (Wb, (V), ..., by (Wb, (v)}

Tensor Product Surfaces

Tensor product basis

b, (v)b;(u) b, (v)b,(u) b1 (v)bs(u) b1 (v)b,(u)
b,(v)b, (u) b,(v)b,(u) b,(v)bs(u) b,(v)b,(u)
b3 (v)b; (u) b3 (v)b,(u) b3 (v)b3(u) b3(v)b,(u)

b,(v)b;(u) b,(v)b,(u) b,(v)bs(u) b,(v)b,(u)

Monomial Example

Tensor product basis of cubic monomials

1 u u u

v vu vu’ vu’
v? viu viu?® viu?®
v v3u v3u? v3u’®

Example

Tensor Product Surfaces

Tensor Product Surfaces
fan=)) b,

— z:l:l b; (1) 2;1 b;j(v)p;
B 211 i) 27;1 b,

e “Curves of Curves”

* Order does not matter

C

Properties

Properties of tensor product surfaces:
* Linear invariance: Obvious

* Affine invariance?
* Needs partition of unity property n
» Assume basis B4 == {p, (1), ..., b,,(t)} forms a partition of unity, i.e.: z b(v) =1

* Then we get: t=1

* Affine invariance for tensor product surfaces is induced by the
corresponding property of the employed curve basis

Properties

Properties of tensor product surfaces:

* Convex Hull?

« Assume basis B(¥™) := {b,(t), ..., b,,(t)} forms a partition of unity and it is
nonnegative (= 0) on t € [ty, t1]

* Obviously, we then have:

y;y; b () 20

=0 =0

* So we have the convex hull property on [tg, t1]?

* The convex hull property for tensor product surface is induced by the
property of the employed curve basis

Partial Derivatives

Computing partial derivatives:
* First derivatives:

%z;z;bi(mbj(u)pi,j =Zj By 1()(u)pu
N NIICUIOTES WRTO) I (% b,-) (V)P

* Just spline-curve combinations of curve derivatives

Partial Derivatives

Computing partial derivatives:
* Second derivatives:

%Z; 2j=1bi(u)bj)pij = Z:L O “’)Z 1<du2 >(U)Pi,j
I > Z} by (u)b; (V)py ; = ;—UZ Wy (j_u bl-) (W,
=z (>(v)zl 1(>(u)pu

Partial Derivatives

Computing partial derivatives:
* General derivatives:

aT‘+S S

e 71 b)by (W)p;,; = Z (= bl-) @) (
5 (R (E)on

d'r
G bi) (Wp;

Normal Vectors

We can compute normal vectors from partial derivatives:
(Spa b B3 L i) % (2 1d by () i b)

n(u,v) =

(270 50 S g i) (s g i) Ty i, |

* Problem: degenerate cases
* Collinear tangents
* [rregular parametrization

* Need extra code to handle special cases

Tensor Product Surfaces

Tensor Product Bézier Surfaces
Tensor Product Bézier Spline Surfaces

Tensor Product Bézier Surfaces

—Bézier curves:
repeated linear interpolation

now a different setup.
4 pOintS boo, b101 b111 b01
Parameter area [0,1] X [0,1]

— bilinear interpolation:

repeated linear interpolation o o The
bo: |)|.|
- . . boi ¢ - »
repeated bilinear interpolation: b' b,) b
> . s 00)10
Gives us tensor product Bézier surfaces ‘ *
(example) shows quadratic Bézier Surfaces) ., 4 s
D00 210 20

Some formulas for this setup _— /. b

hy = (1 —u)byo + ubs
hl —_ (1 — U)b01 + Ubll

bio

x(u,v) =(1—-v)h, + vhy
= (1 —v)[(1 —u)bgy + ubqo] + v[(1 —u)by; + uby4]|

x(u,v) =1 —-uw)(1—-v)byy +u(l —v)byy + (1 —u)vby; + uvb,,

Some formulas for this setup

Derivatives of bilinear surfaces
xu(u; U) — (1 — U)(bm — boo) T V(bn — b01)
xv(u; v) =(1- u)(b01 — boo) T u(b11 — b1o)

X, (U, v) = x,,(u,v) =0

')D,l 1.1
~ '\. s ™

Xy (U, v) = bgg — b1g — bg1 + by

l)l.o

Some formulas for this setup

Biquadratic surfaces
bly = (1 —w)(1 — v)bgy + u(1 — v)byo+(1 —
bly = (1 —w)(1 — v)byo + u(l — v)byy+(1
b, = (1 —w) (1 —v)by; + u(1 —v)by+(1

b, =1 —-uw)(1—-v)by; +u(l—v)b,;+(1

x(u, v)
=1 —-uw)(1—-v)bj, +u(l —v)bi, + (1

2 2
= Z z Bf (w)B} ()b,
i=0 &= j=0

u)vby +uvby,

- U)vbll +uvb21
—w)vby,+uvhb,,

— uw)vby,+uvb,,

— u)vbj, + uvbi,

bo: : b : b2
|)01 |)1 1
- L3
bo = -
|)1 1 |) 12
1 1
bog big
L3 - -
boo bio b2o

Bézier Patches

Bézier Patches:
* Use tensor product Bernstein basis

d d
fu,v) = ZizozjzﬂBW WB® W)p,

* We get automatically:
* Affine invariance
* Convex hull property

Bézier Patches

Bézier Patches:

* Remember endpoint interpolation:

* Boundary curves are Bézier curves of the
boundary control points

0.4

Bézier Patches

Bézier Patches:

* Tangent vectors:
* First derivatives at boundary points are proportional to differences of control points:

p d d (a
@f(u, v) ‘uzo N zi=0 Zj=o Bi(d) (U)BJQ)(O)pi’f

4 @
- dz,-=0 B (v)(p1,j - po,j)

9 d

Continuity Conditions

For C° continuity:
* Boundary control points must match

For C! continuity:
* Difference vectors must match at the boundary

O

Q

Q

Q

Q

O

COCOntinUityo O—O0—@—0—0—@—0—0—@

Q

Q

Q

Q

Q

Q

O

@)

@)

@)

@)

@)

Cl Continuity e—o0—o0

O

Q

O

Q

Q

@ O O NWO/TO O km./,YO O -)
O @) OIP\O/PvO OIv\O/PvO @) O
I\ I
¢ © 0=Q—0 0—Q=0 O O
AN YA Y
G AW SN
@) @) OIﬁ\O/Ivo Ol\v\O/Ivo @) @)
mu @) Olv\/lvo Olkv\mv/lvo @) mu
B AP R e
@ ; Mmm ?_,ﬂa ?_M/n
@) OIw\O/kO OIP\O/IvO @) O
@) Olkv\O/lvo OIﬁ\O/PvO @) O
O O NmQ/,YO O QTO O o

Cl Continuity o0

Polars & Blossoms

Blossoms for tensor product surfaces:

* Polar form of a polynomial tensor product surfaces of degree d:
F: RxXR->R" F(u,v)
f: REXRY S R® f(uy, .., Ug; Ve, e, Vg)
* Required properties:
* Diagonality: f(u,..,u;v,...,v) = F(u,v)
* Symmetry: f(ul, vy, Ugy U1y eeny Ud) = f(un(l), e U (@) V(1) s vu(d))
for all permutations of indices m, u
* Multi-affine: Ya; =1

(k) :
= f(ul, ey ROU e, Ugs Vg, e, Vg
_ (1) . (n) _
- alf(ul, ---,Ui ,...,ud,VJ_, ---,vd +.'.+anf ul) --l;ui ;---)ud)vl) ---)vd

: (k)
and f(ul, s U V1, ey ARV, ey, Vg

_ . (1) _ (n)
—alf(ul,...,ud,vl,...,vi s, Vg)+ o+ anf Ugy ey Ugs V1, o U 5 o, Vg

Short Summary

Polar forms for tensor product surfaces:
* Polar separately in u and v
* Notation: f(uq, ..., Ug; V1, ..., Vg)

u-parameters v-parameters

* Can be used to derive properties/algorithms similar to the curve case

Bézier Control Points

Bézier control points in blossom notation:

1000;1,1,1) Ok L)

f\tk—-:{?//{)\
£(0,0,0:1,1,0) _ £(0,0,1; 1,1,0) f(0,1,1; 1,1,1)
o 5
(0,0,0;1,0,0) £(0,0,1; 1,0,0) — £(0,1,1:1,1,0)
ol 0,11: 1,0,0)
f(0,0,0; 0,000 0.,0,1;°0,0,0)
‘. N f(1,1,4;1,1,1)

£(0,1,1; 0,0,0) f(1,1,1; 1,1,0)

-~
o

f(1,1,1;1,00)

. .

£(1,1,1; 0,0,0)

de Casteljau Algorithm

de Casteljau algorithm for tensor product surfaces
b(1,1,1;1,1,1)

b(0,0,0; 1,1,1)

b(1,1,1; 0,0,0)

Tensor Product Surfaces

Tensor Product B-Spline Surfaces

B-Spline Patches

B-Spline Patches
* More general than Bézier patches
(we get Bézier patches as a special case)
* First, we fix a degree d
* Then, we need knot sequences in u and v direction:
(Uqg, ooy Uy), (Vg n, V)
* And a corresponding array of control points

d0,0 d’n—d+1,0

dO,m—d+1 dn—d+1,m—d+1

B-Spline Patches

Then, obtain a parametric B-spline patch as:
d d
fu,v) = Zi=0 Zj=0 Ni(d) (u)Nj(d) W)y

* We can evaluate the patches using the de Boor Algorithm:

* “Curves of curves” idea

* Determine the knots/control points influencing (u, v),
These will be no more than (d + 1) X (d + 1) points

* Compute (d + 1) v-direction control points along u-direction,
Performing (d + 1) curve evaluations

* Then evaluate the curve in v-direction

* (or the other way around, interchanging u, v-directions)

O

O

lllustration

B-Spline Patches

Alternative:
* 2D de Boor algorithm
* Works similar to the 2D de Casteljau algorithm but with different weights
(we can use tensor—product blossoming to derive the weights)

Tensor Product Surfaces

Rational Patches

Rational Patches

Rational Patches
* We can use rational Béezier/B-splines to create the patches
(“rational Bézier patches” / “NURBS-patches”)

* |dea:
* Form a parametric surface in 4D, homogenous space
* Then project to w = 1 to obtain the surface in Euclidian 3D space

* [n short: Just use homogeneous coordinates everywhere

Rational Patch

Rational Bézier Patch:
da da W: p)
fromwn =) > B

d d
ld:o Z?:o Bi()(U)Bj()(v)wi,jpi,j

?:O Z?:() Bi(d) (U) Bj(d) (v)wi,j

FEUD (y,v) =

Rational Patch

Rational B-Spline Patch:

fom (y, U)—E 02 ON(d)(u)N(d)(v)(”p”)
=0 4 j =

d d
ld:o Z?:o Ni()(U)Nj()(v)wi,jpi,j

FEUD (y,v) =
?:O Z?:() Ni(d) (U) Nj(d) (v)wi,j

Remark: Rational Patches

Observation: L yd gD E@D e o
» Euclidian surface is not a tensor fEueD (g, p) = 222200 k Rl
product surface
* Denominator depends on both u and v
* Homogeneous space: 4D surface Is a
tensor product surface. FCEucD) (3 Y =

4,24, BP WB Y maw;,

d d
Lo 2o NP NP oy jp
L2 NP NP W),

Surfaces of Revolution

Advantages of rational patches:
* Rational patches can represent surfaces of revolution exactly.

* Examples:
Cylinders
* Cones
Spheres
Ellipsoids
* Torl

* Question: given a cross section curve, how do we get the control points
for the 3D surface?

Surfaces of Revolution

S

L

Surfaces of Revolution

Given:
* Control points p4, ..., pn Of curve
(“generatrix”)

We want to compute:
* Control points p; ; of a rational surface

Such that:

* The surface describes the surface of revolution that we
obtain by rotating the curve around the y axis (w.l.o.g.)

Surfaces of Revolution

Simplification:
* We look only at a single rational Bézier segment

* Applying the scheme to multiple segments
together Is straightforward

* The same idea also works for B-splines

Surfaces of Revolution

Construction:
* We are given control points
D1 Pd+1
(d is the degree in u direction)
* We introduce a new parameter v

* In v direction, we use quadratic Bézier curves
(2" degree basis in v-direction)

Surfaces of Revolution

Key ldea:

* For u-direction curves: control points (and thus the
curves) must move on circles around the y-axis

* Circles must have the same parametrization (this Is easy)
* This means, the control points rotate around the y-axis

* Affine invariance will make the whole curve rotate, we
get the desired surface of revolution

Surface of Revolution

Making one point rotate around the y-axis:

wP;
a)i

Surface of Revolution

Making one point rotate around the y-axis:

G
N

Surface of Revolution

Making one point rotate around the y-axis:

(”"J

a) i(p; —ri+ rk)

.\

Z

Y

a)(p ri —

rk)

a) (p Zrl)

oo

O\

0

1/

Surface of Revolution

Making one point rotate around the y-axis:

w;(p; —ri + rk))

((Ui(Pi + Tk)/\/i> o (
wi/ﬁ

r

<wi(Pi - Tk)/\/f> O
a)i/\/i

*
wi(p; —ri — Tk))

w;(p; — 2ri + rk)_/\/?
wi/ﬁ

w;(p; — 2ri —rk) /2
a)l-/\/i

)

)

1
0
0

o

0
0
1

)

Remark

What we get:
* We obtain 4 segments, i.e. 4 patches for each Bézier segment
* A similar construction with 3 segments exists as well

Does the scheme yield a circle for weights # 1 in the generatrix
curve?

* Common factors in weights cancel out

* Therefore, we still obtain a circle at these points

* Parametrization does not change either

Benefit

With this construction, it is straightforward to create:
* Spheres
* Torl
* Cylinders
* Cones

And affine transformations of these (e.g. ellipsoids)

Parametrization Restrictions

3x the same point
T

Remaining problem:

* The sphere and the cone are not regularly
parametrized (double control points)

* Might cause trouble (normal computation,
tessellation)

* In general: no sphere, or n-tori (n > 1) can be
parametrized without degeneracies

* What works: open surfaces, cylinders, tori
o

Curves on Surfaces, trimmed NURBS

Quad patch problem:
* All of our shapes are parameterized over rectangular regions
* General boundary curves are hard to create
* Topology fixed to a disc (or cylinder, torus)
* No holes in the middle

* Assembling complicated shapes Is painful
* Lots of pieces
* Continuity conditions for assembling pieces become complicated
- Cannot use C? B-splines continuity along boundaries when using multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:
* We need more control over the parameter domain

* One solution Is trimming using curves on surtaces (CONS)
 Standard tool in CAD: trimmed NURBS

Basic idea:

* Specify a curve In the parameter domain that encapsulates one (or more)
pleces of area

* Tessellate the parameter domain accordingly to cut out the trimmed
plece (rendering)

Curves-on-3Surfaces (CONS)

Curves-on-3urfaces (CONS)

Curves-on-3urfaces (CONS)

General Shapes

General shapes with holes:
* Draw multiple curves

* Inside / outside test:

* If any ray in the parameter domain intersects the boundary
curves an odd number of times, the point is inside

* Qutside otherwise

* Implementation needs to take care of special cases (critical
points with respect to normal of the ray)

* Nasty, but doable (special case)

Total Degree Surfaces

Bézier Triangles

Alternative surface definition: Bézier triangles

* Constructed according to given total degree
* Completely symmetric: degree anisotropy

\\
* Can be derived using a triangular de Casteljau algorithm -

* Blossoming formalism is very helpful for defining Bézier
Triangles

* Barycentric interpolation of blossom values

Blossoms for Total Degree Surfaces

Blossom with points as arguments:
* Polar form degree d with points as input and output:
F:R*"-> R™
f: Rdxn > R™
* Required Properties:
 Diagonality: f(t, t,...,t) = F(t)

* Symmetry: f(tl, t,, ..., td) = f(tn(l)» O tn(d))
for all permutations of indices

* Multi-affine: Ya, =1
k
- f(tl, o, Yt ...,td)
= a.f (tl, D, Lty) +ot anf (tl, o Y, ...,td)

points as arguments

Example

Example: bivariate monomial basis
* In powers of (u, v):
B ={1,u,v,u? uv, v?}
* Blossom form: multilinear in (uq, uy, v1, v3)
B ={1,

1 1
> (ug + uz);g (v, + vy),

1
Uiy, (uv1 + UV, + Uy v, + UyDy), vlvz}

Barycentric Coordinates P2

Barycentric Coordinates:
* Planar case:

Barycentric combinations of 3 points P, B
p=ap,+pp, +yps,witha+p+y=1 P,
y=1l—-a-p
* Area formulation
y=1l-a-p
o = area(8pzp3p)) B = area(A(p1p3p)) _ area(A(p1p2p))
area(A(py,p2,p3))’ area(A(p1,p2.p3))’ area(A(p1,p2.p3))

Barycentric Coordinates

Barycentric Coordinates:
* Linear formulation:
P = ap; + P2 +VP3
=ap, +Pp,+ (1 —a—p)ps
= ap, + fp2 + P3 —apsz — [P3
=ps +a(p, —p3) + (P2 — P3)

P4

P,

Barycentric Coordinates

p=ap;+Lp, +yps,witha+p+y=1
P,

P1 B

P

Bézier Triangles: Overview

Bézier Triangles: Main ldeas

* Use 3D points as inputs to the blossoms

* These are Barycentric coordinates of a parameter triangle {a, b, c}

* Use 3D points as outputs

* Form control points by multiplying parameter points, just as in the curve
case: p(a,...,a,b, .., b,c,..,c)

i j k

 De Casteljau Algorithm: compute polynomial values p(x, ..., x) by

barycentric interpolation

Plugging in the Barycentric Coord'’s

Analog: 2D curves In barycentric coordinates

* Barycentric coordinates for 2D curves:

0 t 1

Plugging in the Barycentric Coord'’s

Analog: 2D curves In barycentric coordinates

* Barycentric coordinates for 2D curves:
0) t 1
| |
JI\ I

|
|
a) P P b

opzaa+18b, a‘l‘ﬁ:l
* Bézier splines:

F(t) =YY%, (Cli) (1-0)'t*'f(a,..,ab,..,b) (standard form)

i d—i

a'B'f(a,..,ab,..,b) (barycentric form)

d!
ij!

F(p) =X it+j=a

i>0,j20

L J

Example

Cubic Bézier Triangle: p(c,c,c)

p(c,a,a)

2 b

p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b)

De Casteljau Algorithm

X =aa+ b+ yc,
a+pf+y=1

Bernstein Form

Writing this recursion out, we obtain:
d! .
F(x) = z ——a'fly*f(a, ...,a,b,..,b,c, ..., c)

il k!
i+j+k=d | .
i j,k=0 l J k
X =aa+ [b+yc,
a+pf+y=1

* This I1s the Bernstein form ot a Bézier triangle surface
* (Proof by induction)

Continuity

We need to assemble Bézier triangles continuously:
* What are the conditions for C°, C continuity?
* As an example, we will look at the quadratic case:
* (Try the cubic case as an exercise)

Continuity

Situation:

C
* Two Bézier triangles meet along a common edge.
* Parametrization: T; = {a, b, c}, T, = {c, b, d}
* Polynomial surfaces F(T;), G(T,)
¢ Control points:
* F(T1): f(a,a),f(a,b),f(b,b) f(ac) f(cc) f(bc)
* G(T2): g(d,d), g(d,b),g(b,b),g(d,c),g(cc)g(b,c)

Continuity

Situation:

f(b, b) b g(b, b)

g(d,d)

f(a, a)
f(a, c)

f(c,c) € g(c,c)

Continuity

f(b, b) b g(b, b)

C° continuity:
* The points on the boundary have to agree:
f(b,b) = g(b,b)
f(b,c) =g(b,c) @
f(C: c) = g(C, c) (a.2) f(a,)
* Proof: Letx=fb+yc, f+y =1 flc,c) € glcc)

f(x,x) = Bf(b,x) +vf(c,x)

= B*f(b,b) + 2Byf(b,c) + y*f(c,c)
I I I

g(b,b) gb,c) g(co)

= B*g(b,b) + 2Byg(b,c) +y?g(c,c)
= pg(b,x) +yg(c,x) = g(x,x)

Continuity

C! continuity: [N
* We need C° continuity. |
In addition.
* Points at hatched quadrilaterals are coplanar

* Hatched quadrilaterals are an affine image of
the same parameter quadrilateral

P ——e
[RS ’
) o 4 s /
s R i
N ’
. /
X //
o Mie
' 4 .
¥ / (* L\
! f y
/ ‘." \| "4 |
‘,‘ A \ W J
.
- e
DI ‘-
Il F ¥ "’
| ’ r "4
J + R 4
-9 @ —
4 ==

f(b, b) b g(b, b)

Continuity

C! continuity:
* We need C° continuity.
In addition:
The blossoms have to agree partially:

f(a,b) = g(a,b) CY requirement
f(b,d) = g(b,d)
fla,c) =g(a,c)
f(c,d) = g(c,d)

f{a,c)

fic,¢) € glc,c)

Tal81 b
Continuity b, b) Bogto,

C! continuity: Proof
* Derivatives:

—F(x)|x—p = f(p . d)
(similar to the curve case)
 C1-Continuity:
vx e R f(p,x) = g(p,x)
* We have to show
f(b,x) = g(b,x)
fle,x) = g(c x)

« = (! continuity follows for all boundary
points (by Iinterp.)

f(c,c) € g{c,c)

VxE]RB:{

f(b, b) b g(b, b)

Continuity

C! continuity: Proof

* SO we have to show
f(b,x) = g(b, x)
flc,x) = g(c x)

VxEIR3:{

* Proof:
Write x = aa + Bb + yg (coordinate system)

f(b,x) = af(a,b) + f(b,b) +vf(b,c)

g(b,x) = ag(a,b) + Bg(b, b)(;r/’y):q(%bc(’ CO
f(b,x) = g(b,x) < af(a,b) + Bf(b; vf (b/
=ag(a,b) + Bgb;b) +yg(b

< f(a,b) = g(a,b) (same for the other conditions)

Continuity

So what does this mean?

* The blossoms have to agree partially: a
f(a,b) = g(a,b) f(a, a)
f(b,d) = g(b,d)
f(a,c) =g(a,c)
flc,d) = g(c,d)
* The points must be coplanar
(with edge points):
f(a,b),g(b,d),g(b,b),g(b,c)
* The points in F must be affine images of
the points In G

