计算机辅助几何设计 2023秋学期

数学背景知识：线性代数

陈仁杰

中国科学技术大学

Vector Spaces

Vectors

Vectors are arrows in space
Classically: 2 or 3 dim. Euclidean space

Vector Operations

"Adding" Vectors:
concatenation

Vector Operations

Scalar Multiplication:

Scaling vectors (incl. mirroring)

You can combine it…

Linear Combinations:

This is basically all you can do.

$$
\boldsymbol{r}=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{v}_{i}
$$

Vector Spaces

- Definition: A vector space over a field $F($ e.g. $\mathbb{R})$ is a set V together with two operations
- Addition of vectors $u=v+w$
- Multiplication with scalars $w=\lambda v$
such that

1. $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V:(u+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$
2. $\forall \boldsymbol{u}, \boldsymbol{v} \in V: \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
3. $\exists \mathbf{0}_{V} \in V: \forall v \in V: \boldsymbol{v}+\mathbf{0}_{V}=\boldsymbol{v}$
4. $\forall \boldsymbol{v} \in V: \exists \boldsymbol{w} \in V: \boldsymbol{v}+\boldsymbol{w}=\mathbf{0}_{V}$
$(V,+)$ is an Abelian group
5. $\forall v \in V, \lambda, \mu \in F: \lambda(\mu v)=(\lambda \mu) v$
6. for $1_{F} \in F: \forall v \in V: 1_{F} \boldsymbol{v}=\boldsymbol{v}$
7. $\forall \lambda \in F: \forall \boldsymbol{v}, \boldsymbol{w} \in V: \lambda(\boldsymbol{v}+\boldsymbol{w})=\lambda \boldsymbol{v}+\lambda \boldsymbol{w}$
8. $\forall \lambda, \mu \in F, v \in V:(\lambda+\mu) v=\lambda v+\mu v$

The multiplication is compatible with the addition

Vector spaces

- Subspaces
- A non-empty subset $W \subset V$ is a subspace if W is a vector space (w.r.t the induced addition and scalar multiplication).
- Only need to check if the addition and scalar multiplication are closed.

$$
\begin{array}{ll}
v, w \in W & \Rightarrow v+w \in W \\
v \in W, \lambda \in F & \Rightarrow \lambda v=W
\end{array}
$$

- What are the subspaces of \mathbb{R}^{3} ?

Examples Spaces

- Function spaces:
- Space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- Addition: $(f+g)(x)=f(x)+g(x)$
- Scalar multiplication: $(\lambda f)(x)=\lambda f(x)$
- Check the definition

Examples Spaces

- Function spaces:
- Domains and codomain need to be \mathbb{R}
- For example: space of all functions $f:[0,1]^{5} \rightarrow \mathbb{R}^{8}$
- Codomain must be a vector space (Why?)

Examples of Subspaces

- Continuous / differentiable functions

- The continuous / differentiable functions form a subspace of the space of all functions $f: D \subset R^{m} \rightarrow R^{n}$
-Why?

- Polynomials

- The polynomials form a subspace of the space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- The polynomials of degree $\leq n$ again form a subspace
- Adding polynomials

$$
\sum_{i=1}^{n} a_{i} x^{i}+\sum_{i=1}^{n} b_{i} x^{i}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) x^{i}
$$

Constructing Spaces

Linear Span

- The linear span of a subset $S \subset V$ is the "smallest subspace" of V that contains S
- What does that mean?
- For any subspace W such that $S \subset W \subset V$, we have $\operatorname{span}(S) \subset W$
- Construction: Any $v \in \operatorname{span}(S)$ is a finite linear combination of elements of S

$$
v=\sum_{i=1}^{n} \lambda_{i} s^{i}
$$

Spanning set

- A subset $S \subset V$ is a spanning set of V if $\operatorname{span}(S)=V$

Vector spaces

- Linear independence
- A subset $S \subset V$ is linearly independent if no vector of S is a finite linear combination of the other vectors of S
- Basis
- A basis of a vector space is a linearly independent spanning set.

Dimension

- Lemma
- If V has a finite basis of n elements, then all bases of V have n elements
- Dimension
- If V has a finite basis, then the dimension of V is the number of elements of the basis
- If V has no finite basis, then the dimension of V is infinite

Examples

- Polynomials of degree $\leq \boldsymbol{n}$
- A basis? What is the dimension?

Solution:

- An example of a basis is $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$
- Dimension is $n+1$
- Space of all polynomials
- A basis? What is the dimension?

Solution:

- An example of a basis is $\left\{1, x, x^{2}, \ldots\right\}$
- Dimension is infinite

Finite dimensional vector spaces

- Vector spaces
- Any finite-dim., real vector space is isomorphic to \mathbb{R}^{n}
- Array of numbers
- Behave like arrows in a flat (Euclidean) geometry
- Proof:
- Construct basis
- Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases

Another Example of a Vector Space

Representation of a triangle mesh in $\mathbb{R}^{\mathbf{3}}$
－Vertices ：a finite set $\left\{v_{1}, \ldots, v_{n}\right\}$ of points in \mathbb{R}^{3}
－Faces：a list of triplets，e．g．$\{\{2,34,7\}, \ldots,\{14,7,5\}\}$

Number of Vertices		34835		
Index	x	Y	z	
－$\Gamma 0$	－0．0378297	0.12794	0.00447467	今
$\ulcorner 1$	－0．0447794	0.128887	0.00190497	J
$\Gamma 2$	－0．0680095	0.151244	0.0371953	今
$\Gamma 3$	－0．00228741	0.13015	0.0232201	今
－「4	－0．0226054	0.126675	0.00715587	今
Center		0.0	0.0 0．0	
Number of E	Elements	69473		
Vertices per	Element	3		
Index	0	1	2	
－$\Gamma 1640$	10645	10769	10768	ङ
－$\ulcorner 1640$	10644	10645	10768	今
「1640	780	10996	10992	F
「1640	9978	9765	8572	今
，「1640	7146	10960	10616	F

Another Example of a Vector Space

- Shape space
- Vary the vertices, but keep the face list fixed
- Is isomorphic to $\mathbb{R}^{3 n}$

Linear Maps

Linear Maps

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
- $\forall v_{1}, v_{2} \in V: \quad L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
- $\forall v \in V, \lambda \in F: \quad L(\lambda v)=\lambda L(v)$

This means that L is compatible with the linear structure of V and W

Linear Maps

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
- $\forall v_{1}, v_{2} \in V: \quad L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
- $\forall v \in V, \lambda \in F: \quad L(\lambda v)=\lambda L(v)$

Some properties

- $L\left(0_{V}\right)=0_{W}$
- Proof: $L\left(0_{V}\right)=L\left(\begin{array}{ll}0 & \left.0_{v}\right)\end{array}\right)=0 L\left({ }_{V}\right)=0_{W}$

Linear Maps

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
- $\forall v_{1}, v_{2} \in V: \quad L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
- $\forall v \in V, \lambda \in F: \quad L(\lambda v)=\lambda L(v)$

Some properties

- The image $L(V)$ is a subspace of W
- Proof: Show addition and scalar multiplication is closed

$$
\begin{gathered}
L\left(v_{1}\right)+L\left(v_{2}\right)=L\left(v_{1}+v_{2}\right) \in W \\
\lambda L(v)=L(\lambda v) \in W
\end{gathered}
$$

Linear Maps

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
- $\forall v_{1}, v_{2} \in V: \quad L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
- $\forall v \in V, \lambda \in F: \quad L(\lambda v)=\lambda L(v)$

Some properties

- The set of linear maps from V to W forms a subspace of the space of all functions
- Proof: If L, \tilde{L} are linear, then $L+\tilde{L}$ is linear

If L is linear, then λL is linear

Linear Map Representation

Construction

- A linear map $L: V \rightarrow W$ is uniquely determined if we specify the image of each basis vector of a basis of V
- Proof: We have $v=\sum_{j} \alpha_{j} v_{j}$, hence

$$
L(v)=L\left(\sum_{j} \alpha_{j} v_{j}\right)=\sum_{j} \alpha_{j} L\left(v_{j}\right)
$$

Matrix Representation

- Let V and W be vector spaces with respective bases $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $w=$ $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$
- Suppose $L: V \rightarrow W$ is a linear mapping, such that

$$
\begin{gathered}
L\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2}+\cdots+a_{m 1} w_{m} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . ~
\end{gathered} v_{m n} w_{m} .
$$

- The matrix representation of L w.r.t. the basis v and w is

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ddots & a_{m n}
\end{array}\right)
$$

The j th-column of A is formed by the coefficients of $L\left(v_{j}\right)$

Example

- $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, s.t. $(x, y) \rightarrow(x+3 y, 2 x+5 y, 7 x+9 y)$
- Find the matrix representation of L w.r.t the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}
- Answer: $L(1,0)=(1,2,7), L(0,1)=(3,5,9)$, hence the matrix of L, w.r.t the standard bases is the 3×2 matrix

$$
\left(\begin{array}{ll}
1 & 3 \\
2 & 5 \\
7 & 9
\end{array}\right)
$$

Matrix Representation

Explicitely

- The coefficients α_{j} and β_{i} are related by $\beta_{i}=\sum_{j} a_{i j} \alpha_{j}$

$$
\begin{aligned}
& L(v)=L\left(\sum_{j} \alpha_{j} v_{j}\right)=\sum_{j} \alpha_{j} L\left(v_{j}\right)=\sum_{j} \alpha_{j} \sum_{i} a_{i j} w_{i} \\
& \left.=\sum_{i} \sum_{j} a_{i j} \alpha_{j}\right) w_{i}=\sum_{i} \beta_{i} w_{i}=w
\end{aligned}
$$

This can be written as a matrix-vector product

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)
$$

Example Matrices

Shearing

- Consider the standard basis of \mathbb{R}^{2}
- Matrix?
- First row

$$
A\binom{1}{0}=\binom{1}{0}
$$

- Second row

$$
\left.\begin{array}{c}
A\binom{0}{1}=\binom{1.3}{1} \\
A=(
\end{array}\right)
$$

Example Matrices

Shearing

- Consider the standard basis of \mathbb{R}^{2}
- Matrix?
- First row

$$
A\binom{1}{0}=\binom{1}{0}
$$

- Second row

$$
\begin{gathered}
A\binom{0}{1}=\binom{1.3}{1} \\
A=\left(\begin{array}{cc}
1 & 1.3 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Reminder: Properties of Matrices

Symmetric

- $A^{T}=A$

Orthogonal
$A^{T}=A^{-1}$

Product is not commutive!

- Find an example with $A B \neq B A$

Product of symmetric matrices may not be symmetric

- Find an example

Product of orthogonal matrices is orthogonal

$$
(A B)^{T}=B^{T} A^{T}=B^{-1} A^{-1}=(A B)^{-1}
$$

Example of Matrices

Rotation of the plane

- Linear?
- Consider standard basis of \mathbb{R}^{2}

Matrix?

$$
\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

- Transposition reverse orientation of the rotation

$$
\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)
$$

Hence matrix is orthogonal $A^{T}=A^{-1}$

Examples of Linear Maps

Linear operators on a function space

Derivatives

- Differentiation maps functions to functions

$$
\begin{aligned}
\frac{\partial}{\partial x}: C^{i}(\mathbb{R}) & \mapsto C^{i-1}(\mathbb{R}) \\
f & \mapsto \frac{\partial}{\partial x} f
\end{aligned}
$$

Why is it linear?

- Basic rules of differentiation

$$
\frac{\partial}{\partial x}(f+g)=\frac{\partial}{\partial x} f+\frac{\partial}{\partial x} g \quad \text { and } \quad \frac{\partial}{\partial x}(\lambda f)=\lambda \frac{\partial}{\partial x} f
$$

Matrix Representation

Derivative on a space of polynomials

- Consider polynomials of degree ≤ 3 and the monomial basis
- What is the matrix representation of the derivative?
- Solution: Evaluate $\frac{\partial}{\partial x}$ on the basis
- $\frac{\partial}{\partial x} 1=0, \frac{\partial}{\partial x} x=1, \frac{\partial}{\partial x} x^{2}=2 x, \frac{\partial}{\partial x} x^{3}=3 x^{2}$

Results are the columns of the matrix

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Examples of Linear Maps

Integrals on $\boldsymbol{C}^{\mathbf{0}}([\boldsymbol{a}, \boldsymbol{b}])$

- Integration maps a continuous function to a number

$$
\begin{gathered}
I: C^{0}([a, b]) \mapsto \mathbb{R} \\
I(f)=\int_{a}^{b} f d x
\end{gathered}
$$

- The map is linear:

$$
\begin{gathered}
\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x \\
\int_{a}^{b} \lambda f d x=\lambda \int_{a}^{b} f d x
\end{gathered}
$$

Matrix Representation

Integrals on a space of polynomials

- Consider polynomials of degree ≤ 3 over the interval $[0,1]$ and the monomial basis.
- What is the matrix representation of the integral?
- Solution: Evaluate $\int_{0}^{1} d x$ on the basis

$$
\int_{0}^{1} 1 d x=1, \quad \int_{0}^{1} x d x=\frac{1}{2}, \quad \int_{0}^{1} x^{2} d x=\frac{1}{3}, \quad \int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

Results are the columns of the matrix

$$
\left(\begin{array}{llll}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4}
\end{array}\right)
$$

Basis Transformations

Matrix representation of L

- $A=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- $\Phi_{A}\left(e_{i}\right)=v_{i}$
- M maps e_{i} to $\Phi_{B}^{-1} \circ L \circ \Phi_{A}\left(e_{i}\right)$

$$
\begin{aligned}
& B=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \\
& \Phi_{B}\left(e_{i}\right)=w_{i}
\end{aligned}
$$

Basis Transformations

- Basis transformation

Basis Transformations

Basis Transformations

Basis Transformations

In the special case that V equals W :

