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Interpolation Approximation



Interpolation
General interpolation and polynomial interpolation



Interpolation Problem

• Our first attempt at modeling smooth objects:

• Given a set of points along a curve or surface

• Choose basis functions that span a suitable function space

• Smooth basis functions

• Any linear combination will be smooth, too

• Find a linear combination such that the curve/surface interpolates the given points



General Formulation

• Settings
• Domain Ω ⊆ ℝ𝑑，mapping to ℝ
• Looking for a function 𝑓:Ω → ℝ
• Basis set：𝐵 = 𝑏1, … , 𝑏𝑛 , 𝑏𝑖: Ω → ℝ
• Represent 𝑓 as linear combination𝑛of basis functions

𝑓𝜆 𝑥 = 

𝑘=0

𝑛

𝜆𝑖𝑏𝑖 𝑥

i.e. 𝑓 is just determined by 𝜆 =
𝜆1
…
𝜆𝑛

• Function values: 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , 𝑥𝑖 , 𝑦𝑖 ∈ ℝ𝑑 × ℝ
• We want to find 𝜆 such that: 𝑓𝜆 𝑥𝑖 = 𝑦𝑖 for all 𝑖



Illustration



Solving the Interpolation Problem

• Solution: linear system of equations
• Evaluate basis functions at points 𝑥𝑖 :

∀𝑖 ∈ 1,… , 𝑛 : 

𝑖=1

𝑛

𝜆𝑖𝑏𝑖 𝑥𝑖 = 𝑦𝑖

• Matrix form:

𝑏1 𝑥1 ⋯ 𝑏𝑛 𝑥1
⋮ ⋱ ⋮

𝑏1 𝑥𝑛 ⋯ 𝑏𝑛 𝑥𝑛

𝜆1
⋮
𝜆𝑛

=

𝑦1
⋮
𝑦𝑛



Illustration

interpolation problem linear system



Illustration



Example

Polynomial Interpolation

• Monomial basis 𝐵 = 1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝑛−1

• Linear system to solve

1 𝑥1 … 𝑥1
𝑛−1

1 𝑥2 … 𝑥2
𝑛−1

… … … …
1 𝑥𝑛 … 𝑥𝑛

𝑛−1

𝜆1
𝜆2
…
𝜆𝑛

=

𝑦1
𝑦2
…
𝑦𝑛

Vandermonde Matrix



Example with Numbers

• Quadratic monomial basis 𝐵 = 1, 𝑥, 𝑥2

• Function values: { 0, 2 , 1, 0 , 2, 3 } 𝑥, 𝑦

• Linear system to solve:

1 0 0
1 1 1
1 2 4

𝜆1
𝜆2
𝜆3

=
2
0
3

• Result：𝜆1 = 2, 𝜆2 = −
9

2
, 𝜆3 =

5

2



Problems with interpolation

• The arising system matrix is generally dense

• Depending on the choice of the basis, the matrix can be ill-
conditioned (difficult to invert/solve)



ill-conditioning example

• Consider the system
• Clearly (1,1) is a solution

• Now perturb the right hand side of the 
second equation by 0.001 (order 10−3)

• The solution is then (0.000,3.000) (order 1)

• Now consider perturbing the coefficient
• The solution (2.000, -1.000)

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.333𝑥2 = 1

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.333𝑥2 = 0.999

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.334𝑥2 = 1



ill-conditioning

• Small change in the input data induces relatively large change in 
the output (solution)

• Thinking of equations as lines (hyperplanes), when the system is 
ill-conditioned the lines become almost parallel
• Obtaining a solution (intersection) becomes difficult and imprecise



Condition number

𝜅2 𝐴 =
max
𝑥≠0

𝐴𝑥
𝑥

min
𝑥≠0

𝐴𝑥
𝑥

• Can be regarded as the ratio of highest eigenvalues / lowest eigenvalue

• When the condition number is high it reflects there is too much 
interdependence between the elements of the basis



Condition Number...

• The interpolation problem is ill conditioned:

• For equidistant 𝑥𝑖，the condition number of the Vandermode 
matrix grows exponentially with 𝑛
• （maximum degree+1 = number of points to interpolate）



Why is that?？

Monomial Basis:

• Functions become increasingly 
indistinguishable with degree

• Only differ in growing rate
• 𝑥𝑖 grows faster than 𝑥𝑖−1

Monomial basis



Cancellation

• Monomials:

• From left to right in x- direction...
• First 1 dominates

• Then 𝑥 grows faster

• Then 𝑥2 grows faster

• Then 𝑥3 grows faster
• …

• Tendency:
• Well behaved functions often require alternating sequence of coefficients 

(left turn, right turn, left turn,...)

• Cancellation problems



The Cure...

• This problem can be fixed:
• Use orthogonal polynomial basis

• How to get one?   → e.g.  
Gram-Schmidt orthogonalization



Alternative approach

•Can we avoid solving a system in the first place?



Alternative approach

•Can we avoid solving a system in the first place?

Think of a different basis!



Alternative approach: Example

• Pass a quadratic polynomial through (1, 2), (2,−3), (4, 0.5)



Alternative approach: Example

• Assume we can construct a quadratic polynomial 𝑃0 𝑥 such that it 
is equal to 1 at 𝑥0, and equals zero at the other two points 𝑥1, 𝑥2 :



Alternative approach: Example

• 𝑃1 𝑥 ), is constructed similarly and set equal to 1 at location 𝑥1, 
and to zero at 𝑥0, 𝑥2 :



Alternative approach: Example

• 𝑃2 𝑥 is set equal to 1 at location 𝑥2, and to zero at 𝑥0, 𝑥1



Alternative approach: Example

• Now, the idea is to scale each 𝑃𝑖 𝑥 such that 𝑃𝑖 𝑥𝑖 = 𝑦𝑖 and add 
them all together:

𝑃 𝑥 = 𝑦0𝑃0 𝑥 + 𝑦1𝑃1 𝑥 + 𝑦2𝑃2 𝑥

2𝑃0 𝑥 − 3𝑃1 𝑥 0.5𝑃2 𝑥 𝑃 𝑥+ + =



Alternative approach: general case

• Construction of general solution to the interpolation problem:
• For a set of 𝑛 + 1 points 𝑥0, 𝑦0 , … , 𝑥𝑛, 𝑦𝑛 , we seek a basis of 

polynomials 𝑙𝑖 of degree 𝑛 such that

𝑙𝑖 𝑥𝑗 = ቊ
1,若𝑖 = 𝑗

0,若𝑖 ≠ 𝑗

• The solution to the interpolation problem is then given as

𝑃 𝑥 = 𝑦0𝑙0 𝑥 + 𝑦1𝑙1 𝑥 +⋯+ 𝑦𝑛𝑙𝑛 𝑥 =

𝑖=0

𝑛

𝑦𝑖𝑙𝑖 𝑥



Alternative approach: general case

• How can we find the polynomials  𝑙𝑖 𝑥 ?

• They are polynomials of degree 𝑛 and have the following 𝑛 roots
𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛

• They can be expressed as
𝑙𝑖 𝑥 = 𝐶𝑖 𝑥 − 𝑥0 𝑥 − 𝑥1 … 𝑥 − 𝑥𝑖−1 𝑥 − 𝑥𝑖+1 … 𝑥 − 𝑥𝑛

= 𝐶𝑖ෑ

𝑗≠𝑖

𝑥 − 𝑥𝑗

• Since 𝑙𝑖 𝑥𝑖 = 1

1 = 𝐶𝑖ෑ

𝑗≠𝑖

𝑥𝑖 − 𝑥𝑗 ⇒ 𝐶𝑖 =
1

ς𝑗≠𝑖 𝑥𝑖 − 𝑥𝑗



Alternative approach: general case

• Finally we have

𝑙𝑖 𝑥 =
ς𝑗≠𝑖 𝑥 − 𝑥𝑗

ς𝑗≠𝑖 𝑥𝑖 − 𝑥𝑗

• The polynomials 𝑙𝑖 𝑥 are called Lagrange polynomials



Question

• Is the solution to the interpolation problem obtained using the 
Lagrange polynomials different from the solution obtained using 
the Vandermonde matrix (monomial basis)?



Question

• Is the solution to the interpolation problem obtained using the 
Lagrange polynomials different from the solution obtained using 
the Vandermonde matrix (monomial basis)?

• Answer: they are the same!
• Assume they are different. Let’s denote 𝑅𝑛 the polynomial defined by 

their difference. 𝑅𝑛 has a degree of at most 𝑛.
• We have 𝑅𝑛 𝑥𝑖 = 0, 𝑖 = 0…𝑛，where 𝑥𝑖 are the distinct interpolation 

points. So 𝑅𝑛 has a degree of at most 𝑛 and has 𝑛 + 1 roots ⇒ 𝑅𝑛 = 0

• Of course there are many other ways of representing the same 
polynomial!



How good is our interpolation?

Wiggling (Runge’s Phenomenon) and high sensitivity to the change of number of interpolation points. 

Observe the difference between 𝑛 = 9 (10 data points) and 𝑛 = 10 (11 data points)



Conclusion

• Polynomial interpolation is instable

• Small changes in control points can lead to very different result. 
𝑥𝑖 sequence is important.

• “Runge’s phenomenon”: Oscillating behavior

• Wiggling of the polynomial as the number of fitting points 
increases (even slightly).

• We need better basis functions for interpolation
• For example, piecewise polynomials will work much better



Approximation
Polynomial and least squares approximation



Motivation

• Why do we need approximation:
• Noise in the data (sample points)

• Compact representation

• Simpler evaluations

• Common approximating functions
• Polynomials

• Rational functions (quotient of polynomials)

• Trigonometric functions



Why use polynomials?

• Easy to evaluate, well behaved, smooth,…

• Can be justified analytically:

• Weierstrass’ theorem: Let f be any continuous function on a closed 

interval [𝑎, 𝑏], then for any 𝜀, there exist an 𝑛 and polynomial 𝑃𝑛 s.t.

𝑓 𝑥 − 𝑃𝑛 𝑥 < 𝜀, ∀𝑥 ∈ 𝑎, 𝑏

• Weierstrass only proved existence without generating the polynomials



Approximation with Bernstein Polynomials

• Bernstein gave a constructive proof (Powerful!)

• For any continuous function on 0, 1 and any positive integer 𝑛, we have for all 𝑥

in 0, 1

𝑓 𝑥 − 𝐵𝑛 𝑓, 𝑥 <
9

4
𝑚𝑓,𝑛

• 𝑚𝑓,𝑛 = lower upper bound
𝑦1,𝑦2∈ 0,1 & 𝑦1−𝑦2 <

1

𝑛

𝑓 𝑦1 − 𝑓 𝑦2

• 𝐵𝑛 𝑓, 𝑥 = σ𝑗=0
𝑛 𝑓 𝑥𝑗 𝑏𝑛,𝑗 𝑥 , where 𝑥𝑗 are equally spaced sampling points on 0,1

• 𝑏𝑛,𝑗 =
𝑛
𝑗 𝑥𝑗 1 − 𝑥 𝑛−𝑗called Bernstein polynomials



Bernstein Polynomials

• 𝑏0,0 𝑥 = 1

• 𝑏0,1 𝑥 = 1 − 𝑥, 𝑏1,1 = 𝑥

• 𝑏0,2 𝑥 = 1 − 𝑥 2, 𝑏1,2 = 2𝑥 1 − 𝑥 , 𝑏2,2 = 𝑥2

• 𝑏0,3 𝑥 = 1 − 𝑥 3, 𝑏1,3 = 3𝑥 1 − 𝑥 2, 𝑏2,3 = 3𝑥2 1 − 𝑥 , 𝑏3,3 = 𝑥3

• 𝑏0,4 𝑥 = 1 − 𝑥 4, 𝑏1,4 = 4𝑥 1 − 𝑥 3, 𝑏2,4 = 6𝑥2 1 − 𝑥 2, 𝑏3,4 = 4𝑥3 1 − 𝑥 , 𝑏4,4 = 𝑥4



Approximation with Bernstein polynomials

• Example: approximation with Bernstein polynomials
• Produces excellent approximation but requires a high order

• Expensive evaluations

• Can be prone to errors



Least-squares approximation

• Approximation Problem
• Given a linearly independent set 𝐵 = {𝑏1, … 𝑏𝑛} of continuous functions 

and nodes 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 with 𝑚 > 𝑛.

• What function 𝑓 ∈ span 𝐵 best approximates the nodes?

• Example: Best approximating linear function for a set of nodes

• How do we define “best approximating”?



What is meant by best approximating?

• Least-Squares Approximation

argmin
𝑓∈span 𝐵



𝑗=1

𝑚

𝑓 𝑥𝑗 − 𝑦𝑗
2

𝑀 =
𝑏1 𝑥1 … 𝑏𝑛 𝑥1
… … …

𝑏1 𝑥𝑚 … 𝑏𝑛 𝑥𝑚


𝑗=1

𝑚

𝑓 𝑥𝑗 − 𝑦𝑗
2
=

𝑗=1

𝑚


𝑖=1

𝑛

𝜆𝑖𝑏𝑖 𝑥𝑗 − 𝑦𝑗

2

= 𝑀𝜆 − 𝑦 𝑇 𝑀𝜆 − 𝑦

= 𝜆𝑇𝑀𝑇𝑀𝜆 − 𝑦𝑇𝑀𝜆 − 𝜆𝑇𝑀𝑇𝑦 + 𝑦𝑇𝑦

= 𝜆𝑇𝑀𝑇𝑀𝜆 − 2𝑦𝑇𝑀𝜆 + 𝑦𝑇𝑦



Solving the Problem

• This is a quadratic polynomial in 𝜆
𝜆𝑇𝑀𝑇𝑀𝜆 − 2𝑦𝑇𝑀𝜆 + 𝑦𝑇𝑦

• Normal equation
• The minimizer satisfies

𝑀𝑇𝑀𝜆 = 𝑀𝑇y

• Reminder
• Minimize quadratic objective function 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐

• Necessary and sufficient condition: 2𝐴𝑥 = −𝑏



Example: linear approximation



Example: Quadratic approximation



Questions?


