

Spline Surfaces

Tensor Product Surfaces · Total Degree Surfaces

陈仁杰 中国科学技术大学

Spline Surfaces

Parametric spline surfaces:

- Two parameter coordinates (u, v)
- Piecewise bivariate polynomials (rational surfaces → homogeneous coords)
- Assemble multiple pieces to form a surface with continuity
- Each piece is called *spline patch*

Spline Surfaces

Two different approaches

- Tensor product surfaces
 - Simple construction
 - Everything carries over from curve case
 - Quad patches
 - Degree anisotropy
- Total degree surfaces
 - Not as straightforward (blossoming will help)
 - Isotropic degree
 - Triangle patches
 - "natural" generalization of curves

Simple Idea

• Given a basis for a one dimensional function space on the interval $t \in [t_0, t_1] \rightarrow \mathbb{R}^d$:

 $\boldsymbol{B}^{(curv)} \coloneqq \{b_1(t), \dots, b_n(t)\}$

• Build a new basis with two parameters by taking all possible products:

 $\mathbf{B}^{(surf)} \coloneqq \{b_1(u)b_1(v), b_1(u)b_2(v), \dots, b_n(u)b_n(v)\}$

Tensor product basis

	$b_1(u)$	b <mark>2</mark> (u)	b ₃ (u)	<i>b</i> ₄ (<i>u</i>)
$b_1(v)$	$b_1(v)b_1(u)$	$b_1(v)b_2(u)$	$b_1(v)b_3(u)$	$b_1(v)b_4(u)$
b <mark>2</mark> (v)	$b_2(v)b_1(u)$	$b_2(v)b_2(u)$	$b_2(v)b_3(u)$	$b_2(v)b_4(u)$
b <mark>3</mark> (v)	$b_3(v)b_1(u)$	$b_{3}(v)b_{2}(u)$	$b_{3}(v)b_{3}(u)$	$b_3(v)b_4(u)$
b ₄ (v)	$b_4(v)b_1(u)$	$b_4(v)b_2(u)$	$b_4(v)b_3(u)$	$b_4(v)b_4(u)$

Monomial Example

Tensor product basis of cubic monomials

	1	u	u ²	u ³
1	1	u	<i>u</i> ²	u ³
υ	ν	vu	vu ²	vu ³
ν ²	v^2	v ² u	$v^2 u^2$	$v^2 u^3$
v ³	v^{3}	v ³ u	v ³ u ²	v ³ u ³

Example

- "Curves of Curves"
- Order does not matter

Properties

Properties of tensor product surfaces:

- Linear invariance: Obvious
- Affine invariance?
 - Needs partition of unity property
 - Assume basis $B^{(curv)} \coloneqq \{b_1(t), \dots, b_n(t)\}$ forms a partition of unity, i.e.: $\sum b_i(v) = 1$
 - Then we get:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) = \sum_{i=1}^{n} b_i(u) \sum_{j=1}^{n} b_j(v) = \sum_{j=1}^{n} b_j(v) \cdot 1 = 1$$

• Affine invariance for tensor product surfaces is induced by the corresponding property of the employed curve basis

Properties of tensor product surfaces:

- Convex Hull?
 - Assume basis $B^{(curv)} \coloneqq \{b_1(t), ..., b_n(t)\}$ forms a partition of unity and it is nonnegative (≥ 0) on $t \in [t_0, t_1]$
 - Obviously, we then have:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) \ge 0$$
$$\ge 0 \ge 0$$

- So we have the convex hull property on $[t_0, t_1]^2$
- The convex hull property for tensor product surface is induced by the property of the employed curve basis

Partial Derivatives

Computing partial derivatives:

• First derivatives:

$$\frac{\partial}{\partial u} \sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) \boldsymbol{p}_{i,j} = \sum_{j=1}^{n} b_j(v) \sum_{i=1}^{n} \left(\frac{d}{du} b_i\right)(u) \boldsymbol{p}_{i,j}$$
$$\frac{\partial}{\partial v} \sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) \boldsymbol{p}_{i,j} = \sum_{i=1}^{n} b_i(u) \sum_{j=1}^{n} \left(\frac{d}{dv} b_j\right)(v) \boldsymbol{p}_{i,j}$$

• Just spline-curve combinations of curve derivatives

Partial Derivatives

Computing partial derivatives:

• Second derivatives:

$$\frac{\partial}{\partial u^2} \sum_{i=1}^n \sum_{j=1}^n b_i(u) b_j(v) \boldsymbol{p}_{i,j} = \sum_{j=1}^n b_j(v) \sum_{i=1}^n \left(\frac{d^2}{du^2} b_i\right)(u) \boldsymbol{p}_{i,j}$$
$$\frac{\partial^2}{\partial u \partial v} \sum_{i=1}^n \sum_{j=1}^n b_i(u) b_j(v) \boldsymbol{p}_{i,j} = \frac{\partial}{\partial v} \sum_{j=1}^n b_j(v) \sum_{i=1}^n \left(\frac{d}{du} b_i\right)(u) \boldsymbol{p}_{i,j}$$

$$= \sum_{j=1}^{n} \left(\frac{d}{dv} b_{j}\right)(v) \sum_{i=1}^{n} \left(\frac{d}{du} b_{i}\right)(u) \boldsymbol{p}_{i,j}$$

Partial Derivatives

Computing partial derivatives:

• General derivatives:

$$\frac{\partial^{r+s}}{\partial u^r \partial v^s} \sum_{i=1}^n \sum_{j=1}^n b_i(u) b_j(v) \boldsymbol{p}_{i,j} = \sum_{j=1}^n \left(\frac{d^s}{dv^s} b_i\right)(v) \sum_{i=1}^n \left(\frac{d^r}{du^r} b_i\right)(u) \boldsymbol{p}_{i,j}$$
$$= \sum_{i=1}^n \left(\frac{d^r}{du^r} b_i\right)(u) \sum_{j=1}^n \left(\frac{d^s}{dv^s} b_j\right)(v) \boldsymbol{p}_{i,j}$$

Normal Vectors

We can compute normal vectors from partial derivatives: $\boldsymbol{n}(u,v) = \frac{\left(\sum_{j=1}^{n} b_{j}(v) \sum_{i=1}^{n} \frac{d}{du} b_{i}(u) \boldsymbol{p}_{i,j}\right) \times \left(\sum_{j=1}^{n} \frac{d}{dv} b_{j}(v) \sum_{i=1}^{n} b_{i}(u) \boldsymbol{p}_{i,j}\right)}{\left\|\left(\sum_{j=1}^{n} b_{j}(v) \sum_{i=1}^{n} \frac{d}{du} b_{i}(u) \boldsymbol{p}_{i,j}\right) \times \left(\sum_{j=1}^{n} \frac{d}{dv} b_{j}(v) \sum_{i=1}^{n} b_{i}(u) \boldsymbol{p}_{i,j}\right)\right\|}$

- Problem: degenerate cases
 - Collinear tangents
 - Irregular parametrization
- Need extra code to handle special cases

Tensor Product Bézier Surfaces

Tensor Product Bézier Spline Surfaces

Tensor Product Bézier Surfaces

-Bézier curves: repeated linear interpolation

> now a different setup: 4 points \boldsymbol{b}_{00} , \boldsymbol{b}_{10} , \boldsymbol{b}_{11} , \boldsymbol{b}_{01} Parameter area $[0,1] \times [0,1]$

bilinear interpolation:
 repeated linear interpolation

repeated bilinear interpolation: Gives us tensor product Bézier surfaces (example) shows quadratic Bézier Surfaces)

Some formulas for this setup

Derivatives of bilinear surfaces

$$\boldsymbol{x}_{u}(u,v) = (1-v)(\boldsymbol{b}_{10} - \boldsymbol{b}_{00}) + v(\boldsymbol{b}_{11} - \boldsymbol{b}_{01})$$

$$x_v(u,v) = (1-u)(b_{01} - b_{00}) + u(b_{11} - b_{10})$$

 $\boldsymbol{x}_{uu}(u,v) = \boldsymbol{x}_{vv}(u,v) = 0$

$$x_{uv}(u,v) = b_{00} - b_{10} - b_{01} + b_{11}$$

Some formulas for this setup

Biquadratic surfaces

$$b_{00}^{1} = (1 - u)(1 - v)b_{00} + u(1 - v)b_{10} + (1 - u)vb_{01} + uvb_{11}$$

$$b_{10}^{1} = (1 - u)(1 - v)b_{10} + u(1 - v)b_{20} + (1 - u)vb_{11} + uvb_{21}$$

$$b_{01}^{1} = (1 - u)(1 - v)b_{01} + u(1 - v)b_{11} + (1 - u)vb_{02} + uvb_{12}$$

$$b_{11}^{1} = (1 - u)(1 - v)b_{11} + u(1 - v)b_{21} + (1 - u)vb_{12} + uvb_{22}$$

$$\begin{aligned} \mathbf{x}(u,v) \\ &= (1-u)(1-v)\mathbf{b}_{00}^{1} + u(1-v)\mathbf{b}_{10}^{1} + (1-u)v\mathbf{b}_{01}^{1} + uv\mathbf{b}_{11}^{1} \\ &= \sum_{i=0}^{2} \sum_{j=0}^{2} B_{i}^{2}(u)B_{j}^{2}(v)\mathbf{b}_{i,j} \end{aligned}$$

Bézier Patches

Bézier Patches:

• Use tensor product Bernstein basis

$$f(u,v) = \sum_{i=0}^{d} \sum_{j=0}^{d} B_i^{(d)}(u) B_j^{(d)}(v) p_{i,j}$$

- We get automatically:
 - Affine invariance
 - Convex hull property

Bézier Patches

Bézier Patches:

- Remember endpoint interpolation:
 - Boundary curves are Bézier curves of the boundary control points

Bézier Patches

Bézier Patches:

- Tangent vectors:
 - First derivatives at boundary points are proportional to differences of control points:

$$\frac{\partial}{\partial u} f(u, v) \Big|_{u=0} = \sum_{i=0}^{d} \sum_{j=0}^{d} B_i^{(d)}(v) B'_j^{(d)}(0) p_{i,j}$$
$$= d \sum_{j=0}^{d} B_j^{(d)}(v) (p_{1,j} - p_{0,j})$$
$$\frac{\partial}{\partial u} f(u, v) \Big|_{u=1} = d \sum_{j=0}^{d} B_j^{(d)}(v) (p_{d,j} - p_{d-1,j})$$

Continuity Conditions

For C^0 continuity:

• Boundary control points must match

For *C*¹ continuity:

• Difference vectors must match at the boundary

C¹ Continuity

C¹ Continuity

Polars & Blossoms

Blossoms for tensor product surfaces:

• Polar form of a polynomial tensor product surfaces of degree *d*:

 $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n \qquad F(u, v)$

 $\boldsymbol{f}: \ \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^n \quad \boldsymbol{f}(u_1, \dots, u_d; v_1, \dots, v_d)$

- Required properties:
 - Diagonality: f(u, ..., u; v, ..., v) = F(u, v)
 - Symmetry: $f(u_1, \dots, u_d; v_1, \dots, v_d) = f(u_{\pi(1)}, \dots, u_{\pi(d)}; v_{\mu(1)}, \dots, v_{\mu(d)})$ for all permutations of indices π, μ
 - Multi-affine: $\sum \alpha_k = 1$

$$\Rightarrow f\left(u_{1}, \dots, \sum \alpha_{k} u_{i}^{(k)}, \dots, u_{d}; v_{1}, \dots, v_{d}\right)$$

$$= \alpha_{1} f\left(u_{1}, \dots, u_{i}^{(1)}, \dots, u_{d}; v_{1}, \dots, v_{d}\right) + \dots + \alpha_{n} f\left(u_{1}, \dots, u_{i}^{(n)}, \dots, u_{d}; v_{1}, \dots, v_{d}\right)$$

$$\text{and } f\left(u_{1}, \dots, u_{d}; v_{1}, \dots, \sum \alpha_{k} v_{i}^{(k)}, \dots, v_{d}\right)$$

$$= \alpha_{1} f\left(u_{1}, \dots, u_{d}; v_{1}, \dots, v_{i}^{(1)}, \dots, v_{d}\right) + \dots + \alpha_{n} f\left(u_{1}, \dots, u_{d}; v_{1}, \dots, v_{i}^{(n)}, \dots, v_{d}\right)$$

Short Summary

Polar forms for tensor product surfaces:

- Polar separately in u and v
- Notation: $f(u_1, ..., u_d; v_1, ..., v_d)$

u-parameters *v*-parameters

• Can be used to derive properties/algorithms similar to the curve case

Bézier Control Points

Bézier control points in blossom notation:

de Casteljau Algorithm

de Casteljau algorithm for tensor product surfaces

Tensor Product Surfaces Tensor Product B-Spline Surfaces

B-Spline Patches

B-Spline Patches

- More general than Bézier patches (we get Bézier patches as a special case)
- First, we fix a degree d
- Then, we need knot sequences in u and v direction:
 (u₁,...,u_n), (v₁,...,v_m)
- And a corresponding array of control points

B-Spline Patches

Then, obtain a parametric B-spline patch as: $f(u,v) = \sum_{i=0}^{d} \sum_{j=0}^{d} N_i^{(d)}(u) N_j^{(d)}(v) p_{i,j}$

- We can evaluate the patches using the de Boor Algorithm:
 - "Curves of curves" idea
 - Determine the knots/control points influencing (u, v), These will be no more than $(d + 1) \times (d + 1)$ points
 - Compute (d + 1) v-direction control points along u-direction, Performing (d + 1) curve evaluations
 - Then evaluate the curve in v-direction
 - (or the other way around, interchanging *u*, *v*-directions)

Illustration
B-Spline Patches

Alternative:

- 2D de Boor algorithm
- Works similar to the 2D de Casteljau algorithm but with different weights (we can use tensor-product blossoming to derive the weights)

Tensor Product Surfaces Rational Patches

Rational Patches

Rational Patches

- We can use rational Bézier/B-splines to create the patches ("rational Bézier patches" / "NURBS-patches")
- Idea:
 - Form a parametric surface in 4D, homogenous space
 - Then project to $\omega = 1$ to obtain the surface in Euclidian 3D space
- In short: Just use homogeneous coordinates everywhere

Rational Patch

Rational Bézier Patch:

$$\boldsymbol{f}^{(hom)}(u,v) = \sum_{i=0}^{d} \sum_{j=0}^{d} B_i^{(d)}(u) B_j^{(d)}(v) \begin{pmatrix} \omega_{i,j} \boldsymbol{p}_{i,j} \\ \omega_{i,j} \end{pmatrix}$$

$$\boldsymbol{f}^{(Eucl)}(u,v) = \frac{\sum_{i=0}^{d} \sum_{j=0}^{d} B_{i}^{(d)}(u) B_{j}^{(d)}(v) \omega_{i,j} \boldsymbol{p}_{i,j}}{\sum_{i=0}^{d} \sum_{j=0}^{d} B_{i}^{(d)}(u) B_{j}^{(d)}(v) \omega_{i,j}}$$

Rational Patch

Rational B-Spline Patch:

$$\boldsymbol{f}^{(hom)}(u,v) = \sum_{i=0}^{d} \sum_{j=0}^{d} N_i^{(d)}(u) N_j^{(d)}(v) \begin{pmatrix} \omega_{i,j} \boldsymbol{p}_{i,j} \\ \omega_{i,j} \end{pmatrix}$$

$$\boldsymbol{f}^{(Eucl)}(u,v) = \frac{\sum_{i=0}^{d} \sum_{j=0}^{d} N_i^{(d)}(u) N_j^{(d)}(v) \omega_{i,j} \boldsymbol{p}_{i,j}}{\sum_{i=0}^{d} \sum_{j=0}^{d} N_i^{(d)}(u) N_j^{(d)}(v) \omega_{i,j}}$$

Remark: Rational Patches

Observation:

- Euclidian surface is not a tensor product surface
 - Denominator depends on both u and v
- Homogeneous space: 4D surface is a tensor product surface.

$$\boldsymbol{f}^{(Eucl)}(u,v) = \frac{\sum_{i=0}^{d} \sum_{j=0}^{d} B_{i}^{(d)}(u) B_{j}^{(d)}(v) \omega_{i,j} \boldsymbol{p}_{i,j}}{\sum_{i=0}^{d} \sum_{j=0}^{d} B_{i}^{(d)}(u) B_{j}^{(d)}(v) \omega_{i,j}}$$
$$\boldsymbol{f}^{(Eucl)}(u,v) = \frac{\sum_{i=0}^{d} \sum_{j=0}^{d} N_{i}^{(d)}(u) N_{j}^{(d)}(v) \omega_{i,j} \boldsymbol{p}_{i,j}}{\sum_{i=0}^{d} \sum_{j=0}^{d} N_{i}^{(d)}(u) N_{j}^{(d)}(v) \omega_{i,j}}$$

Advantages of rational patches:

- Rational patches can represent surfaces of revolution exactly.
- Examples:
 - Cylinders
 - Cones
 - Spheres
 - Ellipsoids
 - Tori
- Question: given a cross section curve, how do we get the control points for the 3D surface?

Given:

• Control points p_1, \ldots, p_n of curve ("generatrix")

We want to compute:

• Control points $p_{i,j}$ of a rational surface

Such that:

• The surface describes the surface of revolution that we obtain by rotating the curve around the *y* axis (w.l.o.g.)

Simplification:

- We look only at a single rational Bézier segment
- Applying the scheme to multiple segments together is straightforward
- The same idea also works for B-splines

Construction:

- We are given control points
 - p_1, \dots, p_{d+1} (*d* is the degree in *u* direction)
- We introduce a new parameter v
- In v direction, we use quadratic Bézier curves (2nd degree basis in v-direction)

Key Idea:

- For *u*-direction curves: control points (and thus the curves) must move on circles around the *y*-axis
- Circles must have the same parametrization (this is easy)
- This means, the control points rotate around the y-axis
- Affine invariance will make the whole curve rotate, we get the desired surface of revolution

Making one point rotate around the y-axis:

Making one point rotate around the y-axis:

Remark

What we get:

- We obtain 4 segments, i.e. 4 patches for each Bézier segment
- A similar construction with 3 segments exists as well

Does the scheme yield a circle for weights $\neq 1$ in the generatrix curve?

- Common factors in weights cancel out
- Therefore, we still obtain a circle at these points
- Parametrization does not change either

Benefit

With this construction, it is straightforward to create:

- Spheres
- Tori
- Cylinders
- Cones

And affine transformations of these (e.g. ellipsoids)

Parametrization Restrictions

Remaining problem:

- The sphere and the cone are not regularly parametrized (double control points)
- Might cause trouble (normal computation, tessellation)
- In general: no sphere, or n-tori (n > 1) can be parametrized without degeneracies
- What works: open surfaces, cylinders, tori

Curves on Surfaces, trimmed NURBS

Quad patch problem:

- All of our shapes are parameterized over rectangular regions
- General boundary curves are hard to create
- Topology fixed to a disc (or cylinder, torus)
- No holes in the middle
- Assembling complicated shapes is painful
 - Lots of pieces
 - Continuity conditions for assembling pieces become complicated
 - Cannot use C^2 B-splines continuity along boundaries when using multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:

- We need more control over the parameter domain
- One solution is *trimming* using *curves on surfaces (CONS)*
- Standard tool in CAD: *trimmed NURBS*

Basic idea:

- Specify a curve in the parameter domain that encapsulates one (or more) pieces of area
- Tessellate the parameter domain accordingly to cut out the trimmed piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

General Shapes

General shapes with holes:

- Draw multiple curves
- Inside / outside test:
 - If any ray in the parameter domain intersects the boundary curves an odd number of times, the point is inside
 - Outside otherwise
 - Implementation needs to take care of special cases (critical points with respect to normal of the ray)
 - Nasty, but doable

Total Degree Surfaces

Bézier Triangles

Alternative surface definition: Bézier triangles

- Constructed according to given total degree
 - Completely symmetric: degree anisotropy
- Can be derived using a triangular de Casteljau algorithm
 - Blossoming formalism is very helpful for defining Bézier Triangles
 - Barycentric interpolation of blossom values

Blossoms for Total Degree Surfaces

Blossom with points as arguments:

- Polar form degree *d* with points as input and output:
 - $F: \mathbb{R}^{n} \to \mathbb{R}^{m}$ points as arguments $f: \mathbb{R}^{d \times n} \to \mathbb{R}^{m}$
- Required Properties:
 - Diagonality: f(t, t, ..., t) = F(t)
 - Symmetry: $f(t_1, t_2, \dots, t_d) = f(t_{\pi(1)}, t_{\pi(2)}, \dots, t_{\pi(d)})$
 - for all permutations of indices π
- Multi-affine: $\sum \alpha_k = 1$

$$\Rightarrow f\left(t_{1}, \dots, \sum \alpha_{k} t_{i}^{(k)}, \dots, t_{d}\right)$$
$$= \alpha_{1} f\left(t_{1}, \dots, t_{i}^{(1)}, \dots, t_{d}\right) + \dots + \alpha_{n} f\left(t_{1}, \dots, t_{i}^{(n)}, \dots, t_{d}\right)$$

Example

Example: bivariate monomial basis

- In powers of (u, v): $B = \{1, u, v, u^2, uv, v^2\}$
- Blossom form: multilinear in (u_1, u_2, v_1, v_2)

$$B = \{1, \\ \frac{1}{2}(u_1 + u_2), \frac{1}{2}(v_1 + v_2), \\ u_1u_2, \frac{1}{4}(u_1v_1 + u_1v_2 + u_2v_1 + u_2v_2), v_1v_2 \}$$

Barycentric Coordinates

Barycentric Coordinates:

• Planar case:

Barycentric combinations of 3 points $p = \alpha p_1 + \beta p_2 + \gamma p_3$, with $\alpha + \beta + \gamma = 1$ $\gamma = 1 - \alpha - \beta$

• Area formulation

$$\gamma = 1 - \alpha - \beta$$

$$\alpha = \frac{\operatorname{area}(\Delta(p_2, p_3, p))}{\operatorname{area}(\Delta(p_1, p_2, p_3))}, \beta = \frac{\operatorname{area}(\Delta(p_1, p_3, p))}{\operatorname{area}(\Delta(p_1, p_2, p_3))}, \gamma = \frac{\operatorname{area}(\Delta(p_1, p_2, p))}{\operatorname{area}(\Delta(p_1, p_2, p_3))}$$

Barycentric Coordinates

Barycentric Coordinates:

• Linear formulation:

 $p = \alpha p_1 + \beta p_2 + \gamma p_3$ = $\alpha p_1 + \beta p_2 + (1 - \alpha - \beta) p_3$ = $\alpha p_1 + \beta p_2 + p_3 - \alpha p_3 - \beta p_3$ = $p_3 + \alpha (p_1 - p_3) + \beta (p_2 - p_3)$

Barycentric Coordinates

 $\boldsymbol{p} = \alpha \boldsymbol{p}_1 + \beta \boldsymbol{p}_2 + \gamma \boldsymbol{p}_3$, with $\alpha + \beta + \gamma = 1$

Bézier Triangles: Overview

Bézier Triangles: Main Ideas

• Use 3D points as inputs to the blossoms

i j k

- These are Barycentric coordinates of a parameter triangle $\{a, b, c\}$
- Use 3D points as outputs
- Form control points by multiplying parameter points, just as in the curve case: p(a, ..., a, b, ..., b, c, ..., c)
- De Casteljau Algorithm: compute polynomial values p(x, ..., x) by barycentric interpolation

Plugging in the Barycentric Coord's

Analog: 2D curves in barycentric coordinates

• Barycentric coordinates for 2D curves:

Plugging in the Barycentric Coord's

Analog: 2D curves in barycentric coordinates

• Barycentric coordinates for 2D curves:

• Bézier splines:

$$F(t) = \sum_{i=0}^{d} {d \choose i} (1-t)^{i} t^{d-i} f(\underline{a, ..., a}, \underline{b, ..., b}) \quad \text{(standard form)}$$

$$i \qquad d-i$$

$$F(p) = \sum_{\substack{i+j=d \\ i \ge 0, j \ge 0}} \frac{d!}{i!j!} \alpha^{i} \beta^{j} f(\underline{a, ..., a}, \underline{b, ..., b}) \quad \text{(barycentric form)}$$

De Casteljau Algorithm

Bernstein Form

Writing this recursion out, we obtain:

$$F(\mathbf{x}) = \sum_{\substack{i+j+k=d\\i,j,k\geq 0}} \frac{d!}{i!\,j!\,k!} \alpha^i \beta^j \gamma^k \mathbf{f}(a, \dots, a, b, \dots, b, c, \dots, c)$$
$$\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c},$$
$$\alpha + \beta + \gamma = 1$$

- This is the *Bernstein form* of a Bézier triangle surface
- (Proof by induction)

We need to assemble Bézier triangles continuously:

- What are the conditions for C^0 , C^1 continuity?
- As an example, we will look at the quadratic case...
- (Try the cubic case as an exercise)

Situation:

- Two Bézier triangles meet along a common edge.
 - Parametrization: $T_1 = \{a, b, c\}, T_2 = \{c, b, d\}$
 - Polynomial surfaces $F(T_1)$, $G(T_2)$
 - Control points:
 - $F(T_1)$: f(a, a), f(a, b), f(b, b), f(a, c), f(c, c), f(b, c)
 - $G(T_2)$: g(d, d), g(d, b), g(b, b), g(d, c), g(c, c), g(b, c)

Situation: f(b, b) **b**g(b, b) **g**(**b**, **d**) **f**(**a**, **b**) G **g(d, d)** f(b, c) g(b,c) F a **g**(**c**, **d**) **f**(**a**, **a**) **f**(**a**, **c**) $f(c,c) \subset g(c,c)$

C⁰ continuity:

• The points on the boundary have to agree:

$$f(b,b) = g(b,b)$$

$$f(b,c) = g(b,c)$$

$$f(c,c) = g(c,c)$$

• Proof: Let $\mathbf{x} \coloneqq \beta \mathbf{b} + \gamma \mathbf{c}$, $\beta + \gamma = 1$

$$f(x,x) = \beta f(b,x) + \gamma f(c,x)$$

= $\beta^2 f(b,b) + 2\beta\gamma f(b,c) + \gamma^2 f(c,c)$
|| || ||
 $g(b,b)$ $g(b,c)$ $g(c,c)$
= $\beta^2 g(b,b) + 2\beta\gamma g(b,c) + \gamma^2 g(c,c)$
= $\beta g(b,x) + \gamma g(c,x) = g(x,x)$

C¹ continuity:

• We need C^0 continuity.

In addition:

- Points at hatched quadrilaterals are coplanar
- Hatched quadrilaterals are an affine image of the same parameter quadrilateral

C¹ continuity:

• We need C^0 continuity.

In addition:

The blossoms have to agree partially:

f(a,b) = g(a,b)f(b,d) = g(b,d)f(a,c) = g(a,c)f(c,d) = g(c,d)

C¹ continuity: Proof

- Derivatives:
 - $\frac{\partial}{\partial \widehat{a}} F(x)|_{x=p} = f(p, \widehat{d})$ (similar to the curve case)
- C¹-Continuity:

 $\forall x \in \mathbb{R}^3 : f(p, x) = g(p, x)$

• We have to show

$$\forall x \in \mathbb{R}^3 : \begin{cases} f(b, x) = g(b, x) \\ f(c, x) = g(c, x) \end{cases}$$

• $\Rightarrow C^1$ continuity follows for all boundary points (by interp.)

C¹ continuity: Proof

• So we have to show $\forall x \in \mathbb{R}^3$: $\begin{cases} f(b, x) = g(b, x) \\ f(c, x) = g(c, x) \end{cases}$

• Proof:

Write $\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$ (coordinate system) $f(\mathbf{b}, \mathbf{x}) = \alpha f(\mathbf{a}, \mathbf{b}) + \beta f(\mathbf{b}, \mathbf{b}) + \gamma f(\mathbf{b}, \mathbf{c})$ $g(\mathbf{b}, \mathbf{x}) = \alpha g(\mathbf{a}, \mathbf{b}) + \beta g(\mathbf{b}, \mathbf{b}) + \gamma g(\mathbf{b}, \mathbf{c}) + \zeta^{0}$ $f(\mathbf{b}, \mathbf{x}) = g(\mathbf{b}, \mathbf{x}) \Leftrightarrow \alpha f(\mathbf{a}, \mathbf{b}) + \beta f(\mathbf{b}, \mathbf{b}) + \gamma f(\mathbf{b}, \mathbf{c})$ $= \alpha g(\mathbf{a}, \mathbf{b}) + \beta g(\mathbf{b}, \mathbf{b}) + \gamma g(\mathbf{b}, \mathbf{c})$ $\Leftrightarrow f(\mathbf{a}, \mathbf{b}) = g(\mathbf{a}, \mathbf{b})$ (same for the

So what does this mean?

• The blossoms have to agree partially:

f(a, b) = g(a, b) f(b, d) = g(b, d) f(a, c) = g(a, c)f(c, d) = g(c, d)

- The points must be coplanar (with edge points):
 f(a,b),g(b,d),g(b,b),g(b,c)
- The points in **F** must be affine images of the points in **G**

