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Subdivision Surfaces

Problem with Spline Patches

* A continuous tensor product spline surface is only defined on a regular
grid of quads as parametrization domain

* Thus, the topology of the object is restricted

* Assembling multiple parameter domains to a single surface is tedious,
hard to get continuity guarantees

* Handling trimming curves Is not that straightforward

Question: can we do better?



Subdivision Surfaces

Wish list:

* Provide a very coarse representation of the geometry
* Obtain a fine and smooth representation

* Preferably by means of a simple set of rules which can be recursively
applied (subdivision rules or subdivision scheme)
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Subdivision Surfaces

Bigger goals:
* Simplify the creation of smooth refined geometric models
(especially in feature film industry)

* What's lost? Parametric representation -



Basic Scheme

Subdivision Curves & Surfaces: Three Steps
* Subdivide current polygon
* [nsert linearly interpolated points (sp/itting)

* Move points: local weighted average (averaging)
* To all points — approximating scheme
* To new points only — interpolating scheme

1. 2.

splitting averaging

subdivision



Basic Scheme

Subdivision Curves & Surfaces: Three Steps
* Subdivide current mesh
* [nsert linearly interpolated points (sp/itting)

* Move points: local weighted average (averaging)
* To all points — approximating scheme
* To new points only — interpolating scheme

splitting T averaging

subdivision



Subdivision Surfaces

The main question is:
* How should we place the new points to create a

smooth surface?
(interpolating scheme) g

* Respectively: how should we alter the points in
each subdivision step to create a smooth surface?

(approximating scheme)
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Subdivision Schemes

More precisely
* What are good averaging masks?

* The averaging mask determines the weights by which new point
positions are computed

Interesting observation:
* Most averaging schemes do not converge
(in particular interpolating schemes)
* We need to be very careful to design a good averaging mask
* How can we guarantee C1, C? surfaces?



Subdivision Surfaces — History

de Rahm described a 2D (curve) subdivision scheme in 1947;
rediscovered in 1974 by Chaikin

Concept extended to 3D (surface) schemes by two separate groups
In 1978:

* Doo and Sabin found a biquadratic surface
* Catmull and Clark found a bicubic surface

Subsequent work in the 1980s (Loop 1987, Dyn [Butterfly subdivision]
1990) led to tools suitable for CAD/CAM and animation



Subdivision Surfaces and the Movies

Pixar first demonstrated subdivision surfaces in 1997
with Geri’s Game

* Up until then they'd done everything in NURBS (Toy Story, a
Bug's Life)

* From 1999 onwards, everything they did was with subdivision
surfaces (Toy Story 2, Monsters Inc, Finding Nemo:-+)

It’s not clear what Dreamworks uses, but they have
recent patents on subdivision techniques




Curves Revisited

Corner Cutting Splines [Chaikin 1974]:

Old vertex New vertex

1. Split each line segment in half o
2. Average every point with its next neighbor

(clock-wise) G %
3. Repeat . R )

1. Split 2. Average

* Converges to quadratic B-Spline curve

3. Split 4. Average



Matrix Notation

p,’
Curve Subdivision in matrix notation: P, Pin’
* Control points at level [: pl@
) \ P, 0+ |
* “Splitted” points at level [ + 1: ﬁgl“) Dy DAL Py 14
. n. . (+1) ~ 1+1
* “Averaged” control points at level [ + 1: pgl“) Paiz Paisa "V
pZiU+1)

Py, Py,

P2V Pyt Y



Matrix Notation

Splitting In matrix notation

[ \

B 1/2 1/2 X
~(1+1) 1 )]
X5 X
21:+1 \ 1/2 1/2 / l:+1
%/_/°
- - - - n
Averaging In matrix notation
x| 1/2 1/2 T
x(l+1) 1/2 1/2 f(l“)

2i+1 . 2i+1

-

2n




a different view on the same algorithm-:-



Chaikin’'s Corner Cutting
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Chaikin's Corner Cutting

Chaikin curve subdivision (2D)

* On each edge, insert new control points at 1/, and 3/, between old
vertices; delete old points

* The /imit curveis C* everywhere



Chaikin’'s Corner Cutting

Chaikin can be written programmatically as !
k+1 = (3/4 )Pk (1/4)Pl+1 —Even Pk+1
2"1111 = (Y)Pf + G/DPL,  <Odd

* -~where k Is the ‘generation’; each generation will have twice as
many control points as before

* Notice the different treatment of generating odd and even
points Pk“

* Borders (terminal points) are a special case



Chaikin's Corner Cutting

Chaikin can be written in matrix/vector notation as:
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Chaikin’'s Corner Cutting

The standard notation compresses the scheme to a kernef
- h=(/)I..,0,0,1,3,3,1,0,0,...]

The kernel interlaces the odd and even rules

It also makes matrix analysis possible: eigen-analysis of the matrix
form can be used to prove the continuity of the subdivision limit

surface

The limit curve of Chaikin is a quadratic B-spline!



Cubic B-Spline Subdivision Scheme



Lane-Riesenfeld subdivision

Algorithm:

* Linearly subdivide the curve by inserting the midpoint on each edge

* Perform Averaging by replacing each edge by its midpoint d times

* Let's examine the case of d = 2



Lane-Riesenfeld subdivision

Examples:
* Closed curve
* * ¢ —*
iteration1 | | dnsertion | | Averaging
teration2 e , Insertion ¢ , Averaging

— i




Lane-Riesenfeld subdivision
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Lane-Riesenfeld subdivision

Close examination:
* In matrix form
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Separate Splitting Step

Using a separate splitting matrix

2

1 1 1
: 4 2 4
(1+1) Lo 1
Dy _ 4 2 4
(t+1) 111
p215+1 4 2 4
: 1 1 1
\ 4 2 4
\W—/

2n X 2n averaging
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Separate Splitting Step

Using a separate splitting matrix

(1 1 1 \
i3 7 [+ \ o
/ - \ 1 1 1 1 1 / = \
(1+1) - -z = W)
P _ 4 2 4 2 2 P;
p+D) 1 1 1 1 (0
+ - = = +1
CON R |l
1 1 1 \ > /
4 2

\

4/
K 2n X n spliting
%/—/

2n X 2n averaging



Cubic Subdivision

Consider the Kernel
1
e h = (5) [...,0,0,1,4,6,4,1,0,0, ...]

You would read this as
« Pt = (Y (PE, + 6P + PY)
« Pt = (1/8)(4Pik + 4Pi’i1)

The limit curve is provably C? continuous



General Formula:

B-spline curve subdivision:
* Splitting step as usual (insert midpoints on lines)
* Averaging mask Is stationary (constant everywhere):

() N Gy B )}

for B-splines of degree d

Approximating the curve

* Infinite subdivision will create a dense point set that converges to
the curve



Spectral Convergence Analysis

of the cubic B-Spline Subdivision Scheme



The Spectral Limit Trick

Problem:
* We need to subdivide several times to obtain a good approximation

* This might yield more control points than necessary
(think of adaptive rendering with low level of detall)

* Can we directly compute the limit position for a control points?



Computing the Limit

Observations:

* Every curve point is influenced only by a fixed
number of control points

* Even stronger : Every point pli+1l s only influenced

by a small neighborhood of points in p!!

* To each neighborhood, the same subdivision
matrix is applied (splitting & averaging)



The Local Subdivision Matrix

Invariant Neighborhood /\/\
* Example: Cubic B-splines
* A single point lies in one of two adjacent spline segments
* S0 at most 5 control points are influencing each point on
the curve m

* A closer look at the subdivision rule reveals that limit

properties can actually be computed from 3 points (two
direct neighbors)



L ocal Subdivision Matrix

Local subdivision matrix:
* Transforms a neighborhood of points

Example: cubic B-spline
* Only the two direct neighbors influence the point in the next level

* The local subdivision matrix Is 1 1
3 7 0
K l1+1] 2 2
x_ = left neighbor Ll | = 131
x = point (x/y/z-coordinate) [14+1] 8 4 8
X, = right neighbor X+ \O 1 1/
2 2

— Msubdiv



To the Limit-

This means:

* At any recursion depth of the subdivision, we can send a point to the
limit by evaluating:

1 1 K
A1
x [l x! % % , x L
[oo] k=0 [1] kool 8 4 8 [1]
X4 X4 \O 1 1 / X4
2 2



To the Limit:-

Spectral power:
* Assuming the matrix My, pqiv 1S diagonizable, we get:

x ] xl 20

x| = lim uD*Uu-1| xlU | = U(nm Dk) U1 I

Lol [ L0 Koo [0
+ +

/1
1 —1 -2 0
(1 0 1 )I\lim

0 1
2
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0 0 - 1
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To the Limit-

Spectral power:
* For cubic B-splines:

A |
o | x| = (1 0
x ! 1 1
* and hence
x 1]
[o] — |1 21 [1]
0= [6'3'6] X

Wl © WwWilN

Nl O]

NlRr IR OIR

winwilin wlN




To the Limit, In General

* In general:

* The dominant eigenvalue / eigenvector of the subdivision scheme
determines the limit mask



Necessary Condition

Necessary condition for convergence:
* 1 must be the largest eigenvalue (in absolute value)
* Otherwise the subdivision either explodes (>1) or shrinks to the origin

(<1)
/ xltt "]\ / xElJ,L\ / x4
1] |

— UDku—l X([)l]

1)
\x+n

[l+Kk] _ k
X0 = Mgypaiv

X0
l. k .l
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Affine Invariance

Affine Invariance

* The limit curve should be independent of the choice of a coordinate
system

* We get this, If the intermediate subdivision points are affine invariant
* For this, the rows of the (local) subdivision matrix must sum to one:

2\

0
N[ = DWW -
0



Affine Invariance

Affine Invariance
* For this, the rows of the (local) subdivision matrix must sum to one:

A1)
2 2
1 3 1
8 1 8
o 7 3/
2 2

* This means: The one-vector 1 must be an eigenvector with eigenvalue 1.:
* Myypaivl =1
* This must also be the largest eigenvalue / vector pair

* One can show: it must be the only eigenvector with eigenvalue 1, otherwise the
scheme does not converge



Summary

For a reasonable subdivision scheme, we need at least:
* 1 must be an eigenvector with eigenvalue 1.
* This must be the largest eigenvalue.
* The second eigenvalue should be smaller than 1
* All other eigenvalues should be smaller than the second one

(This 1s assuming a diagonizable subdivision matrix.)

More details: Zorin, Schroder — Subdivision for Modeling and Animation,
Siggraph 2000 course



B-Spline Subdivision Surfaces



B-Spline Subdivision Surfaces

B-Spline Subdivision Surfaces

* We can apply the tensor product construction to obtain subdivision
surfaces

NN N

ST




B-Spline Subdivision Surfaces

Tensor Product B-Spline Subdivision Surfaces
* Start with a regular quad mesh
(will be relaxed later)

* [n each subdivision step:
* Divide each quad in four (quadtree subdivision)
* Place linearly interpolated vertices
* Apply 2-dimensional averaging mask




B-Spline Subdivision Surfaces

Bilinear Subdivision Surfaces + quad averaging:
* Quad averaging : reposition each vertex at the centroid of Its adjacent

Ve




B-Spline Subdivision Surfaces

Biquadratic case:

* Recall the matrix B-spline patch representation

Pw,v) =[1 u u?lMPM"
1 1 0
M=-|-2 2 o0f P=
1 -2 1

PO,O
P10

P20

Po,1
P1,1
P2,1

Po,
P1,2

PZ,Z_



B-Spline Subdivision Surfaces

Biquadratic case:

* By restricting to only one quadrant of the 2 X 2 patch, i.e. u,v € [0, %]. We

v =2

consider the new surface patch P’ defined by re-parameterization u’ = E

N | &

1
u v 7
P'(u,v) =P(—,—) = [1 us uz/ MPMT | v/2

[ 1
= =[1 u wMP'M"|v
v




B-Spline Subdivision Surfaces

Biquadratic case:

* By restricting to only one quadrant of the 2 X 2 patch, i.e. u,v € [0, %]. We

v =2

consider the new surface patch P’ defined by re-parameterization u’ = E

N | &

P' = SPST

@)
S DN =eO

2lm o g



B-Spline Subdivision Surfaces

1
Poo :E(9P00+3P10+3P01+P11)
= = . 1
quuadratlp case: Piy = = (3Poo + Prg + 9Poy + 3P1y)
* By restricting to only one quadrant of the
: 1 :
2 X 2 patch, i.e. u,v € [0, —] We consider

the new surface patch P’ defmed by re- P/, = i(gpoo + 9P, + Pyy + 3P;1)
u
parq,metenzatlon u' =7 v’ 16

1
P(,)Z=1_6(9P01+3P11+3P02+2P12)

1
BE Pj; = 16 (Poo + 3Pyg + 3Py; +9P4)
" / 1
, T P1> =E(3P01+9P11+P02+3P12)

1
leo:1_6(9P10+3P20+3P11+P21)

1
P2,1=1_6(3P10+P20+9P11+3P21)

| SIS Ry——

T
‘

. o
[ —— U L.~ Pi2 = 77 (9P11 + 3Py + 3Prz + Ppp)



B-Spline Subdivision Surfaces

Bicubic case:
* Recall the matrix B-spline patch representation

s
T |w?
P(u,v) =[u3 u? u 1]MPM
w
1.
-1 3 =3 1]
113 -6 3 0
M=2l_3 o0 3 o0
1 4 1 0]




B-Spline Subdivision Surfaces

Bicubic case:
* By restricting to only one quadrant of the 3 X 3 patch, i.e. u,v € [0, %]. We

consider the new surface patch P’ defined by re-parameterization u’ = % v = g
* We obtain similarly (by matrix manipulation)
P’ = SpST Tt
4 4 0 0] T i o0
8]0 4 4 0 L\
0 1 6 1. | ; o



Subdivision and Averaging Masks

What is the subdivision mask?

* Can be derived fromltensor product construction:

1 1 3 1

1 1 16 16 64 32 64

4 4 3 3 3 9 3
— ——@ @ < )

1 1 8 8 32 16 32

4 4 1] 1 1] 3] 1

16 16 64 32 64

face midpoint edge midpoint

i

original vertex

Q| =
| —|

N RPN -
0| =
o w



Subdivision and Averaging Masks

What is the averaging mask?
* Can be derived from tensor product construction, too

1 1 1
16 8 16
1 1 1
— —_— e —
8 4 8
1] 1] 1
16 8 16

Any (split) vertex




Remaining Problems

Remaining Problems:
* The derived rules work only in the interior or a regular quad mesh

* We did not really gain any flexibility over the standard B-spline
construction

* We still need to figure out, how to -
* -handle quad meshes of arbitrary topology

* --handle boundary regions
* Placing boundaries in the interior of objects will allow us to model sharp C° creases
* S0 we also have some continuity control (despite the uniform B-Spline scheme)



Here I1s the answer:

Answer: Catmull-Clark subdivision scheme at
extraordinary vertices

Observation: l
* The recursive subdivision rule always creates regular grids

* Problems can only occur at “extraordinary” vertices
* These are vertices where the base has degree > 4

v
ANEA

* Extraordinary vertices are maintained by quadtree-like-subdivision NN\ ><
* All new vertices are ordinary




Here I1s the answer:

Answer: Catmull-Clark subdivision scheme at extraordinary vertices

Subdivision mask at extraordinary vertex:
* Vertex degree k (number of incident faces)

* The surface is C! at extraordinary vertices




Here Is the answer:

Averaging mask:
* Use after bilinear splitting

3

1 8k
16k

3
8k

1

16k 3
8k

16k

16k
3
8k 1
16k
9
16 3
8k
3 16k
8k
1



Boundary Rules

Subdivision mask at boundaries / sharp creases:

@ @ . @ @ @ @ @
1 1 1 3 1 1 1
2 2 8 4 8 4 2
(odd) (even) (averaging mask)

* Just use the normal spline curve rules
* This gives visually good results
 However, the surface is not strictly C! at the boundary

* There is a modified weighting scheme that creates half-sided C*-

continuous surfaces at the boundary curves

SN )



Boundary Rules

Subdivision Mask for Boundary Conditions

......................................... . / \
1 1 1 6 1
2 2 8 8 8

t t

Edge Rule (odd) Vertex Rule (even)



Catmull-Clark in short

Face, edge, vertex points:

1.

2.

Introduce a face point for each face of the original mesh. The point is
simply the average of all the points that bound the face.

An edge point Is created for each interior edge of the polygonal surface.
The point is the average of the midpoint of the edge and the two face
points on both sides of the edge

A vertex point Is generated for each interior vertex P of the original

mesh. The point Is the average of Q, 2R, and (n_B)S, where Q Is the

n
average of the face points on all the faces adjacent to P, R is the

average of the midpoints of all the edges incident on P, and S is simply
P itself




Catmull-Clark scheme




Other Subdivision Schemes
Loop, Butterfly, -



Subdivision Zoo

A large number of subdivision scheme exists. The most popular are:
¢ Catmull-Clark subdivision
(quad-mesh, approximating, C* surfaces, C! at extraordinary vertices)
* Loop subdivision
(triangular, approximating, C* surfaces, Ct at extraordinary vertices)
 Butterfly subdivision
(triangular, interpolation, Ct surfaces, C1 at extraordinary vertices)

Examples of other schemes:

» v/3-subdivision (level of detail increases more slowly)
* Circular subdivision (used e.g. for surfaces of revolution)



Comparisons

Butterfly Loop Butterfly

Catmull-Clark Doo-Sabin Catmull-Clark Doo-Sabin



Trnangular Subdivision

Triangular Subdivision:
e Uses 1:4 triangular splits
* Extraordinary vertices: valence # 6

* Again:

v

N\
AN

i

* Splitting with linear interpolation

* Then apply averaging mask

2.

splitting o averaging



Loop Subdivision

INONCIN/N

1_05(’0_1 k) — 1 R -
VAR VA C
1 1 1 1

averaging mask evaluation (limit) mask boundary/sharp

crease mask

k(1= B(k) _ 3k
ati =4 )/,B(k) (k) / (4B())

B(k) = 5 (B3+2 c0352(27r/k))2




Butterfly Scheme

averaging mask
_t -

t/

P
2>
>
cefolg] N

0 = polyhedral, /g = smooth

Butterfly scheme:

* Original points remain unmodified
(interpolating scheme)

* New points averaged as shown on the right
* C1, except from extraordinary vertices
» Can be modified to be C! everywhere

/N

split triangles

-

N

original triangles



