
Spline Surfaces
Tensor Product Surfaces · Total Degree Surfaces

陈仁杰

中国科学技术大学

计算机辅助几何设计
2023秋学期

Output: 1D Output: 2D Output: 3D

In
p

u
t:

 1
D

Function graph Plane curve Space curve

In
p

u
t:

 2
D

Plane warp Surface

In
p

u
t:

 3
D

Space warp

Spline Surfaces

Parametric spline surfaces:
• Two parameter coordinates 𝑢, 𝑣

• Piecewise bivariate polynomials

(rational surfaces → homogeneous coords)

• Assemble multiple pieces to form a surface with
continuity

• Each piece is called spline patch

Spline Surfaces

Two different approaches
• Tensor product surfaces

• Simple construction

• Everything carries over from curve case

• Quad patches

• Degree anisotropy

• Total degree surfaces
• Not as straightforward

(blossoming will help)

• Isotropic degree

• Triangle patches

• “natural” generalization of curves

Tensor Product Surfaces

Tensor Product Surfaces

Simple Idea
• Given a basis for a one dimensional function space on the interval
𝑡 ∈ 𝑡0, 𝑡1 → ℝ𝑑 :

𝑩 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡

• Build a new basis with two parameters by taking all possible
products:

𝑩 𝑠𝑢𝑟𝑓 ≔ 𝑏1 𝑢 𝑏1 𝑣 , 𝑏1 𝑢 𝑏2 𝑣 ,… , 𝑏𝑛 𝑢 𝑏𝑛 𝑣

Tensor Product Surfaces

Tensor product basis

𝑏1 𝑢 𝑏2 𝑢 𝑏3 𝑢 𝑏4 𝑢

𝑏1 𝑣 𝑏1 𝑣 𝑏1 𝑢 𝑏1 𝑣 𝑏2 𝑢 𝑏1 𝑣 𝑏3 𝑢 𝑏1 𝑣 𝑏4 𝑢

𝑏2 𝑣 𝑏2 𝑣 𝑏1 𝑢 𝑏2 𝑣 𝑏2 𝑢 𝑏2 𝑣 𝑏3 𝑢 𝑏2 𝑣 𝑏4 𝑢

𝑏3 𝑣 𝑏3 𝑣 𝑏1 𝑢 𝑏3 𝑣 𝑏2 𝑢 𝑏3 𝑣 𝑏3 𝑢 𝑏3 𝑣 𝑏4 𝑢

𝑏4 𝑣 𝑏4 𝑣 𝑏1 𝑢 𝑏4 𝑣 𝑏2 𝑢 𝑏4 𝑣 𝑏3 𝑢 𝑏4 𝑣 𝑏4 𝑢

Monomial Example

Tensor product basis of cubic monomials

1 𝑢 𝑢2 𝑢3

1 1 𝑢 𝑢2 𝑢3

𝑣 𝑣 𝑣𝑢 𝑣𝑢2 𝑣𝑢3

𝑣2 𝑣2 𝑣2𝑢 𝑣2𝑢2 𝑣2𝑢3

𝑣3 𝑣3 𝑣3𝑢 𝑣3𝑢2 𝑣3𝑢3

Example

Tensor Product Surfaces

Tensor Product Surfaces

𝒇 𝑢, 𝑣 =
𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗

• “Curves of Curves”

• Order does not matter

=
𝑖=1

𝑛

𝑏𝑖 𝑢
𝑗=1

𝑛

𝑏𝑗 𝑣 𝒑𝑖,𝑗

=
𝑗=1

𝑛

𝑏𝑗 𝑣
𝑖=1

𝑛

𝑏𝑖 𝑢 𝒑𝑖,𝑗

Properties

Properties of tensor product surfaces:
• Linear invariance: Obvious

• Affine invariance?
• Needs partition of unity property

• Assume basis 𝐵 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡 forms a partition of unity, i.e.:

• Then we get:

• Affine invariance for tensor product surfaces is induced by the
corresponding property of the employed curve basis

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 =
𝑖=1

𝑛

𝑏𝑖 𝑢
𝑗=1

𝑛

𝑏𝑗 𝑣 =
𝑗=1

𝑛

𝑏𝑗 𝑣 ⋅ 1 = 1

𝑖=1

𝑛

𝑏𝑖 𝑣 = 1

Properties

Properties of tensor product surfaces:
• Convex Hull?

• Assume basis 𝑩 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡 forms a partition of unity and it is
nonnegative (≥ 0) on 𝑡 ∈ 𝑡0, 𝑡1

• Obviously, we then have:

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 ≥ 0

• So we have the convex hull property on 𝑡0, 𝑡1
2

• The convex hull property for tensor product surface is induced by the
property of the employed curve basis

≥ 0 ≥ 0

Partial Derivatives

Computing partial derivatives:
• First derivatives:
𝜕

𝜕𝑢

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝑗=1

𝑛

𝑏𝑗 𝑣
𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

𝜕

𝜕𝑣

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝑖=1

𝑛

𝑏𝑖 𝑢
𝑗=1

𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 𝒑𝑖,𝑗

• Just spline-curve combinations of curve derivatives

Partial Derivatives

Computing partial derivatives:
• Second derivatives:
𝜕

𝜕𝑢2

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝑗=1

𝑛

𝑏𝑗 𝑣
𝑖=1

𝑛 𝑑2

𝑑𝑢2
𝑏𝑖 𝑢 𝒑𝑖,𝑗

𝜕2

𝜕𝑢𝜕𝑣

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝜕

𝜕𝑣

𝑗=1

𝑛

𝑏𝑗 𝑣
𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

=
𝑗=1

𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣

𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

Partial Derivatives

Computing partial derivatives:
• General derivatives:

𝜕𝑟+𝑠

𝜕𝑢𝑟𝜕𝑣𝑠

𝑖=1

𝑛

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝑗=1

𝑛 𝑑𝑠

𝑑𝑣𝑠
𝑏𝑖 𝑣

𝑖=1

𝑛 𝑑𝑟

𝑑𝑢𝑟
𝑏𝑖 𝑢 𝒑𝑖,𝑗

=
𝑖=1

𝑛 𝑑𝑟

𝑑𝑢𝑟
𝑏𝑖 𝑢

𝑗=1

𝑛 𝑑𝑠

𝑑𝑣𝑠
𝑏𝑗 𝑣 𝒑𝑖,𝑗

Normal Vectors

We can compute normal vectors from partial derivatives:

𝒏 𝑢, 𝑣 =
σ𝑗=1
𝑛 𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑑
𝑑𝑢

𝑏𝑖 𝑢 𝒑𝑖,𝑗 × σ𝑗=1
𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑏𝑖 𝑢 𝒑𝑖,𝑗

σ𝑗=1
𝑛 𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑑
𝑑𝑢

𝑏𝑖 𝑢 𝒑𝑖,𝑗 × σ𝑗=1
𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑏𝑖 𝑢 𝒑𝑖,𝑗

• Problem: degenerate cases
• Collinear tangents

• Irregular parametrization

• Need extra code to handle special cases

Tensor Product Surfaces
Tensor Product Bézier Surfaces

Tensor Product Bézier Spline Surfaces

Tensor Product Bézier Surfaces

Bézier curves:
repeated linear interpolation

bilinear interpolation:
repeated linear interpolation

repeated bilinear interpolation:
Gives us tensor product Bézier surfaces
(example) shows quadratic Bézier Surfaces)

now a different setup:
4 points 𝒃00, 𝒃10, 𝒃11, 𝒃01
Parameter area 0,1 × 0,1

Some formulas for this setup

𝒉0 = 1 − 𝑢 𝒃00 + 𝑢𝒃10

𝒉1 = 1 − 𝑢 𝒃01 + 𝑢𝒃11

𝒙 𝑢, 𝑣 = 1 − 𝑣 𝒉0 + 𝑣𝒉1

𝒙 𝑢, 𝑣 = 1 − 𝑢 1 − 𝑣 𝒃00 + 𝑢 1 − 𝑣 𝒃10 + 1 − 𝑢 𝑣𝒃01 + 𝑢𝑣𝒃11

= 1 − 𝑣 1 − 𝑢 𝒃00 + 𝑢𝒃10 + 𝑣 1 − 𝑢 𝒃01 + 𝑢𝒃11

Some formulas for this setup

Derivatives of bilinear surfaces

• 𝒙𝑢 𝑢, 𝑣 = 1 − 𝑣 𝒃10 − 𝒃00 + 𝑣 𝒃11 − 𝒃01

• 𝒙𝑣 𝑢, 𝑣 = 1 − 𝑢 𝒃01 − 𝒃00 + 𝑢 𝒃11 − 𝒃10

• 𝒙𝑢𝑢 𝑢, 𝑣 = 𝒙𝑣𝑣 𝑢, 𝑣 = 0

• 𝒙𝑢𝑣 𝑢, 𝑣 = 𝒃00 − 𝒃10 − 𝒃01 + 𝒃11

Some formulas for this setup

Biquadratic surfaces

𝒃00
1 = 1 − 𝑢 1 − 𝑣 𝒃00 + 𝑢 1 − 𝑣 𝒃10+ 1 − 𝑢 𝑣𝒃01+𝑢𝑣𝒃11

𝒃10
1 = 1 − 𝑢 1 − 𝑣 𝒃10 + 𝑢 1 − 𝑣 𝒃20+ 1 − 𝑢 𝑣𝒃11+𝑢𝑣𝒃21

𝒃01
1 = 1 − 𝑢 1 − 𝑣 𝒃01 + 𝑢 1 − 𝑣 𝒃11+ 1 − 𝑢 𝑣𝒃02+𝑢𝑣𝒃12

𝒃11
1 = 1 − 𝑢 1 − 𝑣 𝒃11 + 𝑢 1 − 𝑣 𝒃21+ 1 − 𝑢 𝑣𝒃12+𝑢𝑣𝒃22

𝒙 𝑢, 𝑣
= 1 − 𝑢 1 − 𝑣 𝒃00

1 + 𝑢 1 − 𝑣 𝒃10
1 + 1 − 𝑢 𝑣𝒃01

1 + 𝑢𝑣𝒃11
1

=
𝑖=𝟎

𝟐

𝑗=𝟎

𝟐

𝐵𝑖
2 𝑢 𝐵𝑗

2 𝑣 𝒃𝑖,𝑗

Bézier Patches

Bézier Patches:
• Use tensor product Bernstein basis

𝒇 𝑢, 𝑣 =
𝑖=𝟎

𝒅

𝑗=𝟎

𝒅

𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝒑𝑖,𝑗

• We get automatically:
• Affine invariance

• Convex hull property

Bézier Patches

Bézier Patches:
• Remember endpoint interpolation:

• Boundary curves are Bézier curves of the
boundary control points

Bézier Patches

Bézier Patches:
• Tangent vectors:

• First derivatives at boundary points are proportional to differences of control points:

𝜕

𝜕𝑢
𝒇 𝑢, 𝑣 ቚ

𝑢=0
=

𝑖=𝟎

𝒅

𝑗=𝟎

𝒅

𝐵𝑖
𝑑

𝑣 𝐵′𝑗
𝑑

0 𝒑𝑖,𝑗

𝜕

𝜕𝑢
𝒇 𝑢, 𝑣 ቚ

𝑢=1
= 𝑑

𝑗=𝟎

𝒅

𝐵𝑗
𝑑

𝑣 𝒑𝑑,𝑗 − 𝒑𝑑−1,𝑗

= 𝑑
𝑗=𝟎

𝒅

𝐵𝑗
𝑑

𝑣 𝒑1,𝑗 − 𝒑0,𝑗

Continuity Conditions

For 𝑪𝟎 continuity:
• Boundary control points must match

For 𝑪𝟏 continuity:
• Difference vectors must match at the boundary

C𝟎 Continuity

C𝟏 Continuity

C𝟏 Continuity

Polars & Blossoms

Blossoms for tensor product surfaces:
• Polar form of a polynomial tensor product surfaces of degree 𝑑:

𝐹: ℝ × ℝ → ℝ𝑛 𝐹 𝑢, 𝑣
𝒇: ℝ𝑑 × ℝ𝑑 → ℝ𝑛 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

• Required properties:
• Diagonality: 𝒇 𝑢,… , 𝑢; 𝑣, … , 𝑣 = 𝐹 𝑢, 𝑣

• Symmetry: 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑 = 𝑓 𝑢𝜋 1 , … , 𝑢𝜋 𝑑 ; 𝑣𝜇 1 , … , 𝑣𝜇 𝑑

for all permutations of indices 𝜋, 𝜇
• Multi-affine: σ𝛼𝑘 = 1

⇒ 𝒇 𝑢1, … , σ𝛼𝑘𝑢𝑖
𝑘
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

= 𝛼1𝒇 𝑢1, … , 𝑢𝑖
1
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑 +⋯+ 𝛼𝑛𝒇 𝑢1, … , 𝑢𝑖

𝑛
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

and 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , σ𝛼𝑘𝑣𝑖
𝑘
, … , , 𝑣𝑑

= 𝛼1𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑖
1
, … , 𝑣𝑑 +⋯+ 𝛼𝑛𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑖

𝑛
, … , 𝑣𝑑

Short Summary

Polar forms for tensor product surfaces:
• Polar separately in 𝑢 and 𝑣

• Notation: 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

• Can be used to derive properties/algorithms similar to the curve case

𝑢-parameters 𝑣-parameters

Bézier Control Points

Bézier control points in blossom notation:

de Casteljau Algorithm

de Casteljau algorithm for tensor product surfaces

b(1,1,1; 1,1,1)

b(0,0,0; 1,1,1)

Tensor Product Surfaces
Tensor Product B-Spline Surfaces

B-Spline Patches

B-Spline Patches
• More general than Bézier patches

(we get Bézier patches as a special case)

• First, we fix a degree 𝑑

• Then, we need knot sequences in 𝑢 and 𝑣 direction:

𝑢1, … , 𝑢𝑛 , 𝑣1, … , 𝑣𝑚
• And a corresponding array of control points

𝑑0,0 … 𝑑𝑛−𝑑+1,0
… …

𝑑0,𝑚−𝑑+1 … 𝑑𝑛−𝑑+1,𝑚−𝑑+1

B-Spline Patches

Then, obtain a parametric B-spline patch as:

𝒇 𝑢, 𝑣 =
𝑖=𝟎

𝒅

𝑗=𝟎

𝒅

𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝒑𝑖,𝑗

• We can evaluate the patches using the de Boor Algorithm:
• “Curves of curves” idea

• Determine the knots/control points influencing 𝑢, 𝑣 ,

These will be no more than 𝑑 + 1 × 𝑑 + 1 points

• Compute 𝑑 + 1 𝑣-direction control points along 𝑢-direction,

Performing 𝑑 + 1 curve evaluations

• Then evaluate the curve in 𝑣-direction

• (or the other way around, interchanging 𝑢, 𝑣-directions)

Illustration

B-Spline Patches

Alternative:
• 2D de Boor algorithm

• Works similar to the 2D de Casteljau algorithm but with different weights

(we can use tensor–product blossoming to derive the weights)

Tensor Product Surfaces
Rational Patches

Rational Patches

Rational Patches
• We can use rational Bézier/B-splines to create the patches

(“rational Bézier patches” / “NURBS-patches”)

• Idea:
• Form a parametric surface in 4D, homogenous space

• Then project to 𝜔 = 1 to obtain the surface in Euclidian 3D space

• In short: Just use homogeneous coordinates everywhere

Rational Patch

Rational Bézier Patch:

𝒇 ℎ𝑜𝑚 𝑢, 𝑣 =
𝑖=0

𝑑

𝑗=0

𝑑

𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣
𝜔𝑖,𝑗𝒑𝑖,𝑗
𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Rational Patch

Rational B-Spline Patch:

𝒇 ℎ𝑜𝑚 𝑢, 𝑣 =
𝑖=0

𝑑

𝑗=0

𝑑

𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣
𝜔𝑖,𝑗𝒑𝑖,𝑗
𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Remark: Rational Patches

Observation:
• Euclidian surface is not a tensor

product surface
• Denominator depends on both 𝑢 and 𝑣

• Homogeneous space: 4D surface is a
tensor product surface.

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Surfaces of Revolution

Advantages of rational patches:
• Rational patches can represent surfaces of revolution exactly.

• Examples:
• Cylinders

• Cones

• Spheres

• Ellipsoids

• Tori

• Question: given a cross section curve, how do we get the control points
for the 3D surface?

Surfaces of Revolution

Surfaces of Revolution

Given:
• Control points 𝑝1, … , 𝑝𝑛 of curve

(“generatrix”)

We want to compute:
• Control points 𝑝𝑖,𝑗 of a rational surface

Such that:
• The surface describes the surface of revolution that we

obtain by rotating the curve around the 𝑦 axis (w.l.o.g.)

Surfaces of Revolution

Simplification:
• We look only at a single rational Bézier segment

• Applying the scheme to multiple segments
together is straightforward

• The same idea also works for B-splines

Surfaces of Revolution

Construction:
• We are given control points

𝒑1, … , 𝒑𝑑+1
(𝑑 is the degree in 𝑢 direction)

• We introduce a new parameter 𝑣

• In 𝑣 direction, we use quadratic Bézier curves
(2nd degree basis in 𝑣-direction)

Surfaces of Revolution

Key Idea:
• For 𝑢-direction curves: control points (and thus the

curves) must move on circles around the 𝑦-axis

• Circles must have the same parametrization (this is easy)

• This means, the control points rotate around the y-axis

• Affine invariance will make the whole curve rotate, we
get the desired surface of revolution

Surface of Revolution

Making one point rotate around the y-axis:

Surface of Revolution

Making one point rotate around the y-axis:

Surface of Revolution

Making one point rotate around the y-axis: 𝒊 ≔
1
0
0

, 𝒌 ≔
0
0
1𝜔𝑖 𝒑𝑖 − 𝑟𝒊 + 𝑟𝒌

𝜔𝑖

𝜔𝑖 𝒑𝑖 − 2𝑟𝒊
𝜔𝑖

𝜔𝑖 𝑝𝑖 − 𝑟𝒊 − 𝑟𝒌
𝜔𝑖

Surface of Revolution

Making one point rotate around the y-axis: 𝒊 ≔
1
0
0

, 𝒌 ≔
0
0
1𝜔𝑖 𝒑𝑖 − 𝑟𝒊 + 𝑟𝒌

𝜔𝑖

𝜔𝑖 𝒑𝑖 − 2𝑟𝒊
𝜔𝑖

𝜔𝑖 𝑝𝑖 − 𝑟𝒊 − 𝑟𝒌
𝜔𝑖

Τ𝜔𝑖 𝒑𝑖 + 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 2𝑟𝒊 + 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 2𝑟𝒊 − 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 𝑟𝒌 2

Τ𝜔𝑖 2

Remark

What we get:
• We obtain 4 segments, i.e. 4 patches for each Bézier segment

• A similar construction with 3 segments exists as well

Does the scheme yield a circle for weights ≠ 𝟏 in the generatrix
curve?

• Common factors in weights cancel out

• Therefore, we still obtain a circle at these points

• Parametrization does not change either

Benefit

With this construction, it is straightforward to create:
• Spheres

• Tori

• Cylinders

• Cones

And affine transformations of these (e.g. ellipsoids)

Parametrization Restrictions

Remaining problem:
• The sphere and the cone are not regularly

parametrized (double control points)

• Might cause trouble (normal computation,
tessellation)

• In general: no sphere, or 𝑛-tori (𝑛 > 1) can be
parametrized without degeneracies

• What works: open surfaces, cylinders, tori

Curves on Surfaces, trimmed NURBS

Quad patch problem:
• All of our shapes are parameterized over rectangular regions

• General boundary curves are hard to create

• Topology fixed to a disc (or cylinder, torus)

• No holes in the middle

• Assembling complicated shapes is painful
• Lots of pieces

• Continuity conditions for assembling pieces become complicated

• Cannot use 𝐶2 B-splines continuity along boundaries when using multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:
• We need more control over the parameter domain
• One solution is trimming using curves on surfaces (CONS)
• Standard tool in CAD: trimmed NURBS

Basic idea:
• Specify a curve in the parameter domain that encapsulates one (or more)

pieces of area
• Tessellate the parameter domain accordingly to cut out the trimmed

piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

General Shapes

General shapes with holes:
• Draw multiple curves

• Inside / outside test:
• If any ray in the parameter domain intersects the boundary

curves an odd number of times, the point is inside

• Outside otherwise

• Implementation needs to take care of special cases (critical
points with respect to normal of the ray)

• Nasty, but doable

Total Degree Surfaces

Bézier Triangles

Alternative surface definition: Bézier triangles
• Constructed according to given total degree

• Completely symmetric: degree anisotropy

• Can be derived using a triangular de Casteljau algorithm
• Blossoming formalism is very helpful for defining Bézier

Triangles

• Barycentric interpolation of blossom values

Blossoms for Total Degree Surfaces

Blossom with points as arguments:
• Polar form degree 𝑑 with points as input and output:

𝑭:ℝ𝑛 → ℝ𝑚

𝒇:ℝ𝑑×𝑛 → ℝ𝑚

• Required Properties:
• Diagonality: 𝒇 𝒕, 𝒕, … , 𝒕 = 𝑭 𝒕

• Symmetry: 𝒇 𝒕1, 𝒕2, … , 𝒕𝑑 = 𝒇 𝒕𝜋 1 , 𝒕𝜋 2 , … , 𝒕𝜋 𝑑

for all permutations of indices 𝜋

• Multi-affine: σ𝛼𝑘 = 1

⇒ 𝒇 𝒕1, … , σ𝛼𝑘𝒕𝑖
𝑘
, … , 𝒕𝑑

= 𝛼1𝒇 𝒕1, … , 𝒕𝑖
1
, … , 𝒕𝑑 +⋯+ 𝛼𝑛𝒇 𝒕1, … , 𝒕𝑖

𝑛
, … , 𝒕𝑑

points as arguments

Example

Example: bivariate monomial basis
• In powers of 𝑢, 𝑣 :

𝐵 = 1, 𝑢, 𝑣, 𝑢2, 𝑢𝑣, 𝑣2

• Blossom form: multilinear in 𝑢1, 𝑢2, 𝑣1, 𝑣2
𝐵 = ሼ1,

1

2
𝑢1 + 𝑢2 ,

1

2
𝑣1 + 𝑣2 ,

ቅ𝑢1𝑢2,
1

4
𝑢1𝑣1 + 𝑢1𝑣2 + 𝑢2𝑣1 + 𝑢2𝑣2 , 𝑣1𝑣2

Barycentric Coordinates

Barycentric Coordinates:

• Planar case:

Barycentric combinations of 3 points

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3, with 𝛼 + 𝛽 + 𝛾 = 1

𝛾 = 1 − 𝛼 − 𝛽

• Area formulation

𝛾 = 1 − 𝛼 − 𝛽

𝛼 =
𝑎𝑟𝑒𝑎 Δ 𝒑2,𝒑3,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3
, 𝛽 =

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑3,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3
, 𝛾 =

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3

Barycentric Coordinates

Barycentric Coordinates:

• Linear formulation:

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3

= 𝛼𝒑1 + 𝛽𝒑2 + 1 − 𝛼 − 𝛽 𝒑3

= 𝛼𝒑1 + 𝛽𝒑2 + 𝒑3 − 𝛼𝒑3 − 𝛽𝒑3

= 𝒑3 + 𝛼 𝒑1 − 𝒑3 + 𝛽 𝒑2 − 𝒑3

Barycentric Coordinates

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3, with 𝛼 + 𝛽 + 𝛾 = 1

Bézier Triangles: Overview

Bézier Triangles: Main Ideas
• Use 3D points as inputs to the blossoms

• These are Barycentric coordinates of a parameter triangle 𝑎, 𝑏, 𝑐

• Use 3D points as outputs

• Form control points by multiplying parameter points, just as in the curve
case: 𝒑 𝑎,… , 𝑎, 𝑏, … , 𝑏, 𝑐, … , 𝑐

• De Casteljau Algorithm: compute polynomial values 𝑝 𝑥,… , 𝑥 by
barycentric interpolation

𝑖 𝑗 𝑘

Plugging in the Barycentric Coord’s

Analog: 2D curves in barycentric coordinates
• Barycentric coordinates for 2D curves:

Plugging in the Barycentric Coord’s

Analog: 2D curves in barycentric coordinates
• Barycentric coordinates for 2D curves:

• 𝑝 = 𝛼𝑎 + 𝛽𝑏, 𝛼 + 𝛽 = 1

• Bézier splines:

𝑭 𝑡 = σ𝑖=0
𝑑 𝑑

𝑖
1 − 𝑡 𝑖𝑡𝑑−𝑖𝒇 𝒂,… , 𝒂, 𝒃, … , 𝒃 (standard form)

𝑭 𝒑 = σ 𝑖+𝑗=𝑑
𝑖≥0,𝑗≥0

𝑑!

𝑖!𝑗!
𝛼𝑖𝛽𝑗𝒇 𝒂,… , 𝒂, 𝒃, … , 𝒃 (barycentric form)

𝑖 𝑑 − 𝑖

𝑖 𝑗

Example

Cubic Bézier Triangle:

De Casteljau Algorithm

𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄,

𝛼 + 𝛽 + 𝛾 = 1

Bernstein Form

Writing this recursion out, we obtain:

𝐹 𝒙 =
𝑖+𝑗+𝑘=𝑑
𝑖,𝑗,𝑘≥0

𝑑!

𝑖! 𝑗! 𝑘!
𝛼𝑖𝛽𝑗𝛾𝑘𝒇 𝑎,… , 𝑎, 𝑏, … , 𝑏, 𝑐, … , 𝑐

𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄,

𝛼 + 𝛽 + 𝛾 = 1

• This is the Bernstein form of a Bézier triangle surface

• (Proof by induction)

𝑖 𝑗 𝑘

Continuity

We need to assemble Bézier triangles continuously:
• What are the conditions for 𝐶0, 𝐶1 continuity?

• As an example, we will look at the quadratic case…

• (Try the cubic case as an exercise)

Continuity

Situation:

• Two Bézier triangles meet along a common edge.
• Parametrization: 𝑇1 = 𝒂, 𝒃, 𝒄 , 𝑇2 = 𝒄, 𝒃, 𝒅

• Polynomial surfaces 𝑭 𝑇1 , 𝑮 𝑇2
• Control points:

• 𝑭 𝑇1 : 𝒇 𝒂, 𝒂 , 𝒇 𝒂, 𝒃 , 𝒇 𝒃, 𝒃 , 𝒇 𝒂, 𝒄 , 𝒇 𝒄, 𝒄 , 𝒇 𝒃, 𝒄

• 𝑮 𝑇2 : 𝒈 𝒅, 𝒅 , 𝒈 𝒅, 𝒃 , 𝒈 𝒃, 𝒃 , 𝒈 𝒅, 𝒄 , 𝒈 𝒄, 𝒄 , 𝒈 𝒃, 𝒄

Continuity

Situation:

Continuity

𝑪𝟎 continuity:
• The points on the boundary have to agree:

𝒇 𝒃, 𝒃 = 𝒈 𝒃, 𝒃
𝒇 𝒃, 𝒄 = 𝒈 𝒃, 𝒄
𝒇 𝒄, 𝒄 = 𝒈 𝒄, 𝒄

• Proof: Let 𝒙 ≔ 𝛽𝒃 + 𝛾𝒄, 𝛽 + 𝛾 = 1

𝒇 𝒙, 𝒙 = 𝛽𝒇 𝒃, 𝒙 + 𝛾𝒇 𝒄, 𝒙
= 𝛽2𝒇 𝒃, 𝒃 + 2𝛽𝛾𝒇 𝒃, 𝒄 + 𝛾2𝒇 𝒄, 𝒄

= 𝛽2𝒈 𝒃, 𝒃 + 2𝛽𝛾𝒈 𝒃, 𝒄 + 𝛾2𝒈 𝒄, 𝒄
= 𝛽𝒈 𝒃, 𝒙 + 𝛾𝒈 𝒄, 𝒙 = 𝒈 𝒙, 𝒙

𝒈 𝒃, 𝒃 𝒈 𝒃, 𝒄 𝒈 𝒄, 𝒄

= = =

Continuity

𝑪𝟏 continuity:
• We need 𝐶0 continuity.

In addition:

• Points at hatched quadrilaterals are coplanar

• Hatched quadrilaterals are an affine image of
the same parameter quadrilateral

Continuity

𝑪𝟏 continuity:
• We need 𝐶0 continuity.

In addition:

The blossoms have to agree partially:

𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃

𝒇 𝒃, 𝒅 = 𝒈 𝒃, 𝒅

𝒇 𝒂, 𝒄 = 𝒈 𝒂, 𝒄

𝒇 𝒄, 𝒅 = 𝒈 𝒄, 𝒅

Continuity

𝑪𝟏 continuity: Proof
• Derivatives:

𝜕

𝜕𝒅
𝑭 𝒙 ȁ𝒙=𝒑 = 𝒇 𝒑 , 𝒅

(similar to the curve case)
• 𝐶1-Continuity:

∀𝒙 ∈ ℝ3: 𝒇 𝒑, 𝒙 = 𝒈 𝒑, 𝒙

• We have to show

∀𝒙 ∈ ℝ3: ቊ
𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙

𝒇 𝒄, 𝒙 = 𝒈 𝒄, 𝒙

• ⇒ 𝐶1 continuity follows for all boundary
points (by interp.)

Continuity

𝑪𝟏 continuity: Proof
• So we have to show

∀𝒙 ∈ ℝ3: ቊ
𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙

𝒇 𝒄, 𝒙 = 𝒈 𝒄, 𝒙

• Proof:

Write 𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄 (coordinate system)

𝒇 𝒃, 𝒙 = 𝛼𝒇 𝒂, 𝒃 + 𝛽𝒇 𝒃, 𝒃 + 𝛾𝒇 𝒃, 𝒄

𝒈 𝒃, 𝒙 = 𝛼𝒈 𝒂, 𝒃 + 𝛽𝒈 𝒃, 𝒃 + 𝛾𝒈 𝒃, 𝒄

𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙 ⇔ 𝛼𝒇 𝒂, 𝒃 + 𝛽𝒇 𝒃, 𝒃 + 𝛾𝒇 𝒃, 𝒄

= 𝛼𝒈 𝒂, 𝒃 + 𝛽𝒈 𝒃, 𝒃 + 𝛾𝒈 𝒃, 𝒄

⇔ 𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃 (same for the other conditions)

𝐶0 𝐶0

Continuity

So what does this mean?
• The blossoms have to agree partially:

𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃

𝒇 𝒃, 𝒅 = 𝒈 𝒃, 𝒅

𝒇 𝒂, 𝒄 = 𝒈 𝒂, 𝒄

𝒇 𝒄, 𝒅 = 𝒈 𝒄, 𝒅

• The points must be coplanar

(with edge points):
𝒇 𝒂, 𝒃 , 𝒈 𝒃, 𝒅 , 𝒈 𝒃, 𝒃 , 𝒈 𝒃, 𝒄

• The points in 𝑭 must be affine images of

the points in 𝑮

